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1. Introduction

Nowadays, we can easily carry out heavy numerical simulation by using cheep and pow-
erful computers. Taking into account such changing of the computing environment, we had
been looking for a new field in heavy numerical simulation.

Nonlinear problems governed by (partial) differential equations are major subjects in
applied mathematics. To these problems numerical simulation often plays an important role
in analysis. However, numerical errors sometimes cause troubles. The reliability of numerical
results is very important, and it is usually checked by comparing numerical results in defferent
precision.

From the above background we presented infinite-precision numerical simulation (IPNS)
to PDE systems with smooth solutions[8, 10]. Of course, it is applicable to ODE systems.
Errors in numerical simulations originate from truncation errors in discretization and round-
ing errors. Realization of IPNS needs arbitrary reduction of both errors. Thus, in IPNS the
spectral method is used for the control of truncation errors. In particular, the spectral collo-
cation method[1] is very useful for nonlinear problems. The order of the approximation can
be controlled by the number of collocation points. Multiple precision arithmetic[11] is used
for the control of rounding errors, and it is easily available by using the library on the net,
e.g. http://www.lmu.edu/acad/personal/faculty /dmsmith2/FMLIB.html [15]. IPNS is also
important from the theoretical view point, because it can approximate analytical solutions
in arbitrary precision.

2. Boundary value problems

In this section, two simple boundary value problems are solved by IPNS.
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Problem 1. Find u(z) s.t.

Remark 1. The exact solution to Problem 1 is
1
u(z) = sin (I—-Z—)z

Numerical results are shown in Table 1{10]. Here (N + 1) Chebyshev-Gauss-Lobatto points
are used. Extremely high accuracy is obseved.

Table 1. Maximum errors for Problem 1.(1100 digit numbers)

N | Maximum error || N | Maximum error || N | Maximum error
10 4.88 x 1071 90 4.32 x 10717 170 | 2.98 x 107376
20| 6.64x 10727 || 100 | 6.01 x 107 [ 180 | 9.38 x 10~%03
30| 539x107% [ 110| 3.08x 107223 | 190 | 1.70 x 10~
40 1.54 x 10764 120 | 6.38 x 107248 200 | 1.82 x 10~
50 | 3.62 x 107% 130 | 5.76 x 107273 250 | 2.24 x 107°%
60| 1.16 x 10~106 140 | 2.42 x 10728 300 | 1.20 x 10—736
70 | 7.02 x 107 150 | 4.97 x 1073%¢ 350 | 1.49 x 107382
80| 1.03x 107! 160 | 5.25 x 10730 400 | 1.46 x 1071031

Next, the following two-dimensional boundary value problem is solved.

Problem 2. Find u(z,y) s.t.
Ugg + Uyy = —72(sin (7z) +sin (7y)) in I =(0,1) x (0,1),
u = sin (wz) + sin (7y) on OI.

Here, OI represents the boundary of I.

Remark 2. The exact solution to Problem 2 is

u(z,y) = sin (7z) + sin (7y).

Numerical results are shown in Table 2[10]. For the simplicity the same number of collocation
points are used on both z and y. From the limitation of the memory size, IPNS is not carried
out for the larger N.
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Table 2. Maximum errors for Problem 2.(120 digit numbers)

N | Maximum error || N | Maximum error
5 4.24 x 1072 45| 4.74 x 1071
10| 3.04 x10°® 50 | 1.49 x 107°7
15| 1.37x107 |55 2.25x 107%
20| 1.33x10°1% [l60| 3.51x107 "
25| 247x107% || 65| 1.94 x 107%2
30| 5.37x107%® ||70| 1.65x 107%
35| 1.26 x 10736 75| 3.85 x 1079
40 932x107% |8 | 1.95x 107106

3. Initial and boundary value problem

In this section, IPNS is applied to a typical initial and boundary value problem governed
by the heat equation.

Problem 3. Find u(z,1) s.t.

0 0?
a—’;‘:ﬁ, 0<t -l<z<l,
u(z, 0) = cos %3—7, -l<z<1,
u(=1,t) =0, 0<t,
u(l,t) =0, 0<t.

Remark 3. The exact solution to Problem 3 is

%t
u(z,t) = exp (—14—— cos %, 0<t, -1<z<1.

To this problem, an iterative method is necessary for ¢[10]. Numerical results are shown in
Table 3[10]. For the simplicity the same number of collocation points are used on both z
and t.

Table 3. Maximum relative errors for Problem 3 until ¢ = 10.(120 digit numbers, At = 1)

N | Relative error || NV | Relative error || N | Relative error
5 | 2.148 x 107! [[20] 9.575 x 10722 || 35 | 1.713 x 10~#
10 | 1.596 x 1078 [ 25 | 2.502 x 1028 || 40 | 2.136 x 10~>*
15| 9.544 x 1071 || 30 | 1.686 x 10737 || 45 | 8.011 x 10752
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4. Inverse problems

Inverse problems are very important from the view point of engineering. Usual approaches
are applications of the regularization and the least square method or AI. We tried some
methods(6, 14], however we were not satisfied. Then, we applied IPNS directly to an inverse
problem governed by the heat equation[9]. Here we apply IPNS directly to the following
problem(3].

