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Abstract. In this paper, finite element approximations of conformal mappings
defined on the unit disk to Jordan regions are considered. Three types of the normaliza-
tion conditions are dealt with. In each case, convergence of the finite element conformal
mappings to the exact solution is proved.

1. Introduction.

Let D C R? be the unit disk, and € C R? a bounded domain whose boundany 9 is
a closed Jordan curve v C R? (such bounded regions: ave called Josdam: regions). Let

:D - Q, 0 € C(D: RHNCHD : R?) be C'diffcomouphic and orientation-preserving.
If ¢ also preserves any angles of two curves crossing at a point in D, 4 is called a
conformal mapping. From the theory of complex functions, we know that, if a '
diffeomorphism ¢ = (p1,92) : D — Q is conformal, then the complex-valued function
f(2) = o121, 22) + V=1¢pa(z1, 39) is differentiable with respect to the complex value
z:= 1 + vV/—1x9, and vice versa. In this paper, we study finite element approximation
of conformal mappings on the unit disk.

For conformal mappings from the unit disk to Jordan regions, the following variational
principle has been known (for example, see [3, pp.107-115], [4, Section 4.5]): Define the
subset X, of C(D;R?) N H'(D;R?) by

(1.1) X, = {‘l,/) € C(D;R*) N H'(D;R?) | 4:(AD) =  and ¢|yp is monotfme},
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where |sp being monotone means that v|sp preserves the orientation of 0D, and
(¢|ap) "' (p) is connected for any p € 7. We denote the Dirichlet integral (or the en-
ergy functional) on D for ¢ = (¢1,¢2) € H'(D;R?) by

(1.2 D(¢)i= [ [VePdz = [ (Wil + Vol
D D

Then, we have that ¢ € X, is conformal if and only if ¢ € X, is a stationary point of the
functional D(p) in X,. The problem of finding stationary points of the Dirichlet integral
in X, is called the Plateau problem [3], [4]. Therefore, in this sense, the conformal
mappings are minimal surfaces in R?.

By the Riemann mapping theorem, or the existence proof of solutions of the Plateau
problem, there exist conformal mappings ¢ € X, and we have

D(p) = inf D) =9,
PeXy

where || is the area of 2. It is also well-known that in our case the conformal mappings
are homeomorphisms between D and €.

To specify a conformal mapping, we need a normalization condition. Several normal-
ization conditions are known for conformal mappings on the unit disk. In this paper, we
deal with the following conditions (see Figure 1):
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Figure 1: The three normalization conditions.
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(a) Specify the image of three points on 0D.
(b) Specify the image of a point on dD and a point in D.
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(c¢) Specify the image of a point in D and the direction of derivative at the point.

In the following sections we discuss finite element approximations of conformal map-
pings with the above normalization conditions. Since the number of pages is limited, we
cannot give any numerical examples in this article. They and a detailed discussion on
implementation of finite element conformal mappings will be given in the final version of
this paper.

2. Finite element approximation of conformal map-
pings

In this section, we consider a finite element approximation of conformal mappings. First,
we suppose that we have a family of regular triangulation {A} of the unit disk with
triangles (for the definition of regular triangulation see Ciarlet [1, p124]), where h stands
for the maximum size of triangles in the triangulation Ay, and h — 0. Set Dy =
Ukea, K- Note that Dy, C D for any h. Let S, C C°(Dy) be the set of piecewise linear
functions on each triangle. We extend the functions of Sy, in the following manner. On
a point € 9Dy, which is not a nodal point, there exists an outer normal half line {. On
y € LN (D — Dy), the value of f € S), is defined by fr(y) := fr(z). A straightforward
computation yields

/ |Vvh|2d$§/ |Vup)?dz < (1+Ch)/ |Vup|*dz
Dy, D

Dy,

for any v, € Sy, where C is a positive constant independent of A.
We discretize X, as

Syp = {1/)}1 € (Sp)? ‘ (D N Ny) C 7ka,r.1d Yn|ap is d—monot.one},

where N}, is the set of nodal points in Dy, and t|op being d-monotone means that the
order of nodes on 9D is preserved on v by ¥p|ap.

