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1 Introduction

Free boundary problems are boundary value problems defined on domains whose
boundaries are unknown and must be determined as the solution. Due to nonlin-
earity they easily involve chaotic phenomena. They are very important from the
practical view point, so investigation of chaotic phenomena is very important. It is
carried out via analysis of bifurcation and attractors. Bifurcation phenomena in a
free boundary problem related to natural convection were analyzed numerically[6].
Attractors in free boundary porblems were analyzed theoretically[1].

In the paper we consider a one-dimensional free boundary problem with some
parameters. This problem is of the type of a two-phase Stefan problem. The spectral
collocation method in space and time is used. However, the spectral collocation
method is not directly applicable to free boundary problems without additional
techniques, due to the unknown shape of domains. So, the fixed domain method is
adopted|3]. '
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2 Our free boundary problem

We consider the following one-dimensional free boundary problem with some pa-
rameters.

Problem 1. Find u*(z,t) and s(t) such that

uF(z,t) = ul(z,t)+ g5 (a,t), 0<t, 0<z<s(t),
v (F1,t) = hE@), 0<t,
ut(s(t),t) = 0, 0<t,
ut(z,0) = u'(z), —-1< 1z < s,
u” (z,0) u” (z), so<z<l1,
d
a‘is(t) = —k+(t)u;—(8(t)7 t) + k_(t)u’; (S(t)a t)a 0< 12
S(O) = Sy
where |a%], 18], |so] <1, 0<r <1,
1 14 Bsint
(1) = 1—7) = —= P geost
() r 7‘)2 :l:l—i—aismtﬂcos ’
RE(t) = +1+ atsint,
) eos t +1+aFsint
+ t — (/6! & )COS 1) + t
(1) (1L Bsint)? (z = fsint) 1+ (sint b cost,
ut(z) = a(z — s0)* + also+ 1)z — so) — ‘;’;_SE’
oy 2 L 4 s
w (z) = bz — 39)° + b{sg— 1)(x — 504)~+ 1
Parameters a, b are determined such that u*(z) > 0, v~ (2) < 0.

Remark. For a = b = sy = r = 0, there are exact solutions as follows:

s(t) = s,(t) = Bsint,
FhE(t) _ _*l+aFsint ,
u®(z, 1) TE sp(t)( —s5p(t)) = F I Fomi (z — Bsint).

3 Fixed domain method

This section presents methods for numerical simulation.



The spectral methods are superior in accuracy[2]. In particular, the spectral
collocation method is preferable for the application to nonlinear problems. However,
it can not be applied directly to free boundary problems due to the unknown shape
of the domain. To avoid this difficulty, we use the fixed domain method|[3],[5].
Mapping functions are introduced for mapping the unknown domain to the fixed
rectangular domain.

We use the following variable transformation : (z,t) — (&, ) such that
t = tt)=t, 0<t,
5() + 1
3 5(0) + E+1)-1, 0<t —1<z<s(t)
—2——(5—1)+1, 0<t s(t)<z<1
Using these mapping functions, we define
i) = std),
@61 = u(2(§ 1)),
@ (§1) = u (z(&1),4(1)).

Then, Problem 1 is transformed in the following fixed boundary problem.

Problem 2.

Find a%(¢, )
a7 (¢,1) t

k() L

{5() +
kO3

(B —at)cost

and 5(t) such that
2(6+1) e
1}2 3

2€+1) 1 Datie i 4
GopE-1°

(1, 8)ag (&)

(—1,1)ag (§,8) + &(&,1)

5(f) +1

{50 +1)2 et

(14 Bsint)?

(1+atsint)Bcost

5 (§+1)~1—ﬁsirlf>

0<t, —-1<€&<1,

1+ Bsint

1+ aTsint,

0<t{,

1
——+—1)> (so+1)(€-1), -1<&<,

af (1,8)ag (€,1)

I 4 ]
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(1 - a~ sint)Bcost

1 — Bsint
4 (-1,{) = 0, 0<t,
@~ (1,{) = —1+a sint, 0<t,

For application of the spectral collocation method in time, the time axis is divided
into intervals. In each interval the initial and boundary value problem is solved. This
procedure is executed iteratively[3]. In the interval [t;,?.] we consider the following
variable transformation : £ — 7 such that

f:f(T):g'r+

t

(ts + te),

4
DY
INA

Raat!
IA

o~
®

1
2 2

where

13
t

Using this variable transformation, we define
5(r) = (),
at(§,7) = at (5t

U

(&) = @ (&H(r))
Then, Problem 2 is transformed in the following Proglem 3.