Problem 4. Find u(z,y) s.t.

Au(z,y) = 0, in (0,1) x (0,1),
u(0,y) =0, 0<y<1y,
u(l,y) =0, 0<y<l],
u(z,0) = 0, 0<z<1,

8u(;; 0) = %sin (rx), 0<z<1

Remark 4. The exact solution to Problem 4 is

u(z,y) = P—sinh (ry) sin (7).

Numerical results are shown in Table 4. For the simplicity the same number of collocation
points are used on both z and y.

Table 4. Maximum errors for Problem 4. (120 digit numbers)

N | Maximum error
10 1.25 x 1077
20 2.86 x 10°1°
30 1.49 x 10730
40 | 1.13x 107
50 7.22 x 1078
60 | 8.09 x 10~
70 5.31 x 1078
80 8.43 x 107%

5. Free boundary problems

Free boundary problems are also important from the practical view point. IPNS is
applicable to free boudary problems. However, in two- or three-dimensional problems the
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singularity of the mapping functions becomes a big problem. Some methods for elimination
of the singularity should be developed[4]. Here, IPNS is applied to a simple one-dimensional
free boundary problem related to the pattern formation in diblock copolymer[12, 13].

Problem 5. Find u*(z,t), u(z,t) and s(t) which satisfy

t+ 4
¥ = -2—14 t, — t
ul (z,t) Y 0<t, —1<z<s(t),
t+3
- = t 1
u_,(z,t) 2t+2’ 0<t s(t)<z<l,
ut(s(t),t) =0, 0<t,
u”(s(t),t) =0, 0<t,
11 1 3 :
+ _ - 2 —1<z<
u™(z,0) 3 (m+2) (:c+2), 1<z <s(0),
3 1
u‘(z,O)zg(:c+—2-) (x——g), s(0) <z <1,
d " -
Eis(t) = TU (S(t)at) + Uy (S(t)at)? 0<t,
1
S(O) - '—5,
ut(=1,¢) =0, 0<t,
u, (1,t) =0, 0<t.

Remark 5. The exact solutions to Problem 5 are

wt(z,t) = -ttig(m _s()z+2+s(), 0<t —1<z<s(),
(o) = rb@-s@)e-2+5), 0t s<a<],
s(t) = —ﬁ, 0<t

The spectral collocation method cannot be applied directly to free boundary problems
due to the unknown shape of the domain. To avoid this difficulty, we use the fixed domain
method using mapping functions[5, 16].

Numerical results are shown in Table 5. N, and N; represent the number of collocation
points in = and ¢, respectively. N, is fixed to be 2. This is because the exact solutions are
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polynomial of degree 2 in space. Of course, for more general problems N, should be changed

as V;.

Table 5. Maximum errors for Problem 5. (At = 0.1, 500 digit numbers)

N; Max. Error || N; Max. Error
20 | 7.362 x10740 || 140 | 1.570 x 1029
40 | 3.800 x10~"8 | 160 | 8.325 x 107308
60 | 1.998 x10~16 || 180 | 4.416 x 10346
80 | 1.056 x10~15% || 200 | 2.343 x 10384
100 | 5.588 x107193 | 220 | 1.243 x10~%%2
120 | 2.961 x10~231 || 240 | 6.598 x10~%61
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-60 |
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T T T T T T T
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Fig. 1. Behavior of maximum error for Problem 5. (At = 0.2, 150 digit numbers).

Table 5 shows errors in the first interval [0, At]. The growth of errors is observed in Fig. 1.
This interesting phenomenon originates in the mathematical property of the problems.

6. Parallel computing by PVM

IPNS requires huge computer resources. Then, we developed parallel computing by PVM
(Parallel Virtual Machine)[2]. The utilization of PVM has two merits that we can use the
larger memory area than that of the single computer and we can reduce computational time

by pararell computing.



48

In IPNS the Gauss elimination method for solving a linear system in multple precision
needs much CPU time. Then, we developed its parallel computing program by PVM and

applied it to the Cauchy problem in the section 4. The PVM cluster used here is shown in
Fig. 2.
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Fig. 2. PVM cluster.
The following tables show results of numerical experiments.

Table 6. Computational time(sec). (120 digit numbers)

Nz = Ny | Non-PVM | 2-slaves | 4-slaves | 6-slaves
1CPU
20 161 91 52 40
30 2005 1027 542 381
40 11640 5904 3053 2093
50 22946 11694 7987
60 36005 24344
70 61388

Table 7. Ratio of p-slaves to Non-PVM&1CPU.

N; = N, | 2-slaves | 4-slaves | 6-slaves |
20 1.77 3.10 4.03
30 1.95 3.70 5.26
40 1.97 3.81 5.56
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These results show IPNS is suitable for parallel computing. This is because computational
time of the message passing is much less than that of multiple precision arithmetic.

7. Conclusion

In the paper some applications of infinite-precision numerical simulation(IPNS) to PDE
systems and its parallel computing are shown. Extremely high accuracy is observed. This
means numerical results by IPNS are very helpful for theoretical analysis. Its application to
higher dimensional problems is our future work.
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