The finite element (or FE) conformal mappings ¢y, are defined as the minimizer of
the Dirichlet integral D(vy) in Sy p:

D(QO]L) = inf D(Uh,).
VRES, h
Since S, 5 is a subset of finite-dimensional Euclidean space, it is obvious that FE conformal
mappings exist. v
From the definition it is obvious that finite element conformal mappings are “discrete
harmonic mappings.” That is, if ¢ € S, is a FE conformal mapping, ¢4, is the minimizer
of the Dirichlet integral in the subset { Yh € Syh ‘ Uplap = goh|ap}. In other wards, ¢
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is the unique solution of the weak problem
(2.1) /D(Vw,ll Vi + Vi - Vodde =0, Yo, €S,
where S is defined by

SO .= {vh € (Sp)? . v, =0 on GD}.

It is well-known that the maximum principle does not hold for discrete harmonic
mappings in general. We however have the following weak maximum principle for the
discrete harmonic mappings proved by Schatz [5]:

Lemma 2.1 Let the triangulation {Ap} be regular and quasi-uniform. Suppose that
on € Sy satisfies (2.1). Then for sufficiently small h there exists a positive C > 1
independent of h and wp such that

(2.2) lonlleny < CllonllLeppy. O

3. The Three Point Condition

In this section we consider the first normalization condition. Let z1, 20,23 € 9D and

C1,(2,(3 € v be taken so that those points define the same orientation on @D and ~.
Define

xi={yex,

W(z) =G, i = 1,2,3},
where “tp” stands for the three point condition. It is obvious that

inf D(y) = inf D().
o, () = inf D)

By the Riemann mapping theorem we have

Theorem 3.1 There exists a unique ¢ € Xff which is conformal and bijective between
D and Q. Moreover, ¢ : D —  is a homeomorphism. O

To prove Theorem 3.1 we use the following well-known lemma [3, Lemma 3.2}, [4,
Section 4.3]:

Lemma 3.2 Let M be a positive constant such that the subset A C Xff defined by
A= {w e X' | D) < M}

1s not empty. Then the functions {¢|3D}¢€A are equicontinuous on 0D. U]
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Therefore, taking a minimizing sequence {z,bn}(:;l such that lim,, o, D(3,) = inf Xt D(9),
it follows from Ascoli-Arzela’s theorem that there exists a subsequence {y’)m.} such that
{¥n,Jop} converges some g € C(0D;R?) uniformly. Moreover, from the lower semi-
continuity of the Dirichlet integral, we conclude that the solution ¢ € X;P of the Laplace

equation
Ap=0 i D, w=g9 ondD

is the desired conformal mapping.

We follow the above scenario to define the finite element conformal mappings. Let
{Ah} hso D€ @ family of regular triangulation of the unit disk such that A — 0. In this
section we always suppose that the point 21, 29, 23 € D are nodal points of Ay, for each
h > 0. Define the subset 7, by

i = {wh € S ‘ Un(z) = G i = 1,2, 3} .

Definition 3.3 A map ¢, € Sffh 15 called the finite element conformal mapping if
it 1s a minimizer of the Dirichlet integral in Sff L

D(¢n) = inf ~ D(vn). O

W GS;?),,

We now consider the convergence of the finite element conformal mappings. For each
h > 0 there exists a finite element conformal mapping ¢, € S:p »- The following is the
most crucial [8, Corollary 8§]: '

Lemma 3.4 Let {A;,} hso € a family of regular triangulation of the unit disk such that
h — 0 and z1, 20, 23 € 8D are nodal points in Ay, for cach h > 0.. Suppose that the Jordan
curve 7y 18 rectifiable. Then, for the sequence of the finite element’ comformal mappings
{ goh} 10’ the function {(phfa[}}’h>0 are equicomtinuous on 0D, [

