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Abstract

Spiral segments have several advantages of containing neither inflection points,
singularities nor curvature extrema. The object of this note is to obtain sufficient
conditions for cubic spiral segments with help of Mathematica.

1 Introduction

Spiral segments have several advantages of containing neither inflection points, singu-
larities nor curvature extrema. They are used to join (i) a straight line to a circle, (ii) two
circles with a broken back C, (iii) two circles with an S, (iv) two non-parallel straight lines
and also (v) two circles with one circle inside the other ([4]). In this paper, all spirals have
zero curvature at their beginning points, nonnegative curvature at their ending points,
and are parameterized on the interval [0, 1]. Walton & Meek have obtained a cubic spiral
condition by choosing the second control point of a cubic Bézier midway between the first
and third control points when the quintic numerator of the derivative of the curvature
reduces to a special quartic polynomial composed of even powers, i.e., they successfully
relaxed the requirement of a curvature extremum at the ending fourth control point([4]).
In addition, the spiral region has been given for the first or fourth control point. Farouki
has explored generalization by moving the second control point along the line segment
joining the first and third control points([1]).

The object of this paper is to expand their regions for the cubic spiral with help of
Mathematica (A system for Mathematics by Computer). In Section 3, we examine a
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nonnegativity condition for a quintic numerator of the derivative of the curvature on [0, 1]
which is to be reduced to [0, 00). In Section 4, we determine the position of the end vertex

of a cubic spiral with the other one fixed .

2 Preliminary results
For a parametric cubic curve segment z(t) = (z(t), y(t)),0 < ¢ < 1 with control vertices
P, 0<i<3:
z(t) = Po(1 —t)° + 3Py (1 — t)*t + 3P3(1 — t)t* + Pst?, (2.1)
its curvature x(¢) is given by
K(t) = (2 x "))/ |ZOF, o<t<1 (2.2)

where | || means the Euclidean norm. Since the cubic curve segment has eight parameters,

we require it to satisfy the following six conditions:

() 2(0) = (0,0), (id) 2'(0) || (1,0), (iid) £(0) =0
(2.3)
() k(1) =1, (v) 2(1) | (cost,sin)

The above four conditions (i)-(iii) mean that the segment is tangent to the the positive part
of the z-axis at the origin (the starting point Py of the segment), and the remaining three
ones (iv)-(v) mean that the segment meets the circle centered (z(1)—sin @, y(1)+cos 8)(the
terminal point Pj3 of the segment) with a radius 1. For analysis, we rewrite z(t) of the

form:
() = apt agt+ aot® + ast®
(2.4)
y(t) = bo+ byt + bot® + bst?
with
—a; — 2a9 + \/Q(al + az) sin 6 cos
ag = 0, az = : -
3
(2.5)

(a1 + 2as + 3a3) tan
3

bp = 0,b; =0,by = 0,b3 =
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Introduce two parameters p, d as

w=pa=d/2-p (2.6)
to obtain
2 _ 2 -
w(t) = pt+(5 -2 4 L2 dgosgmtg
(2.7)
I
y(t) = d\/s31n—0t3

Then, we have

dt(2p + d*t — 2pt)Vsin® 0
{(p + d?t — 2pt — d?t2 4 pt? + dt% cos 0v/sin )2 + d?t* sin® §}3/2

K(t) = (2.8)

First, differentiate (t) with resperct to ¢ and next let ¢t = 1/(1+45),0 < s < 0o to obtain

5 4
K (t) = {d(1 + s)°sinfVsind Y w;s'}/{D> s}/ (2.9)
i=0 i=0
with
us = 2p°,uy = 10p°, uz = dp(—3d* + 20dp — 8p cos H/sin 0) (2.10)

us = d(—d® 4 13d*p — 16dp cos 0+/sin 0 + 8p® cos 6V/sin 0)

uy = d?(3d* — 5d> cos 0/sin 6 + 8dp cos 6v/sin 6 — 10psin )

uo = d?(3d® cos § — 4d*V/sin  — 2pV/sin 0)Vsin 6;

vy = p?,v3 = 2d%p, vy = d* + 2dp cos 0+/sin 6 (2.11)
vy = 2d° cos 9\/@, vo = d*sin 6

Being difficult to obtain a necessary and sufficient condition for the above quintic numera-
tor of (2.9) to have no zero € (0, 1), we consider a sufficient condition, i.e.,u; > 0,0 <7 <5
which gives the following Lemma. Note that functions f;(d,6),7 = 1,2, 3 are obtained by
solving u; = 0 for p.

Lemma 2.1 The cubic segment z(t)(= (z(t),y(t)) of (2.7) is a spiral if

Max{fi(d,0), f2(d,0), fs(d,0)} < p < fo(d,0) (2.12)
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where
fold.6) = 3d3 cos 6 — 4d?+/sin 6
o 24/sin @
~ —(3d* — 5d° cos 0/sin §)

fid,0) = 2(4d cos 6+/sin 6 — 5sin 6)
(2.13)
£2(d, 0) = d?(~13d + 16 cos 0v/5in 0 + /1692 — 384d cos 6+/5in 0 + 256 cos? O sin §
, 16 cos 8v/sin 6
f2(d,0) = 34
7 4(5d? — 2 cos 6+/sin )

