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Abstract

In this note, we define completely independent spanning trees. We say that T_{1},  T_{2},  \ldots ,  T_{k}
are completely independent spanning trees in a graph  H if for any vertex  r of  H , they
are independent spanning trees rooted at  r . We present a characterization of completely
independent spanning trees. Also, we show that for any  k_{- Vertnn}ex-_{CO}eCted line digraph
 L(G) , there are  k completely independent spanning trees in the underlying graph of  L(G) .
At  1ast , we apply our results to de Bruijn graphs, Kautz graphs, and wrapped butterflies.

1 Introduction

In a graph, two paths  P_{1} and  P_{2} from a vertex  x to another vertex  y are called openly disjoint
if  P_{1} and  P_{2} are edge‐disjoint and have no common vertex except for  x and  y . (Note that if  x is
adjacent to  y , and both  P_{1} and  P_{2} only have the edge  (x, y) , then  P_{1} and  P_{2} have no common

vertex except for  x and  y , but they are not edge‐disjoint.) Let  \tau_{1},  \tau_{2.'\cdots,k}\tau be spanning trees
in a graph  H . Let  r be a vertex of  H . If for any vertex  v(\neq r) of  H , the paths from  r to  v

in  T_{1},  T_{2},  \ldots,  Tk , are pairwise openly disjoint, then we say that  \tau_{1},  \tau_{2,\ldots,k}\tau are  k independent
spanning trees rooted at  r . (When we treat digraphs instead of graphs, a rooted tree is defined
as an acyclic digraph in which there is a unique vertex (root) with indegree  0 such that for any
 othe\dot{r} vertex, the indegree is 1. Independent spanning trees in a digraph are similarly defined.)
For independent spanning trees, the following conjecture is well‐known; “Let  H be a k‐vertex‐
connected graph. Then, for any vertex  r of  H , there are  k independent spanning trees rooted
at  r. ” This conjecture was proved for  k\leq 3([12][3][16]) . Also, it has been shown that the
conjecture holds for the class of planar graphs ([11]). The directed version of the conjecture was
proved for  k=2([15]) and also for any  k\geq 1 if we restrict ourselves to the class of line digraphs
([8]). However, in general, the directed version of the conjecture does not hold for  k\geq 3([9]) .

Independent spanning trees have been studied from not only the theoretical point of view
but also the practical point of view because of their application to fault‐tolerant broadcasting
in parallel computers ([12]). Until now, independent spanning trees in several interconnection
networks have been studied; product graphs ([14]), de Bruijn and Kautz digraphs ([6] [8]), and
chordal rings ([13]).
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Many papers have presented constructions of independent spanning trees for a given root
vertex. However, if one set of spanning trees is always a set of independent spanning trees rooted
at any given vertex, then we do not need to reconstruct independent spanning trees when the
root is changed with another vertex. Motivated by this point of view, we define the following
notion.

Definition 1.1 Let  \tau_{1},  \tau_{2,\ldots,k}\tau be spanning trees in a graph H. If for any two vertices  u,  v

of  H , the paths from  u to  v in  T_{1},  T_{2,\ldots,k}T , are pairwise openly disjoint, then we say that
 \tau_{1},  \tau_{2,\ldots,k}\tau are completely independent.

Note that completely independent spanning trees must be edge‐disjoint although independent
spanning trees are not always edge‐disjoint. It is known that edge‐disjoint spanning trees have
an application to worm‐hole routing in parallel computers ([1]). In this note, we present a
characterization of completely independent spanning trees.

Unless otherwise stated, a digraph may have loops but not multiarcs. Let  G be a digraph.
Then,  V(G) and  A(G) denote the vertex set and the arc set of  G , respectively. The line
digraph  L(G) of  G is defined as follows. The vertex set of  L(G) is the arc set of  G , i.e.,
 V(L(G))=A(G) . Then, there is an arc from a vertex  (u, v) to a vertex  (x, y) in  L(G) iff  v=x ,
i.e.,  A(L(G))=\{((u, v), (v, w))|(u, v), (v, w)\in A(G)\} . When we regard “  L ” as an operation on
digraphs, the operation is called the line digraph operation. The  m‐iterated line digraph  L^{m}(G)
of  G is the digraph obtained from  G by iteratively applying the line digraph operation  m times.
The underlying graph  U(G) of  G is the graph obtained from  G by replacing each arc with the
corresponding edge and deleting loops. Note that  U(G) may have a 2‐multiedge because  G may
have a pair of opposite arcs.

