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$0$ . Introduction

Let $G$ be a finite group, and let $B$ be a block algebra of $G$ over an alge-
braically closed field $k$ of characteristic $p$ , where $p$ is a prime. We denote the stable
Auslander-Reiten quiver (AR quiver for short) of $B$ by $\Gamma_{s}(B)$ . Each connected
component $$ of $\Gamma_{s}(B)$ (AR component) has a tree class, which is determined up
to quiver isomorphisms, and $\Theta$ is obtained from it and the AR translates.

A p–block $B$ is wild if its defect group is neither cyclic, dihedral, generalized
quaternion nor semidihedral. It is known that, if $B$ is wild, then any AR component
of $\Gamma_{s}(B)$ has tree class $A_{\infty}.([\mathrm{E}3])$ That is, any AR component $$ is isomorphic to
either $\mathrm{Z}A_{\infty}$ or $\mathrm{Z}A_{\infty}/<\tau^{m}>$ , where $\tau$ is the AR translate. The latter is called an
infinite tube of rank $m$ . Since group algebras are symmetric, the AR translate $\tau$ is
equal to the composite $\Omega^{2}$ of two Heller translates. Thus a module lies in a tube if
and only if it is $\Omega$-periodic. We may call it simply periodic in this paper. In the
case where an AR component $\Theta$ has tree class $A_{\infty}$ , we say that a modules $X$ in $\Theta$

lies at the end if there is only one arrow in $\Theta$ which goes into (or goes from) $X$ .
Moreover, a module $X$ in $\Theta$ is said to lie in the i-th row from the end, if there is
a subquiver $X=X_{i}arrow X_{i-1}arrow\cdotsarrow X_{1}$ of $\Theta$ such that $X_{1}$ lies at the end and
that $X_{j+2}\not\cong\Omega^{2}(X_{j})$ for all $j$ with $1\leq j\leq i-2$ . For wild blocks, we consider the
following problems on simple modules.

Question 1. Do all simple $B$ -modules lie at the end of its $AR$ component $\Theta \mathit{9}$

Question 2. How many simple modules can lie in one $AR$ component of $B\prime p$

Question 3. What is the rank of a tube which contains a simple module $Q$

We report recent results concerning the above questions in Section 1. Sketches
of the proofs of some of the results are given in the sections thereafter.

Notation is standard. See, for example, [Fe] or $[\mathrm{N}\mathrm{g}\mathrm{T}]$ .

The results of Bessenrodt, Michler and me reported in this note are obtained
under the scheme of German Research Foundation (DFG) and the Japanese Society
for Promoting Sciences (JSPS) exchange program. I am grateful to these two
organizations. Also I would like to thank Dr. Waki who has kindly checked certain
properties of decomposition matrices in many cases using GAP.
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1. Results

The first result concerning Question 1 is the following.

Theorem 1. (Kawata [Ka3]) If $G$ is $p$-solvable or $O_{p}(G)\neq\{1\}$ , then Question
1 has an affirmative answer. Here $O_{p}(G)$ denotes the maximal normal p-8ubgroup
of $G$ .

Moreover, Kawata shows in Section 1 of [Ka3] the following.
Lemma 2. (Kawata [Ka3]) Suppose that there exists a simple $kG$-module $S$ such
that it lies in an $AR$ component $\Theta$ whose tree class is $A_{\infty}$ , it lies in the i-th row
from the end of $\Theta$ with $i\geq 2$, and that there is no simple modules in the j-th row
from the end of $$ for any $j$ with $1\leq j\leq i-1$ . Then there is a simple module $T$

with the following properties.
(i) $T$ lies at the end of its $AR$ component and there is a subquiver

$\Omega S=X_{i}arrow X_{i-1}arrow\cdotsarrow X_{2}arrow X_{1}=T$

of this $AR$ component.
(ii) The modules $T_{r}=\Omega^{2(r-1}$ ) $T$, where $1\leq r\leq i-1$ , are non-isomorphic $\mathit{8}imple$

modules.
(iii) The projective covers $P(T_{r})$ of $T_{r}$ have the following Loewy structure.

$T_{2}$

$T_{1}$ $T_{i-1}$
$T_{1}$

$S$ $T_{i-2}$
$S$

$T_{i-1}$

$T_{i-1}$ :
$P(T_{1})=T_{i-2}$ , $P(T_{2})=T_{i-2}$ , .. . , $P(\tau_{i-1})=$ $\dot{T}_{2}$

: .$\cdot$. $T_{1}$

$T_{2}$ $S$
$T_{3}$

$T_{1}$ $T_{i-1}$
$T_{2}$

In particular, they are uniserial.
(iv) The Cartan matrix of $kG$ whose row and column $ent_{7}\cdot ies$ are corresponding

to $T_{1},$ $T_{2}\cdots,$ $T_{i-1},$ $S,$ $\cdots$ in this order is

Thus, if one knows the Cartan matrix or the structure of projective indecom-
posable modules, then by just comparing them with (iii) and (iv) above, it may
be possible to conclude that Question 1 has an affirmative answer. This gives the
following results.
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Observation 3. For any of the groups and $p\dot{n}me\mathit{8}$ in the following list, Question
1 has an affirmative answer.

