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1 Introduction

Conformal mappings are familiar in science and engineering. However exact mapping
functions are not known except for some special domains. The numerical conformal
mapping has been an attractive subject in numerical analysis [5, 6, 13]. '

We here present a method of numerical conformal mapping of multiply-connected
domains with closed boundary Jordan curves onto the unit disk with concentric circular
slits. It is a basic problem of conformal mapping of multiply-connected domains.
If the domain is bounded by a single closed Jordan curve, the problem is identified
as Riemann’s mapping theorem. We reduce the mapping problem to the Dirichlet
problem with a pair of conjugate harmonic functions and employ the charge simulation
method [7, 8, 10], where the conjugate harmonic functions are approximated by a linear
combination of complex logarithmic potentials. We give an explicit form of approximate
mapping function which is continuous with the principal value of logarithmic function.

2 Mapping Theorem

Let D be a multiply-connected domain with the closed boundary Jordan curves

C1,Cs,...,Cy in the z-plane. Consider the conformal mappings w = fi(2;2) (20 €
D; 1 =1,2,...,n) of D onto the unit disk with concentric circular slits in the w-
plane, where C; is mapped onto the unit circle. They are uniquely determined by the
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normalization conditions fi(zp;20) = 0 and f/(20;20) > 0 [9]. We take z, = 0 and
abbreviate f;(z;0) as fi(z).

Figure 1: Conformal mapping w = fi(z) onto the unit disk with concentric circular
slits by the charge simulation method.

Problem 1 Let D be bounded, and Cy and Cs, . .., C, be the outer and inner boundary
curves as shown in Figure 1. Qur problem is to construct an approrimate mapping
function of w = f1(2), which normalization conditions are fi(0) = 0 and f1(0) > 0. As
a result, Cy and Cy, . ..,C, are mapped onto the unit circle and the concentric circular
slits Sa, ..., Sy, with the radii ro,...,7,.

We express the mapping function as

filz) = %exp(g(z) +ih(2)) (1)

where g(z) and h(z) are conjugate harmonic functions in D, and rp is a positive
constant. The boundary condition |f;(z)| = r; (2 € C}) requires

g(z) +loglz| —logrp = logr (z€C;1=1,2,...,n), (2)
r = 1, (3)

and the normalization condition f{(0) = 1/rp requires

g(0) +1h(0) = 0. (4)
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Conversely, if (2), (3) and (4) are satisfied, (1) is the mapping function of the
problem. From the uniqueness of the solution, the problem is now reduced to finding
the conjugate harmonic functions g(z) and h(z) together with the radii Ry, Ry, ..., R,
and the constant Ep.

The conformal mappings w = fi(z) (I = 2,...,n) for the same bounded domain
D and w = fi(z) (I=1,2,...,n) for the unbounded domain D’ exterior to the closed
Jordan curves Cy, Cy, ..., C, are reduced to Problem 1 by the pre-mappings

2*(z) = 1 —I—1
z2—Go Qo

where (jy is a point inside C;, (I = 2,...,n) for D and (I = 1,2,...,n) for D', respec-
tively. The solutions are given by

(5)

fi(2) = exp {iang (gi) b )

We abbreviate fi(z) as f(2).

3 Numerical Method

We approximate g(z) and h(z) by a linear combination of complex logarithmic poten-
tials and have an approximate mapping function

Fz) = p-exp(G(z) +iH(z), ™)
G(2) +iH(z) = QO"'I'ETL:ZIQlilOg(Z_Cli) | (8)

=1 1i=1

where N, charge points (i1, G, - - - , (i, are placed outside C; or inside C; (I = 2,...,n).
The complex constant @ and the real charges @Q; are determined to satisfy the re-
quirement for the outer charges [3],

Ny
Z:Qli = _17 (9)

the requirement for H(z) to be single-valued in D,

N
SQu=0 (I=2,...,n), (10)
=1

and the boundary conditions (2) and (3) at the same number of collocation points
211, 212, - - -5 2in, on Cp (1 =1,2,...,n), i.e., the linear equations called collocation con-
dition,
G(2m;) —log Ry, —log Rp = —log|zmj| (11)
(2mj € Cm; 3=1,2,...,Np; m=1,2,...,n)



Ry =1. (12)

If C; and Cs,...,C, are starlike with respect to the origin and (o, ..., (o inside
Cs,...,Cp, using (10), we can rewrite (8) to

G +iH() = Qo+3 Qulog(z - G) — 33 Qulog(z — o)

l 1i=1 =2 i=1
= Qo+ Zle {log (1 - <—1> + log(— Cli)}
i=1
n N C
+22@m4 cﬁ (13)
1=2 =1

for H(z) to be continuous in D with the principal value of complex logaritmic function.
From the normalization condition (4),

N1 n Nl
G(0) +iH(0) = Qo + 3 Quilog(—¢i) + 3.5 Qulog (?) —0 (19)
=1 1=21=1

We eliminate @y from (13) and (14), and obtain the following algorithm.