It has been shown in [8] that if a line digraph  L(G) is k‐vertex‐connected,. then for any vertex
 r of  L(G) , there are  k independent spanning trees rooted at  r in  L(G) , thus, in  U(L(G)) too.
In this note, we strengthen such a result, i.e., we show that if a line digraph  L(G) is k‐vertex‐
connected, then there are  k completely independent spanning trees in  U(L(G)) . Since the class
of the underlying graphs of line digraphs contains de Bruijn graphs, Kautz graphs, and wrapped
butterflies which are known as interconnection networks of massively parallel computers, we

finally apply our results to these interconnection networks.
The set of vertices adjacent from a vertex  v in  G is denoted by  \Gamma_{G}^{+}(v) , and the outdegree of

 v in  G , i.e.,  |\Gamma_{G}^{+}(v)| , is denoted by  deg_{G}^{+}v . Analogously,  r_{G}^{-()}v and  deg_{\overline{G}}v are defined. If for any
vertex  u of  G,  deg_{c^{u}}^{+}=deg_{\overline{G}}u=d , then we say that  G is  d‐regular. Let  B be a subset of  A(G) .

Then, the subdigraph of  G induced by  B is denoted by  \langle B\rangle_{G} . For a graph  H and  v\in V(H) ,
 deg_{H}v denotes the degree of  v in  H . A rooted tree of depth 1 is called a star. Let  T be a rooted
tree. The depth of  T is the maximum length of paths from the root in  T . The trees obtained
from  T by deleting the root are called the subtrees of  T .

2 A characterization of completely independent spanning trees

The notion of completely independent spanning trees can be characterized as follows.

Theorem 2.1 Let  T_{1},  T_{2},  \ldots,  T_{k} be spanning tree8 in a graph H. Then,  T_{1},  T_{2},  \ldots,  Tk are com‐

pletely independent if and only if  T_{1},  T_{2,\ldots,k}T are edge‐disjoint and for any vertex  v of  H , there
is at most one spanning tree  T_{i} such that  deg\tau_{i}v>1 .
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Proof.  (\Leftarrow) : Let  T_{1},  T_{2},  \ldots,  Tk be spanning trees such that they satisfy the right condition in
the proposition. Now assume that  \tau_{1},  \tau_{2,\ldots,k}\tau are not completely independent. Then, there
exist two vertices  r,  v and two spanning trees  T_{i},  T_{j} such that the paths from  r to  v in  T_{i} and  T_{j}
are not openly disjoint. Since  T_{i} and  T_{j} are edge‐disjoint, the paths from  r to  v have a common

vertex  w except for  r and  v . This means that  deg_{T_{i}}w>1 and  deg_{T_{J}}w>1 , which produces a
contradiction.

 (\Rightarrow) : Suppose that  T_{1},  T_{2,\ldots,k}T are completely independent. Clearly,  \tau_{1},  \tau_{2,\ldots,k}\tau must be
edge‐disjoint. Now assume that there exists a vertex  w such that  deg_{T_{i}}w>1 and  deg\tau_{j}w>1 .

