0000000000
11450 20000 57-69 , 57

Solving Linear Differential Equation through Companion Matrix
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1. Introduction

The Newton equation of motion gives Hamilton equations. The Hamilton equations are
equivalently represented as Lagrange equations which yield an Euler-Lagrange equation. In
this statement, it is worthwhile to note that there exists a certain equiValence between the
homogeneous linear differential equation of a variable of rank n and a linear system of n
differential equations % = Ax with a coefficient matrix A of rank n. Another example of this
kind is found in the theory of relaxation as the relation of differential general linear equation
of a pair of macroscopic conjugate variables to the linear systein of differential equations on
n pairs of microscopic conjugate variables. The macroscopic variables are usually observable
physical quantities, while the microscopic variables difficult to observe, consist of n pairs of
conjugate variables corresponding to » different relaxation times. Conjugate variables are,
for instance, strain vs. stress, temperature vs. entropy, electric displacement vs. electric field,
magnetic flux density vs. magnetic field, chemical potential vs. concentration and so on.

The above relation is summarized to an equivalent relation between a one-variable linear
differential equation of rank »n and a system X = Ax with A€ GL(n;K) ( K: Field), where
GL(n;K) is the group of all general linear transformations of n-dimensional vector space
over K or all nonsingular matrices of order n with K components. Let f(z) be a polynomial
of degree n and d,d—i-fg;. For a given f(d,)x=0, a companion matrix of f gives a linear
system x = Ax with x=(x,), x;=x and x,=%_, (i=2,3,--,n). The converse does not
always hold. For instance, a symmetric matrix with a 2-folded eigenvalue is not similar to

any companion matrix. This paper deals with such converse problem.

! iwasaki @mis.ous.ac.jp
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2. Companion Matrix

Let f(z) be a polynomial in a K coefficient polynomial ring K[z] with a field K:
f2)=Yaz"" (a,eK,a=1). (1)
i=0

Here, K is the real or complex number field. The companion matrix of f is defined as a

square matrix A of order n whose characteristic polynomial is f; that is, |zE Al
= f(z), where @,(z) is the characteristic polynomial of A, and E the unit matrix. Matrices
0 1 o - 0 -a, —-a, - —a,; —a,
0 o 1 - i 0 0 .- 0
A=| P 0|, A=l 00 e
0 -0 O 1 : R 0 0
-a, -a,, ‘- —a, —q o - 0 I 0

are often cited as companion matrices of the Frobenius form[1,2]. Hereafter, A, is denoted
by A;. Let P be a non-singular matrix, i.e., P€ GL(n,K) . Since ®,.,,(z) = ®,(z), P"'AP
with a companion matrix A of fis also a companion matrix of f. The converse does not hold;
in fact, for A= ((1) (1)) and B= ((1) 1), A and B are companion matrices of (z — 1)2, although A
is not similar to B. By Hamilton-Cayley's theorem, @,(A)= 0. Then,
Proposition 1
3PeGL(mK); P'AP=A, = f(A)=0.

Let N={1,2,--,n} and Q c N with |©|=i where || stands for the order of 2. A
submatrix of A associated with €2, denoted by A,,, is defined as a matrix whose jth rows and
columns are deleted from A for all je N - Q.

Theorem 2 If A is a companion matrix of f, then g, = (—l)i 2[ AQ|, where the summation
|2}=i
ranges over all © with |[©2|=1 and |A,| exhibits the determinant of A,,.

Proof. Since A is a companion matrix of f,

|zE- A|= iaiz"'i (a,=1) . )

By definition of the determinant, |zE— A|= 2 sgnO'H( ()2 am(])) . Hered, is
ceQf,
Kronecker's delta and sgno the signature of a permutauon o in the symmetric group Q8 of

order n. By comparing the coefficients of degree n—i in (2),
Z z SgﬂO‘H( 16(1 ) :
Q=i 0<08 ()
Here, Q#(€2) is the set of all bijective transformations of £2, and the first summation is
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carried out over all subsets of N of order i. Then, a, = (~1)’ 2|A9| : 0
2=

Especially for i=1 and #, it follows directiy from Tr(PAP)=TrA and |P"'AP|=|4] that
a, =—TrA and a, = (-1)"|A]. The following is readily deduced from Theorem 2.
Corollary 3 '
P'AP=A, (PeGL(nK)) = a,=(-1) A, .
2=i
3. Homogeneous Linear Differential Equation (HLDE)

Let K be a topological field, C”(K) the set of all infinitely differentiable functions.
Substitution of 4, for z in (1) yields a differential operator f(d,) of C*(K) to C*(K). Let x
be a function of ¢ (€ K) and consider the homogeneous linear differential equation:
fld)x=0. ' 3)
Here, d,° t-fl with the identity operator I. Equation (3) is written in the form of x = Ax
with x=(x,), x, =x, x, =, -+, x, =x"" = d"'x as mensioned in Introduction.