Problem 3. For the interval [f,1,] after the interval [, ], find @*(£,7) and 5(7)
such that

2 - 2(6+1)

A—g’aj(fﬁ) = "k+(7)wug (1, 7)ad (€, 7) |
- 2(6+1) __ . 4 .
—k (T)Wug (—I,T)Ug (f,T) + —{mu&(f, 7‘)

(B —at)cos{t(r)} (5(7’) +1

+ (% Bsin{i() )2 5 (E+1)—1- ﬂsin{f(T)})
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N (1+ ot sin{t(7)})Bcos{t(7)}

-1<7<1, —-1<&<1,

1+ Bsin{t(7)} ’
1+atsin{t(r)}, -1<7<1,
0, -1<7<1,
a 1 -
{ (G0 + 106 +1) = 5 ) o+ =D, o
at (&, 1) otherwise,
—1<€é<1,

-_+7'———————-——2(§_1) af (1,7)ag (&7
k ( ){5(7_)}2_1 5(17 )§(€7 )

sy 261 __ 4
—k (T)WUE (=1,7)ag (&) + Wu&(& T)

CBaeosi(m} (1=50) o
(1—ﬂsin{f(f)})2< g (¢~ DL fsindi( ”)

N (1-a sin{f(T)}z,B cos{t(7)}
1 — Bsin{t()} ’

-1<7<1, —-1<€<1,

= 0, -1<7r<1,
—1+o sin{i(r)}, -1<7<1,
b 1 -
{ (360 1€ -1 - g5 ) to-DlE+ D, F=
= (&,7) otherwise,
-1<&<,
_ 2 _ - 2 L
—k*(r) T 1ug(l,T) -k (T)E(T) — % (-1,7), —-1<7<1,

S0, {S = 0)
3(t),  otherwise.

Then the spectral collocation method in space and time is applied[3].

4 Numerical results

In this section, numerical results are shown.

Fig. 1 shows a numerical result for r = 0, a* = 8 =05, s =0, a = b = 0.
In this case exact solutions are known as in Remark. They are periodic. Numerical
solutions are also periodic. Numerical simulation is very satisfactory in accuracy.
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Fig.1. Numerical solution for r =0, a* = 3=0.5, s¢=0, a=b=0.

Fig. 2 shows these periodic solutions are not stable. For slightly different initial
conditions, numerical solutions evolve separately from the periodic solutions. This
means the periodic solutions are not stable. In this case there seems to be no
attractor. ‘
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Fig.2. Numerical solution for r = 0, o = 3= 0.5, s =0.1, a = b= 0.

Fig.3 shows a numerical result forr =1, o = 3=10.5, 5 =0, a = b = 0. In



this case there are no exact solutions. Numerical solutions converge to the attractor
in Fig.3 which is a closed curve. This means periodic solutions are stable.
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Fig.3. Attractorforr =1, a*=(3=10.5,a=5b=0
Fig. 4 shows numerical results for r = 1, a® = B = 0 and several initial

conditions. Solution curves converge to a point. This means the fixed point is the
attractor. The steady state is stable.
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Fig.4. Numerical solution for r = 1, o® = 8 = 0.
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Fig. 5 shows the attractor for r = 1, a* = 8 = 0.5. It is a closed curve in

the three-dimensional space. u' and u~ represents u+(5@2_u,t) and u"(—l—“—;m,t),
respectively. s, ut and u~ are all unknowns of the ODE system which is derived
by the discretization of the PDE system. This means our approach enables to
approximate arbitrarily the original attractor of the PDE system in the functional
space.
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Fig.5. Attractor in the solution space forr =1, a* = 3=0.5, a=b=0.

5 Conclusion

In the paper numerical computation of attractors to a free boundary problems is car-
ried out. The problem considered here is a one-dimensional free boundary problem
with some parameters. This problem is of the type of a two-phase Stefan prob-
lem. It is transformed into a fixed boundary problem by the fixed domain method.
Then, the spectral collocation method in space and time is applied for numerical
computation. From numerical results, attractors are found numerically for some
values of parameters. Our next goal is investigation of Lyapunov exponents of the
attractors[4].
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