Without loss of generality, we can set  i=1 and  j=2 . Let  v be a vertex different from  w . Let

 \{w, t_{l}\} be the first edge on the path from  w to  v in  T_{l} for  l=1,2 . Let  x_{l} be a vertex such that

the path from  w to  x_{l} in  T_{l} does not contain the edge  \{w, t_{l}\} for  l=1,2 . Such vertices exist
since  deg_{T_{1}}w>1 and  deg_{T_{2}}w>1 . Both the path from  x_{1} to  v in  T_{1} and the path from  x_{2} to  v

in  T_{2} contain  w . Thus,  x_{1}\neq x_{2} . Since the paths from  x_{1} to  v in  T_{1} and  T_{2} are openly disjoint,

the path from  x_{1} to  v in  T_{2} does not contain  w . Now, we regard  T_{2} as a tree rooted at  w . Then,
 x_{1} and  v are in the same subtree of  T_{2} . On the other hand,  x_{2} and  v are not in the same subtree

of  T_{2} . Thus,  x_{1} and  x_{2} are not in the same subtree of  T_{2} . Similarly, when we regard  T_{1} as a tree
rooted at  w,  x_{1} and  x_{2} are not in the same subtree of  T_{1} . Therefore, the paths from  x_{1} to  x_{2}

in  T_{1} and  T_{2} have  w as a common vertex, which contradicts our assumption that  T_{1} and  T_{2} are
completely independent. Hence, for any vertex  v , there is at most one  T_{i} such that  deg_{T_{i}}v>1 .
 \square 

3 Completely independent spanning trees in the underlying
graph of a line digraph

Definition 3.1 Let  F be a unicyclic spanning subdigraph of H. If for any vertex of  F , the
indegree is one, then  F is called a cycle‐rooted tree, and the cycle is denoted by  C(F) .

Lemma 3.2 Let  F be a cycle‐rooted tree. Then,  L(F)\cong F .

Proof. Define a bijection  \varphi from  V(L(F)) to  V(F) as  \varphi((u, v))=v . Then, for any arc
 ((u, v),  (v, w))\in A(L(F)),  (\varphi((u, v)),  \varphi((v, w)))=(v, w)\in A(F) . Suppose that  ((u, v),  (x, y))\not\in
 A(L(F)) , i.e.,  v\neq x . Then,  (\varphi((u, v)),  \varphi((X, y)))=(v, y) . Since the indegree of  y in  F is one,
 \Gamma_{F}^{-}(y)=\{x\} . Hence,  (v, y)\not\in A(F) . Therefore,  \varphi is an isomorphism from  L(F) to F.  \square 

Lemma 3.3 Let  G be a digraph. Suppose that there are  k arc‐di8joint spanning cycle‐rooted trees
 G_{1},  G_{2},  \ldots,  G_{k} in G. Then, there are  k arc‐di8joint spanning cycle‐rooted trees  F_{1},  F_{2},  \ldots,  F_{k}

in  L(G) such that for any  F_{i} and any vertex  v of  L(G),  deg_{F_{i}}^{+}v=deg_{L(G)^{v}}^{+} , or  deg_{F_{i}}^{+}v=0 .

Proof. Let  G_{1},  G_{2},  \ldots,  G_{k} be arc‐disjoint spanning cycle‐rooted trees in  G . For each  G_{i} , we
consider the following set of arcs of  L(G) .

 A_{i}=\{((u, v), (v, w))|(u, v)\in A(G_{i}), (v, w)\in A(G)\} .

Clearly,   A_{i}\cap A_{j}=\emptyset for  1\leq i<j\leq k since   A(G_{i})\cap A(G_{j})=\emptyset for  1\leq i<j\leq k . Now we

divide  A_{i} into two subsets  A_{i}' and  A_{i}" as follows;

 \{  A_{i}'=\{((u, v), (v, w))|(u, v), (v, w)\in A(G_{i})\} ,

 A_{i}"=\{((u, v), (v, w))|(u, v)\in A(G_{i}), (v, w)\not\in A(G_{i})\} .

189



From Lemma 3.2,  \langle A_{i}'\rangle_{L(c})\cong G_{i} . Clearly,  \langle A_{i}"\rangle_{L}(G) is a union of stars such that each root is a
vertex of  \langle A_{i}'\rangle_{L(G}) and each leaf is not a vertex of  \langle A_{i}'\rangle_{L(c}) . Hence,  \langle A_{i}\rangle_{L(G)}=\langle A_{i^{\cup A_{i}}}"\prime\rangle L(c) is

also a cycle‐rooted tree. Since  G_{i} is spanning, it is easily checked that  \langle A_{i}\rangle_{L(G}) is also spanning.
Here, let  F_{i}=\langle A_{i}\rangle_{L(G}) for  i=1,2,  \ldots,  k .