Now, consider the converse problem to find a representation of (3) equivalent to a given
system of linear differential equations x = Ax (A € GL(n;K)).

Let P=(p,,p,,:-,p,) Wwith column vectors p,. AP=PA, gives Ap,=-a,p, ,
Ap,=p,~a,p, , , APp,=P,,—ap,. Then, p,=(A""+aA""" +..+a_E)p, .
Thus, the following proposition holds.

Proposition 4

AP=PA, = P=(p), p;=(A""+aA"""+-+a,_E)p,.
The converse of Prop. 4 holds for P € GL(n;K).
Proposition 5

P=(p,), pi=(A""+aA""" +.-+a,_E)p, and PeGL(m;K) = AP=PA,
Proof. 1t suffices to show Ap, =—a,p, . By Prop. 1, A" +aA" "' +---+a,_A=-a E .
Since p; =(A"" +a,A" +---+a, E)p, , Ap, =-a,p, . I

Let x, be a given vector and X = Ax with x(0)=x,. Then, x = (exp#4)x, is the unique
solution of the initial value propblem of X = Ax with x(0)=x,. In the case of AP = PA;
with P e GL(n;K) and by setting x =Py, y= (exptAf)P“le is the solution of y=A,y,
y(0)= P7'x,.
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4. Jordan Canonical Form

Let J be a matrix of the Jordan canonical form similar to A, i.e.,3U € GL(n,K);
J=U"AU . Suppose Q€ GL(n,K); A,0=QJ. Then, P=UQeGL(n,K); AP=PA,
Now, let P=(pp,---p,) with p,#0 (j=1,2,-~-,n) and pj=t(p1jp2j---pnj) satisfying
A P =PJ. Two cases are considered according to diagonal and nondiagonal J.
Case 1 J: Diagonal. Let 4, (i=12,---,n) be eigenvalues of A,. Since AeGL(n,K) or

A; € GL(n,K), all A;'s are nonzero. P is assumed to be a matrix related to A, as

Hence, A;p; =A;p; (j=12,-,n). Thus, p,,;=A;p;=4/'p, (i=01L:-,n-1).
Then, p; = p;; (lﬂ.j---/'tj"'l):t(). Therefore,

| ) N
|P|=P11P12"'p1n 31 lej H( )
lln—l ;LG-l lnn i>j
Hence it follows that
Proposition 6
D /'L,.¢/lj(i¢j) = |P|#0. (2) 3i,j(i¢j);).,.=lj = |P|=

Corollary 7
dPeGL(mK); AP=PA, & A #4, (i#j).

Case 2 J: Nondiagonal, i.e., there exists a Jordan block of J of order larger than 1 ( case of 2)

in Prop. 8).
; o (A1 0
J= %) } , J;: n; Jordan block such that & .
0 J ° &

r/ : !

J 1is denoted by §r91],. or J,®J,®---®@J,. The characteristic polynomial of J is

flz)= lL[(z -2)", in,. =n. Let A denote the companion matrix of (z—4,)". P such
B i=1

that AVP = PJ, (i=1,2,+-r) resulted in (@] A;O)(é P,) (q’ap,)(@ Ji). Then, it suffices

i=1

Al o
A

T U

o) y)

to discuss the case of r =1; thatis, J =
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5. Krylov Sequence of Vectors
def

Since A € GL(n,K) is assumed, A#0. With A =4, —AE, A .P=PJ yieldsAp, =0 ,
0

~

o

S -

Ap=p, (i=12-n-1),0t AP=PE, E= o
0 0
Such a sequence of vectors as {p,} defined by p, = Afpm with p, # 0 is called the Krylov
sequence associated with /Alf (Housholder 64). By setting p, =p,
P=(pp,p,)= (AP, Ap; - Ap,p,)= (AP A - App).
Now, consider the determinant of P. Since p;, =Af"‘ip=(Af —/lE)n_ip , P; is a linear

combination of A,"”'p, A,"""'p,---,p. Hence, |P|= lAf""p A" p--Ap p) .