By the exactly same manner as in [7] we obtain

Theorem 3.5 Let {Ah‘} hso € @ famaly of regular quasi-uniform triangulation of the unit
disk such that h — 0 and 21, 29, 23 € D are nodal points in Ay, for each h > 0. Suppose
that the Jordan curve vy is rectifiable. Then, the sequence of the finite element conformal
mappings {cph} hao COTeErges to the exact conformal mapping ¢ € X;p wn the following
sense:

lim [l — @ullm oz = 0.
and if o € W'P(D;R?), p > 2, then

}Lif}}) o ~ erllowrz = 0. O
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Remark In [7], [8], the family {A} heo Of triangulation was supposed to be of non-
negative type (see [2]) to ensure the maximum principle for the discrete harmonic map-
pings. However, since the weak maximum principle proved by Schatz (Lemma 2.1) is good
enough for our proof, we only need to assume that {Ah} hso 18 quasi-uniform instead. [J

4. The One Point Condition

In this section we consider another normalization condition: the one point condition. Let
zg € D and (o € ). Define X7 by

X;’p = {

¥(z0) = Go -

We know that the degree of “freedom” of conformal mappings in X2 is just one, and
if rotation around zp is specified, then the conformal mapping is determined uniquely.
As is stated in Section 1 we specify either the correspondence of boundary points or the
direction of the derivative at 2y to fix rotation.

To take the same strategy as in Section 3, we would have to prove that, for a positive
constant M > || and the subset A := {¢) € X% | D(¥) < M}, the functions {v'*/"i@D}weA
are equicontinuous. It seems, however, that this may be a wrong statement. Thus, we
must impose an additional condition to make it valid.

A mapping ¥ € X, is called monotone if ¥y"'(p) C D is connected for any point
p € Y(D). We redefine X7 by

XF = {w € X, | P(20) = (o and ¢ is monotone}.
Then we have

Lemma 4.1 Let M be a positive constant such that M > |Q]. Let A := {¢> € X 1

D(y) < ]\/[} Then the functions {d\ap} vea 0TE equicontinuous.

Proof. First, we recall the famous Courant-Lebesgue lemma [3, pp.101-102], [4, Sec-
tiond.4]. For any 2z € R? and any r > 0 we define

So=DN{weR*: lw—zl<r}, C.:=Dn{we R*:|w—z| =71}
If z € 0D, then we can write
Cr, = {z +re  6,(r) <0< 92(7")} with 0 < 61(r) — 02(r) <

Lemma 4.2 Let z € 0D and set Z(r,0) := f(z + re®®) where r, 6 denotes polar coor-
dinates about z. Then, for arbitrary § € (0,R), 0 < R < 1, there exists p € (8,v/9)
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depending on f and z such that, for any pair 6, 6 with 61(p) < 0 < 6" < 04(p), we obtain
the estimate

0/
/ \Zo(p, 0)|d6 < (5, R)|9 — 0']1/2
]

1/2
2
noR) = {rogd/‘a) /5 Vs 'de} !

1Z(p,0) — Z(p,0)| < n(6, R)|0 — ¢'|'/2.

with

and in particular

From a topological argument the following statement is valid: for any € > 0, there
exists a > 0 such that, taking any two distinct points by, by € v with |by — by| < «, the
diameter of the smaller connected component of v — {by, by} is less than .

Let € > 0 be taken arbitrarily. Let a > 0 be the real in the above statement and
ap = min(e, 3dist(o,7)). Let 2 € D. We now take 6 > 0 such that

Then from Lemma 4.2 there exists p € (4, /) such that

s\ 12
1Z(p, 0:(0)) — Z(p. 6a(p))] < (%) <a

Set b; = Z(p,0;(p)), i = 1,2. From the above statement the diameter of the smaller
connected component of y—{b1, b2} is less than £. The proof, therefore, will be completed
if we show that, for any f € A and z € 9D, the smaller connected component of
9D — {c1, ¢}, ¢ == 2+ pet®lP) (i = 1,2), is mapped to the smaller connected component
of Y — {bl,bg} by f