Now, consider a vertex  (u, v) of  L(G) . Suppose that  (u, v) is contained in  G_{j} , i.e.,  (u, v) is
a vertex of  \langle A_{j}'\rangle_{L(c)} . Then, for any  (v, w)\in A(L(G)),  ((u, v),  (v, w)) is contained in  F_{j} , i.e.,

 deg_{F_{J}}^{+}(u, v)=deg_{L(G}^{+})(u, v) . Thus, in this case, for any  F_{i},  i\neq j,  deg_{F_{t}}^{+}(u, v)=0 . Suppose that
 (u, v) is not contained in any  G_{i} . In this case,  deg_{F_{t}}^{+}(u, v)=0 for any  F_{i} .  \square 

Lemma 3.4 Let  G be a digraph. Suppose that there are  k arc‐disjoint spanning cycle‐rooted
trees in G. Then, there are  k completely independent spanning trees in  U(L(G)) .

Proof. Let  G_{1},  G_{2},  \ldots,  Gk be  k arc‐disjoint spanning cycle‐rooted trees in  G . Then, let  F_{i}

be the digraph defined as  \langle A_{i}\rangle_{L(G)} in the proof of Lemma 3.3 for  i=1,2,  \ldots,
 k . Let  T_{i} be

the spanning tree in  U(L(G)) obtained from  U(F_{i}) by deleting one edge in  U(C(F_{i})) for  i=

 1,2,  \ldots,
 k . Then, clearly  T_{1},  T_{2,\ldots,k}T are edge‐disjoint. Also, for any vertex  v of  U(L(G)) ,

 deg_{T_{i}}v\leq deg_{F_{t}}^{+}v+deg_{\overline{F}_{i}}v=deg_{F_{i}}^{+_{v}}+1 .

From Lemma 3.3, there is at most one  F_{j} such that  deg_{F_{J}}^{+}v\geq 1 . Therefore, from Theorem 2.1,
 T_{1},  T_{2\cdot\cdot k},., T are completely independent spanning trees in  U(L(G)) .  \square 

Theorem 3.5 [4] Let  G be a  k_{- arc}-connected digraph. Then, for any vertex  r of  G , there are  k

arc‐disjoint spanning tree8 rooted at  r in  G .

Edmonds’ Theorem is corresponding to the arc‐version of the conjecture mentioned in the
introduction.

Theorem 3.6 Let  L(G) be a  k- ve\Gamma teX‐connected line digraph. Then, there are  k completely

independent  8panning tree8 in  U(L(G)) .

Proof. It is easily checked that if  L(G) is  k_{-V}ertex-ConneCted , then  G is  k_{-}arc- connected . From
Edmonds’ Theorem, there are  k arc‐disjoint spanning trees rooted at any vertex  r . Since  G is
 k_{- a}rc-conneCted,  deg_{\overline{c}}r\geq k . Adding an arc adjacent to the root to each spanning tree disjointly,
we can obtain  k arc‐disjoint spanning cycle‐rooted trees in  G . Hence, by Lemma 3.4, there are
 k completely independent spanning trees in  U(L(G)) .  \square 

4 Applications to de Bruijn graphs, Kautz graphs, and wrapped
butterflies

Applying Lemma 3.3 iteratively and discussing similarly to the proof of Lemma 3.4, we can see
that the following proposition holds.

Proposition 4.1 Let  G be a digraph. Suppose that there are  k arc‐disjoint spanning cycle‐rooted
trees in G. Then, there are  k completely independent spanning trees in  U(L^{m}(c)) .
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In the above proposition, if we add some conditions, then we can obtain a more interesting

result. The depth of a cycle‐rooted tree  T is the maximum depth of the trees obtained from  T

by deleting all the edges in the cycle.