6. Construction of Nonsingular Matrix P for Nondiagonal J
The problem to solve is to show the existence of P € GL(n;K); A;P = PJ and construct
such P. Let A; and E, be defined as

def; .. . -a_, . (y:n—i) . : 1 (v—pu=i)
A =(g"") , a9 = n—(v—j)+1 JE = e ;e = ,
Y ( . V) w 0 (otherwise) =~ ( g V) w 0 (otherwise)
which are further explicitly represented as ' ‘ o

0 -0 o : 0 0 1 0

A =0 0 T ey =000 1

1 0 «+ 0 v o 0 * T o 0 v e 0
i{ : : : i{ :

0 v 0 oo e 0 0 «v 0 v e 0

Then, A, = Ay +E, .

Proposition 8

D AjA ==a;04 @) EA,=Auu, AyE=Au,
(3) E'IEJ = E’i+j 4 E’im = Emi‘
Proof. (1) j n-k I

o
AjAy =0 0 —ay —ay “irk+l 7T 441 [0 0~y e ‘“1+1}("-k

i{ o
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Q| 0 0 0 -ay =414 (n—i=—a;,.A -
if | :
0 - 0 o
(2) For i+j<n,
i k
000 1 '
EtAJk= 0 0 e eee 0 0 0 4y Gy [(R—J
SN R )
O oo 0 e e 0 0 0 0
k
0 0 o
=[0 o 0 —ay (=i = A
i+j{ : !
0 0 o
Similarly, A,,E=A,,,; . (3) Readily proved. 0

N.B.(2)holds for i+ j<n—1. If i+j2n,then EA;, =A,E = 0.

By Prop. 8, only A,;'s (i+j<m~—1) appearin A;". Then, A" is written as

m-1m-1-i def
A"=Y N cPA +E, (m21)and A =E, .
i=0 j=0
Proposition 9
(1) M =cm (m21), @) =cin) (i+j<m-1),

B3) M=ch (i+j<m-1).
Proof. (3) is easily derived by applying (2) and then (1) to c,.(]'.”).
(1 Af m =Af’”(A00 +E1). Since only A, in the right can join Ay, as Ay, =AyE,

(m+1) _ (m)
cOx+1 COl .

@ (At BV = (A B Ao B ) (A B

(e1e2-+-em )ef0,1}"
where {O 1}" is the product set of {0,1}. In the right, ¢! is related to such terms as

E E E E E E h A I-e;p E €is2 1-ej43 E €is3 ... I-eyj1 E €m-j-1 Th
{AsnAdg wit (Aoo 1 )(Aoo 1 ) (Aoo 1 ) : ¢
value c,(]’” is determined only by AO(,AA00 and independent of i and j. Then, the proof is
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completed. 1

From Prop. 9, it suffices to derive c{". For simplicity, c{7 is, hereafter, denoted by ¢

Proposition 10

m—-1

1 M=1, @) ™ =Y (-a,)"? (m=22).

i=1

Proof. (1) A=Ay +E . = c"=1.(2) ™A, AO(,ZC("‘ DA, Z—a,ﬂ (DA,

N

3

m—1

= ( ,+1)C(()'(;l~ gl)Aoo 2( )Co'g ’)Aoo 0

i i=1

[}
(=]

Let 0=(q,)=(A}"p A;’p--ApDP). P=(pp,P,),and

.
={0---0-a,~a, ,---—a;, |=(ithrowof 4,_;;).

Proposition 11
Prsi-j (i < )

=
4 Zc(")aj_ P (i>))
k=1

Proof.
] n_j—ln—j—-l-‘kn_. n k-j-1 .
A}I—I = Z zcl(cl ])Akl +En Z zcr(z k;)An ot Ly j.
k=0 1=0 k=j+1 1=0
For i<j, g =(En*jp) = Ppuij - FOLi>j, (An ,dp) 0 (k#i), "7 =%/, Hence,
—j-1
[Zc(""l)A,, p] Let k=i—j—1I. Then, g;, = Zc(") P 0

From Prop. 11 follows

Corollary 12 For k <n-—max{i,j},

Divijrx = 9ij -

Definition 13
(k-1) i<k
0 *f} 4 (i<k) © _
qu _{ (Ii 1) M(kl 1) (l> k) with 9ix =9 »
-1j
def I n—'] k-

. “AY7g? (i=1,2,-,n) .