Algorithm 1 If Cy,C,, ..., C, are starlike with respect to the origin and (s, . .., Cno

inside Cy, ..., Cy, the approzimate mapping function is given by
F(z) = ——exp(Glz) +iH(2)),
Rp
. n M Clz Clz
G(z) +iH(z) = Zthog<1——)+ZZQh{log( >—1 ( )}
i=1 Cl =2 i=1 CIO ClO

where the charges Q11, Q12, - - - ,QnNn, the radii Ry, Ry, ..., R, and the constant Rp are
solutions of the Ny + No+ -+ N, +n+1 szmultaneous linear equations

n N
Z le log 1- + Z Z le (10g Clz — 1 Clz )
Cn 1=2 i= — Gio Czo
—log Ry —log Rp = —10g|2m;|

(2mj € Cm; j=1,2,...,Np; m=1,2,...,n),
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The algorithm gives an approximate mapping function in the case of Riemann’s
mapping theorem [1, 3] if n = 1.
In general cases, using (9) and (10), we should rewrite (8) to

=1

G(2) +iH(2) = Qo+ VZ: {Qu log(z — Cn) + Z (i Qu — Z Qlk) log(z — Cu)}
= Qo+ Zn: { ‘: (Z Qm) (log(z — Gis) — log(z — (iit1))

i=1

+ (kz]:l:l Qm) log(z — Cle)}
- Y Y (Z Qm) log( e ) gz — i) (15)

I=1 i=1 \k=1 li+1

for H(z) to be continuous in D with the prmmpal value of complex logaritmic’ functlon
From the normalization condition (4),

G(0) +1H(0) Q0+iNi: (Z Q,k) log ( §1Q+1> “log(—Ciw) = 0. (16)

=1 i=1 k=1

We eliminate Q¢ from (15) and (16), and obtain the following‘ algorithm.

Algorithm 2 The approzimate mapping function is given by

F(z) = —R%eXp(G(Z)+i(H(Z)), | |
G(z) +iH(2) = IZTZ;];V: Q’{lo ( Cﬁ:’l)— g(gﬁl)}—log(l—cjvl)

where the unknown constants, the partial sums of the charges
= Qu (=12...,N—-11=12,...,n),

the radit Ry, R,, ..., R, and the constant Rp are solutions of the Ny +No+---+ N, +1
stmulataneous linear equations

n N—
Zmj — Gl Cli }
Qi <lo —lo
zz: ; l{ ] PE——— sz+1 8 Clit1
—log Ry, —logRp = —log|zm,l +log |1 — z,,]::
1N

(2mj € Cm; J=1,2,...,Npp; m=1,2,...,n),

R =1
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The charge point (i, should be placed for the discontinuity of Arg(1 —z/C1n,) not
to intersect D.

From the maximum modulus theorem for analytic functions, the error takes its
maximum value somewhere on C1,Cs,...,C, and is estimated as

Ep(2) = |F(2) = f(2)| £ __ max  |F(z) - f(2)| = EF. (17)

zeC1UCU---UC,

4 An Example
We use Algorithm 1 and compute
Ewi = max. |F(zij4172) — Ril, Em = |Ri—Rul (1=1,2,...,n),
Erp = |Rp— Rpdl

for error estimation, where 2;;11/2 is the middle point on C; between z; and 2541, and
R;; and Rp, are obtained by doubling the number of simulation charges.

Example 1 A triply-connected domain,
Cr: 22/ +y*=1, Cy:|z2—-12/=03, Cs:|z+1]|=0.6,
Co=12, (3 =-1

Collocation points and charge points are

2 =2 (\/;eof) y  Gj=2z2 (\/;q leeJ) )

295 = 0.3¢% + 1.2,  (; = 0.3ge% + 1.2,

25 = 0.66% —1, (3 =06ge"™ —1, ;=

using Joukowski’s transformation

JaZ — b2
2(t) = va® - b (t+ 1) (a

2 t
where 0 < ¢ < 1 is a parameter for charge arrangement.

Figure 2 and Table 1 show the results. The values of R; or Rp are shown until a
nonzero digit appears in |R; — Rj4| or |Rp — Rpa|, and cond is the L; condition number
of the coefficient matrix to be solved. If ¢ = 0.8 for N = 128, then the results are
Eyi=91x1078 Epe =49 x 1071, Ep3 = 6.9 x 107 and cond = 3.0 x 108,

Reichel [11] applied a first kind integral equation method [12] to the same problem
and obtained E,;; =4.3E-3, R; =2.5000001, Ey; =5.5E-4, Ry =1.9555848, Eys3 =3.8E-
3, R3 =1.744207 for, roughly speaking, N = 63, where r; = 2.5 is the capacity of Cj.
The accuracy of the charge simulation method is an order of magnitude higher though
the values of Table 1 should be multiplied by 2.5 for comparison.
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Figure 2: Numerical conformal mapping of the domain bounded by an ellipse and two
circles (N = 32, ¢ = 0.5).

Table 1: Numerical results (g = 0.5), where * shows the case of ill-conditioning.

N

Ewm

Eg

R Erp Rp

cond

16

C
Cs
Cs

2.7E-02
7.8E-06
9.9E-04

0.
2.8E-03
7.6E-03

1.
0.785
0.705

7.5E-03 0.890

5.9E03

32

C,
Co
Cs

1.4E-02
1.3E-10
9.9E-06

0.
1.1E-04
6.4E-04

1. ,
0.7821
0.6970

1.9E-04 0.8980

3.1E06

64

Gy
Ce
Cs

2.0E-04
1.1E-10
1.6E-09

0.
4.2E-07
2.2E-06

1.
0.7822338 1.8E-06 0.897771
0.697682

4.0E11

128

Gy
Cy
Cs

6.1E-05
4.7E-05
3.5E-05

0.

1.

3.5E19"




5 Concluding Remarks

We have presented a method of numerical conformal mapping of multiply-connected
domains with closed boundary Jordan curves onto the unit disk with concentric circular
slits. The advantages of the method are:

e High accuracy by simple computation for domains with curved boundaries.

e An explicit form of approximate mapping function continuous with the principal
value of logarithmic function.

Conventional methods of numerical conformal mapping do not necessarily give an ap-
proximate mapping function which is continuous in the problem domain though case-
by-case correction is possible.

See Amano [2], and Amano and Sugihara [4] for the numerical conformal mapping of
unbounded multiply-connected domains onto parallel, circular and radial slit domains.
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