Proposition 4.2 Let  G be a regular digraph. Suppose that there are  k isomorphic arc‐disjoint

spanning cycle‐rooted tree8 of cycle‐length  r and depth  c in G. Then, there are  ki_{8omo}rphiC

completely independent spanning trees of depth at most  2(m+c)+r-1 in  U(L^{m}(c)) .

Proof. Let  G be  d‐regular. We use the same notations introduced in the proof of Lemma 3.3.

By the assumption,  \langle A_{i}'\rangle_{L(c)}\cong\langle A_{j}'\rangle_{L(c)} for  1\leq i<j\leq k . By adding arcs in  A_{i}" to  \langle A_{i}'\rangle_{L(G)} ,
for any vertex of  \langle A_{i}'\rangle_{L}(G\rangle , if the outdegree is not equal to  d , then it becomes  d in  \langle A_{i}\rangle_{G} . Thus,
we can see that  F_{i}\cong F_{j} for  1\leq i<j\leq k . From this observation, the isomorphic property in

the proposition is induced.

By adding arcs in  A_{i}" , the depth of each subtree of a spanning cycle‐rooted tree increases by

one. On the other hand, the cycle‐length is invariant with respect to the line digraph operation.
Since we consider the underlying graph of a spanning cycle‐rooted tree and delete one edge in
the cycle, the upper bound on the depth shown in the proposition is obtained.  \square 

Let  K_{d}^{*} denote the complete symmetric digraph with  d vertices. Also, let  K_{d}^{O} denote the
complete digraph with  d vertices, i.e., the digraph obtained from  K_{d}^{*} by adding a loop to each
vertex. Then, the de Bruijn digraph  B(d, D) and the Kautz digraph  K(d, D) are defined as

 B(d, D)=L^{D-1}(K_{d}^{O}) and  K(d, D)=L^{D-1}(\Lambda_{d1}^{7}*+) . We abbreviates  U(B(d, D)) and  U(K(d, D))
to  UB(d, D) and  UK(d, D) , respectively. It is easily checked that  K_{d}^{O} and  A_{d+1}^{r}* have  d iso‐

morphic arc‐disjoint spanning cycle‐rooted trees. Hence, from Proposition 4.2, the following
corollaries are obtained. The fact of Corollary 4.3 has been shown in [6].

Corollary 4.3 [6] There are  d isomorphic completely independent spanning tree8 of depth  2D

in  UB(d, D) .

Corollary 4.4 There are  d isomorphic completely independent spanning trees of depth  2D in

 UK(d, D) .

The wrapped butterfly  wb(k, r) can be defined by the underlying graph of  L^{r-1}(\Lambda_{k}\prime O\otimes C_{r})
 ([7]) , where  C_{r} is the cycle of length  r , and  \otimes is the Kronecker product, i.e., for two digraphs
 G_{1} and  G_{2} ,

 \{
 V(G_{1}\otimes G_{2})=V(G_{1})\cross V(G_{2}) ,

 A(G_{1}\otimes G_{2})=\{((u_{1,2}u), (v_{1}, v_{2}))|(u_{1}, v_{1})\in A(G_{1})
and  (u_{2}, v_{2})\in A(G_{2})\} .

Since  Ii_{k}^{r}\circ\otimes C_{r} has  k isomorphic arc‐disjoint spanning cycle‐rooted trees, the next corollary
follows from Proposition 4.2.

Corollary 4.5 There are  k isomorphic completely independent spanning trees of depth  3r-1

in  wb(k, r) .

Note that the numbers of completely independent spanning trees in  UB(d, D),  UK(d, D)
and  wb(k, r) shown in the corollaries are best possible. In fact, there is no remaining edge in
 UB(d, D) . Also, there are only  d (resp,  k ) remaining edges in  UK(d, D) (resp,  wb(k,  r) ).
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5 Concluding remarks

In this note, we have shown that there are  k completely independent spanning trees in the

underlying graph of a  k_{- Vert}eX‐ected line digraph. It is well‐known that there are  k edge‐
disjoint spanning trees in a  2k‐edge‐connected graph. We have the following conjecture on
completely independent spanning trees.

Conjecture: There are  k completely independent spanning trees in a  2k- verteX\prime Connected

graph.
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