In order to determine f4(d, 6)(= Max{fi(d, 0), f2(d,0), f3(d,0)}), let dy = 4v/sin /(3 cos 6)
and dz = 2(11 + 3v/5) cos #+/sin /19. Then, we have
Case 1: cos20 < (152 — 57+/5)/57 (¢ 0.562821... < 0 < 7/2)

f1(d,0) = f5(d, 8),d € [dy, ) (2.14)
Case 2: (152 — 57v/5)/57 < cos 20 < (51 + 1/105)/96 (<> 0.439456... < 6 < 0.562820...)

f2(d,0),d € [do, ds]
HaD={ o 2 oo
Note that fy(d,u) intersects f3(d,u) or fa(d,u) for (152 — 57+/5)/57 < cos20 < (28 —
111/5)/6 or (28 — 11v/5)/6 < cos 20 < (51 + /105)/96.
Case 3: (51 +/105)/96 < cos 20 (< 0 < 6 < 0.439456...)
f1(d,0),d € [do, do]
fa(d,0) = { fo(d,0),d € [dy,ds] (2.16)
f3(d,0),d € [d3, 00)

where dj is a unique poisitive root of a cubic equation:

(2.15)

48d°% cos 6 — 6d*(23 + 10 cos 20)Vsin§ + (119sin20 + 11sin48)d  (2.17)
—20vsinf(sin @ + 2sin36) = 0

Note that f4(d, ) intersects fo(d,0) or fi(d,8) for (51 + +/105)/96 < cos20 < 13/14 or
13/14 < cos26. Consequently, we have a (sufficient) spiral condition:

Theorem 2.1 The cubic segment z(t)(= (z(t), y(t)) of (2.7) is a spiral if
(1)  for cos20 < (28 —11v5)/6, f3(d,0) <p < fo(d,0) (d > dy)
(i) for (28 —11V5)/6 < cos20 < 13/14, fo(d,0) < p < fo(d,8) (d > d5)(2.18)
(i1d)  for 13/14 < cos26, fi(d,0) <p < fo(d,0) (d > ds)
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Note that f;(d,0),i = 3,2,1 intersect fo(d,0) at d = d7_; where

(49 + 6 cos 26)v/sin @ + /1645 sin @ — 195 sin 36 + 9 sin 50

da = 60 cos @
9(7 + 4 cos 26)v/sin 0 + 1/3(175sin 6 — 56 sin 36 + 12 sin 56)
ds = (2.19)
3(22 cos @ + 3 cos 30)
p 18 cos 6+/sin 0 + \/3(—13 sin 6 + 7 sin 36)
o~ 9 + 6 cos 20

Here we remark that the sufficient condition a; = 0 proposed by Walton & Meek [3] is

equivalent to

p=d*/2, p< fo(d,0) (2.20)

p=d2/2 2 t
p< fo(d; 0)
1-
1.2 1.‘4 1.6 1.8

Figure 1. Spiral condition on p,d for 8 = 0.6

3 Main results

The above spiral condition (2.12) determines a spiral region for Ps (the end control
point of the Bézier curve(2.1)).
For (m,n) = P3, we have

3n 3(2msin® @ — 2nsin? § cos § — 3n?)
d e — p — —3
2sin” 6

) 3.1
sin 8v/sin 8 (3.1)




Sufficient condition 1 (Walton & Meek [4]):

Equation (2.20) gives

ncos @ N 3n? o 5sin%

sinf  sin®@’ ~ 9cosd

In Figure 2, the parametrized boundary of the above region is given by
_ 5sinf(2cos? 0 + 5) 0 5sin? @
N 27 cos? 0 ’ " 9cosf

where its implicit form is given by

6561m* — 2187n2(32 + 27n*)m? — n?(243n% + 320) = 0

Theorem 2.1 gives a larger spiral region:
Sufficient condition 2:
First, Theorem 2.1 requires fo(d,p) > p which is equivalent to
27n% cos @ — In?sin? @ + 2ncosfsin® @ > 2msin® @
(i) for cos 26 < (28 — 11/5)/6; in addition to (3.5)

n(117n? + 48n cos § sin? § — 8 cos? fsin* 4)
m
- 4(15n — 2 cos §sin” ) sin® @

(ii) for (28 — 11v/5)/6 < cos 26 < 13/14; in addition to (3.5)

16m sin® @ cos 6 > 3n2\/1521n2 — 1152n sin® 6 cos 8 + 256 sin* 6 cos2 §

—(117n® — 72n? sin® 6 cos 6 — 16m cos® fsin* 6)

(iii) for 13/14 < cos 26; in addition to (3.5)

S —n{81n® — 81n? cos A sin® § — 3n(8 cos? § — 5)sin’ & + 10.cosFsin® @}

2(12n cos 6 — 5sin® §) sin® #
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(3.5)

(3.6)

(3.7)

(3.8)

The above result gives the spiral region for the fourth contrel points P; with Py fixed.

Ours

0.6 F
Walton & Meek \

0.25 0.5 0.75 1 1.25 1.5 1.75 2

Figure 2. Spiral region for the fourth control point P; with P, fixed
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A shift of P53 to the origin and P5 on the positive part of the z-axis gives
Py = (z(1)cosf + y(1)sind, z(1) sin @ — y(1) cos 9) (3.9)

A combination of (3.2)-(3.9) yields the spiral region for the first control point Fy with Ps
fixed.

Ours

Walton & Meek

Figure 3. Spiral region for the fourth control point P, with P3 fixed
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