’:] k_j(k—j)( ) qlk ( )
Proposition 14

(D ‘ngju =61§f) (i>k), Q) K=t (3) r; =0 (i>j) .

i i+1<k
Proof. (1) holds for k =1by Cor. 12. %) {q’“ﬂl ( )

i+lj+l k-1 (k-1) . .
’ z(+1,31 Ag;i- 1j+! (i+1>k)
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For i>k,
(k) (k-1 (k-1) (k-1) (k=1) _ (k)
q1+l]+l q1+l]-l)-l }’qi+l—1j+l ql] )‘qz 1 qz] ’
where the second equality is asserted by the supposition of mathematical induction on k.
(2) It suffices to show 7, =1, ;.- For i+I<j+1l,ie., i< j,Def. 13 yields

U+ . (-1 (i+1-2) (i+1-2)
il =D = =G — Mg -

Hence,

L (n—-j—1 —j=l{ (i+l- i+l-
o= 3 (4] R i - )

- s n—j—I nm el ] (jale
- z ( ) ) " ai Z (k—jil—lj(_/l)k d lq,(i"fluf)ﬁ( Ay l+1‘]i(+1£1:)

k=j+l k=j+1+1

i+ c n—]_l+1 -j=l (i+ n—j-I+1 (j i+l
_q:(+lj+f)+ 2 ( k—j—l )(_&) - qz(+lllc 2)+( A’) a 1+-;113)( ‘1,(+111i)1 qz+lIIc 2 bY(l))

k=j+i+1
& (n=(j+1-1) k=(j+1-1) (i+1- + i
= k=§—l(k— (+1-1) (_A) ! qi(+lillz) = Legjera (e qt(il Ilk2 = qz(;;lulc) by Def. 13).
For i>j,
- (n=i-l k=j=l (j+1) - (==l k=j=1( (j+1-1) (j+1-1)
P = _A)TI g = 2 j j
i+1j+l k;j‘il(k_j__l)( ) 9itie k;jﬂ k—j—1 ( ) ( Gin | — A )
n—j-I —j=l_(j+I~1 \ n—j-I k=j=1 (j+I-1) n=j=1+1_(j+1-1)
- AV (; ) 4+ -1 G + (=2 U
;:(k —j- lj( ) ‘i ~§;+1 k—j—I1-1 (-2) 7" @l + (A) qiv1-1n
+ C n—-j—l+1 k—j-1 + n—j-Il+1 j+1— j+1— +
qlil]l+ll)+ Z p (_/’L) d qz(ilkl ])+( )L) ]+ qi(il—llr:) (- qg[—ll?] qz(iulcl)
k=j+l+1 k—j-1
3 (j+i1-1) k=(j+1-1) (jl-1
= -A D =y
. ; 1(k (+1- 1) ( ) ivi-ie = Vrajei- |
(3) The proof is too long and then omitted. 0
p g
Definition 15
B R dgn e qfi’
def ) ) .
R; =0 T qu)ﬂ ‘1511) (j=12,n).
o g - q,(,’,,’
By Prop. 14
hi hy = Hy
R, = - N
0o h
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TV (] SERTRED ) () ST () S

Since |P|=|R| (i=1,2,---,n), the following theorem is obtained.

Theorem 16

=130 o)

Proof.

|P|= {; (: D " P k} = {k; (n; 1)(-/1)" Pn_k}n = {k;(n :i 1)(-l)kpn_k}n
e e

Corollary 17
(1) p='(1(1+/1)-~-(1+,1)"“) = |P|=1.
@ p=(1A--2") = |P=

Proof. By Theorem 16,

|P|= {; (Z : 1)(_ )0 (4 A)"“}n = [{(1 +A)- ,1}"-1 ] -

Similarly, (2) is shown. 0

To construct a nonsingular P satisfying A, P=PJ or /A& P=PE, it suffices to say
A'p=0. Let p=’(1 (1+ ,1)...('1”)"“), and q,= (¢ g"+-q) (i=1,2,--n) be defined as

0 (j<n-i)
g"= g T |
j z ( )ﬂ,k (j>n- i) '
k=0 k
Then, q,='(0---0¢%,,,-+¢®") and q, =p.

Proposition 18
(1) Ap=p-q,,
2 A /9 =9;,—9q;, (i<n-1); especially for i=n-1, qun_, =p-gq,,
3) Af p=p-q; (i<n); especially for i=n, f&f"p =0.
Proof. (3) follows from (1), (2). In fact,
Alp=4,(p-a)=4p-4q =(p-q)-(0-9)=P-1..



Recursive operation of fl on p gives /if"p =p-gq;. Fori=n, ;lf”p =p-q,=0.

n i
1) fle)= Zaz @ =(i](—/1)
-z 1 0
R -4 1
A=A —-AE=
0 -2 1
-a, -a, y - —a; -4 -4
For j<n-1,
(Afp)j =21+ 2"+ (142 =(1+ 1)
For j=mn, '

n

(Afp)n = 1(_an—m - 5,-,1)»)(1 +2)”
=

> (n B (’; B 1))(—1)"‘“ Da+ay" -2+ ay"
i=
== {1+ )= A} +(1+A) A1+ A" =(1+ 1) -
Thus,
Afp =P—q,;.
(2) For j<n-i,

For n-i<j<n-1,

(4, =-/1i+j§_:"_l(j _IJMJE"G)M .+,2n(k_ 1)1"#&7( )

k=0 k=

i+j—n j j 1 i+j-n ]"‘1 (i+1)+(j-1)-n J 1 ]
=1+ =1+ A= A=gl™h |
8 W P e I G R R G

The following lemma is shown before completing the proof for j=n.