(i) Finite groups of Lie type in non-defining characteristics.
$Sp(4, q),$ $(p\{q),$ $2.F_{4}(2),$ $(p=3,7),$ $2F_{4}(2)’,$ $(p=3,5),$ $G_{2}(q),$ $(p\neq 3, p\{q)$ ,

$O_{8}^{+}(3).S_{3},$ $(p=5)$
(ii) Sporadic simple groups and related groups.
$M_{11},$ $M_{12},$ $(p=2,3)$ , $M_{22},$ $M_{23},$ $PSL_{3}(4)$ and its covering $group_{\mathit{8}},$ $HS,$ $Ru$,

$Suz,$ $(p=3),$ $\wedge 3M_{22},$ $(p=2),$ $2.J_{2},$ $(p=2,3,5),$ $McL,3M_{C}\wedge L,$ $Ru,$ $2.Ru,$ $Fi_{22}$ ,
$2.Fi_{22},3.Fi22,6.pi_{2}2,6.Fi_{2}2\cdot 2,$ $Fi23,$ $(p=5)$

As a matter of fact, much more blocks have been checked by this method, and
Question 1 has an affirmative answer for them. This was done by Waki using GAP.

However, according to the 5-modular decomposition matrix for $F_{4}(2)$ given by
Hiss [Hi4], Theorem 2.5, the group $F_{4}(2)$ has a simple module $S$ with dimension
875823 which lies in the second row from the end of its AR component.

A similar example is found for the covering group 2.$Ru$ of the sporadic Rudvalis
simple group. By Hiss [Hi3], there is a 3-modular simple module with dimension
10528 which also lies in the second row of its AR component.

The next results consider finite groups of Lie type in the defining characteristic.

Theorem 4. (Kawata, Michler, U. $[\mathrm{K}\mathrm{a}\mathrm{M}\mathrm{i}\mathrm{U}\mathrm{l}],$ $[\mathrm{K}\mathrm{a}\mathrm{M}\mathrm{i}\mathrm{U}2]$ ) Let $G$ be a finite group
of Lie type defined over a field $k$ of $charaCte\dot{\mathcal{H}}\mathit{8}ticp$. Let $B$ be a block of $G$ with full
defect of wild representation type. Then the following hold.

(i) Any simple $kG$ -module $S$ of $B$ lies at the end of its $AR$ component.
(ii) If $G$ is perfect, then each $AR$ component of $\Gamma_{s}(B)$ contains at most one

simple module. Moreover, the same is true for $AR$ components isomo$\gamma phiC$ to $\mathrm{Z}A_{\infty}$

without assuming that $G$ is perfect.

Theorem 5. (Chanter [Ch]) Let $G$ be $\mathrm{S}\mathrm{L}(2,p^{n})$ , and $B$ a wild $p$ -block of G. Then,
a periodic simple $B$ -module lies in an infinite tube of rank $(p^{n}-1)/2$ if $p$ odd, and
that of rank $2^{n}-1$ if $p=2$ .

For symmetric groups and related groups, we have the following.

Theorem 6. (Bessenrodt, U. $[\mathrm{B}\mathrm{s}\mathrm{U}]$ ) $(\mathrm{i})$ Let $G$ be a symmetric group, an altemating
group, or the covering groups of them. Let $B$ be a wild $p$ -block of $G$ , and assume
that a defect group of $B$ has order at least $p^{3}$ . Then any simple $kG$-module $B$ lies
at the end of its $AR$ component.

(ii) Let $G$ be a $symmet_{\dot{\mathcal{H}}}C$ group or an altemating group, $B$ a wild $p$-block of $G$ .
Then each $AR$ component of $B$ isomorphic to $\mathrm{Z}A_{\infty}$ contains at most one simple
module.

Perhaps (i) of the above holds also for a wild p–block whose defect group has
order $p^{2}$ . However, it has not been proved yet.

The following result concerns the principal 2-block of $G$ , when $G$ has abelian
Sylow 2-subgroups.
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Theorem 7. (Kawata, Michler, U. $[\mathrm{K}\mathrm{a}\mathrm{M}\mathrm{i}\mathrm{U}2]$ ) Let $G$ be a finite group with abelian
Sylow 2-subgroups, and $B$ the principal 2-block of G. If $B$ is wild, then we have the
following.

(i) Any simple $kG$ -module $S$ of $B$ lies at the end of its $AR$ component.
(ii) Each $AR$ component of $\Gamma_{s}(B)$ contains at most one simple module.
(iii) If $B$ contains a periodic simple module, then the rank of its $AR$ component

is $2^{n}-1$ , where $n$ is the rank of a Sylow 2-subgroup.

1. Cartan matrices

Details of Observation 3 in the previous section are as follows.