We prove it by contradiction. Suppose that for any sufficiently small § > 0 there
exist f € A and z € 9D (and p in Lemma 4.2) such that the smaller component of
0D — {c1, c2} is mapped to the bigger component of v — {b1, bo}. Define I, , :== f(C,.).
From the definitions the length of [, , is less then %dist((o, 7). This implies that (o & I, .
By a topological argument we conclude that (o € f(S,,,). Hence we have f~1(¢)NS,, # 0
and f~'(¢o) N Cp, = 0. Since zo € f7(¢) and 2z € D — S, this means that the set
(o) has at least two connected components. This contradicts the assumption that f
is monotone. [J

We consider the finite element discretization of XP. Let {Ah} ho D€ a family of
regular triangulation of the unit disk such that A — 0. In this section we always suppose
that the point 2o € D is a nodal point of A, for each h > 0. Define the subset S%, by

Sff” ) = {wh € Syh ] Yn(z0) = (o and ¥y, is monotone}.
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Recall that NV, is the set of nodal points in Ap. We number the nodal points on the
boundary 8D in counter-clockwise order: {ci,c2, * ,Cm,Cmt1} = Np N OD, where we
assume ¢; = Cpyq1. For ¢y € Sff , define

Lh(f(/}h) = {Iwh(ci) - ¢’h(Ci+1)| G € Nh N 8D,z =1, 7’)7,}.
The following lemma is valid.

Lemma 4.3 Let {An} be a family of regular triangulation as above. Let M > |Q] be a
constant and Yy, € Sffh taken so that D(vn) < M for each h. Then limp_.q Ly(¢3,) = 0.

Proof. Since the proof of this lemma is very similar to that of [8, Lemma 3], we omit it
here. (The proof will be given in the final version of this article.) O

Corollary 4.4 Let {Ah} be a family of regular triangulation as in Lemma 4.3. Let
M > |Q| be a constant and v, € ST, taken so that D(yy) < M for each h. Then the
functions {wh|ap} are equicontinuous.

Proof. See the proof of [8, Corollary 5]. (I

5. The Other Normalization Conditions

Using the results obtained in Section 4, we now consider the normalization conditions
other than the three point condition. The following lemma is obvious.

Lemma 5.1 Let zp € D, z1 € 0D, (y € €0, and (; € 7y. Define
Xi = X}y(C}.) = {7/) € X7 | (1) = Cl}-

Then the minimazer ¢ € X,} of the Dirichlet integral D(v)) in X 3 is the unique conformal
mapping from D onto Q with p(z;) = (;, i = 1,2.

We are now in a position to define the finite element conformal mappings correspond-
ing p € X; in Lemma 5.1. Let {Ah} hso D€ @ family of regular triangulation of the unit
disk such that h — 0. We here assume that zg, 2; are nodal points of Ay for each h > 0.
Define the subset S, by

Sﬂl/,h = {wh S S,C;{)h | Un(21) = Cl}

Definition 5.2 A map ¢p, € S}%h is called a finite element conformal mapping if it is the
minimizer of the Dirichlet integral in S}/’ e O

Using Corollary 4.4, we obtain the following theorem as in [7], [§].
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Theorem 5.3 Let {Ah}h>0 be a family of reqular quasi-uniform triangulation of the
unit disk such that h — 0 and z9 € D, z1 € D are nodal points in Ay, for each h > 0.
Suppose that the Jordan curve 7y is rectifiable. Then, the sequence of the finite element
conformal mappings {goh € S,ly‘h}bo converges to the exact conformal mapping ¢ € X;
in the following sense:

lim [l = @nllar iz = 0,
and if ¢ € W'P(D;R?), p > 2, then
m [l = gnllepry =0 O

The third normalization condition is treated in a similar manner with the technique
called “recovered gradient”. The detailed discussion will be given in the final version of
this article.
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