Lemma 19

%(—1)( )(" p”‘j (-1)"2( 1){” k)[k) 0 (p<n).

Proof. Replacing p—kby kyields the flI‘St equahty

(Z _ g(”j “(p —(Z):(:)!— p) k!(nni O k!(ppi k) p!(nni ) (Z)(Z) ’

whence

S oI )

66
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Return to the proof of the proposition.

For j=n,
(qu")n = 2( Ay 141 )ql A'q(l

=1

n n -] ] il (n—1
= -1 n=l n—l+1 k{_ k
DR M R R B 0 oy

n  i+(-1)~-n i-1

] . =13, i n=1), .
=2 2D n—l+1)( k )ﬂ‘ Z k )'1

I=n—-i+l k=0

{ S| )( ””‘ 1] »

p=1 p_k

i
(L1

and Lemma 19 follows

R (+)-17p 1 .
) =5 -t

p=l

From

Thus,
qu,' =i —q - 0

It is, accordingly, verified that
Theorem 20

(1) VJ: Nondiagonal Jordan block with eigenvalue A, 3P € GL(n;K); A,P=PJ.
P is expressed as P = (Af"“lp ;lf""zp Afp p) with p=t(1 (1+2)---(1+ l)"-l).

@) VJ=§J,., AP =1,2,r);

r i r NGO Hni—2 A
(647 )(&7)=(82)82). 7=(4" "0 4 0~ A1)

with p,= (1(1+4)-(1+4,)"™)

7. Solution of HLDE through Companion Matrix
Let f(z) be a polynomial of (1) and f(z)=[](z=4)" , A #4, (i#j), Ym=

i=1 i=1

The general solution of f ( )x 0 is given by (Iwasaki 2000,Takahashi 96)
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n-1 ni—j

<X 1 d 1

v= 22 (@ek). a=p (:ﬁ‘] =

i=1 j=0 i i H(A’i_a‘k)k
) k=1,k+i
J

where ¢, = -t—.'—e'l" (j20) . The general solution of x = Ax is, then, expressed as x = Py ,
L ].

y=t(x X eee x(”")) . Here, x requires calculation of d/'e, ; . The following lemma is readily

proved.
Lemma 21
de. = Ae, ( =0)
T €,,j-1 + Z'ei,j (]Z 1)
Proposition 22
S aln i
dle, . = i e,
o k=max{j—m,0}\IM — J T k o

Proof. Since d,oel’j =e, ;, the proposition holds for m =0. In the case of 0<m < j,

mlm—1) . nlim—-1Y, .
dtme,l,j = dt(dtm-leﬂ.,j) = Z[ . ]A’ldtel,j-—(m—])ﬁ = %(mi j’v (el,j-—mﬂ' + Ael,j—(m—l)ﬂ')

=0\ !

w1 m-1 m-—1Y})_.
=€ im +2(( ; )+( i1 j]/lel,j—mi + A €
i=1

o (mY . J m w
= 20[ ; )A’elyj_mﬂ. = 2 ( Jl’"'“’ew .

L \m—-j+i
i=j—m
Similarly to the case of 0 < m < j, the mathematical induction on m is adapted to m > j.

m—1 . J m-—1 w
dtme,l,j = d; (d?m—lel,j) = (m —-1- jjz’m_jel,o + ;(m 1-j+ ijz’m_l_ﬁl(el,i-l + ﬂew)

m—1 m—1 ‘ i m—1 m—1 e
- + Am-] + + lm—l—jﬂ o+ lm '
(m‘l‘f) (’"‘JD o gz‘((m—l—jﬂj (m——l—j+i—1j] Crin T

m m—j . m m—1-j+i m |
= A ey + A eyt A%

\m-—j S\m—-1-j+i
m A’m—j i m /lm—jﬂ' Am i m lm-—jﬂ‘ D
= e, .+ e, +tA%, = e, . .
m—j M =i A hi e i A

By Theorem 20 (2), it is, therefore, sufficient only to apply the above general solution (3)

to the case of f(z)=(z—4, )"" , in order to solve the homogeneous linear differential equation.
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