Observation 1.1. For any of the groups and $p$rimes in the following list, there
is no simple module $T$ such that $T$ does not belong to a finite block and the set of
Cartan invariants { $c_{T,T’}|T’$ : simple $kG$ –modules} $consi_{S}t_{S}$ of only one 2,
and several l’s and $\mathrm{O}’ s$ . In particular, Question 1 has an affirmative answer.

$Sp(4, q),$ $p\{q$ , ([Whl], [Wh2], [Wh3], [Wk3], $[\mathrm{O}\mathrm{k}\mathrm{W}\mathrm{k}]$ ), $2.F_{4}(2),$ $p=3,7$
$([\mathrm{H}\mathrm{i}4])$ , $2F_{4}(2)’,$ $p=3,5([\mathrm{H}\mathrm{i}1])$ , $G_{2}(q),$ $p=3,$ $p\{q,$ $([\mathrm{H}\mathrm{i}2], [\mathrm{H}\mathrm{i}\mathrm{S}\mathrm{h}])$ , 2. $J_{2}$ ,
$p=2,3,5$ $([\mathrm{H}\mathrm{i}\mathrm{L}\mathrm{u}\mathrm{l}])$ , $McL,$ $p=5$ (p.1615 of [Lel], $[\mathrm{H}\mathrm{i}\mathrm{L}\mathrm{u}\mathrm{p}]$ ), $\wedge 3McL,$ $p=5$

$([\mathrm{L}\mathrm{e}2], [\mathrm{H}\mathrm{i}\mathrm{L}\mathrm{u}\mathrm{P}])$ , $Ru,$ $p=3([\mathrm{H}\mathrm{i}3])$ , $Ru,$ $2.Ru,$ $p=5$ ([HiM\"u]) , $Suz,$ $p=3$
([JsM\"u]), $\wedge 3M_{22},$ $p=2([\mathrm{L}\mathrm{e}3])$ , $Fi_{22},2.Fi_{22},$ $Fi_{23},$ $O_{8}^{+}(3).S3,$ $p=5([\mathrm{H}\mathrm{i}\mathrm{u}\mathrm{L}2])$ ,
$3.Fi_{22},6.Fi_{22},6.Fi_{22}.2,$ $p=5([\mathrm{H}\mathrm{i}\mathrm{W}\mathrm{h}])$

Observation 1.2. For any of the groups and $pr\dot{\tau}meS$ in the following list, there is
no projective indecomposable module such that it does not belong to a finite block
and that it is uniserial. In particular, Question 1 has an affirmative answer.

$M_{11},$ $p=2$, (See [Bn]), $M_{12},$ $p=2,3([\mathrm{S}\mathrm{C}])$ , $M_{22},$ $M_{23}$ or $PSL_{3}(4),$ $p=3$
$([\mathrm{W}\mathrm{k}1]),$ $HS,$ $p=3([\mathrm{W}\mathrm{k}2])$

Observation 1.3. $([\mathrm{W}\mathrm{k}3])$ For $M_{11}$ and $p=3$ , there is no projective indecompos-
able module which satisfies (iii) of Lemma 2.

2. Finite groups of Lie type in the defining characteristic

Let $G$ be a finite groups of Lie type and suppose that chark is the defining
characteristic of $G$ . Assume that $G$ is defined over $\mathrm{F}_{p^{m}}$ . If $G$ is twisted type, then
letting $\ell$ be the order of the ”twist”, write $m=n\ell$ . Let $\sigma$ be the generator of the
Galois group of $\mathrm{F}_{p^{n}}$ over $\mathrm{F}_{p}$ . Thus $\sigma$ sends and $a$ in $\mathrm{F}_{p^{n}}$ into $a^{p}$ . In this section
we give an outline of the proof of Theorem 4.

For simple modules, the following is well known.

Theorem 2.1. (Steinberg [St]) Let $M$ be a simple $kG$-module. Then we can $w7\dot{\mathrm{u}}te$

$M=M_{1}\otimes M_{2}^{\sigma}\otimes\cdots\otimes M_{n}\sigma^{n-}1$ ,

where $M_{i}$ ’s are restricted simple modules over the Lie algebra corresponding to $G$ ,
lifted to $kG$ -modules.
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Lemma 2.2. Let $G$ be a perfect finite group of Lie type and $P$ a Sylow p-subgroup
of G. Let $M$ and $N$ be simple $kG$-modules. Then the following hold.

(i) $P$ is a vertex of $M$ .
(ii) $M_{P}$ is a sour.C$e$ of $M$ .
(iii) $M_{P}$ has a simple head and a simple socle.
(iv) $M\cong N$ if and only if $M_{P}\cong N_{P}$ .
The first, second and third statements are due to Dipper ([D1], [D2]). The forth

statement is perhaps well known. But it seems that there is no reference for it. The
proof is not so difficult and- given in $[\mathrm{K}\mathrm{a}\mathrm{M}\mathrm{i}\mathrm{U}2]$ .

It follows from Proposition 7.9 of [Gr], Lemma 2.2 (i) and (ii) together with
standard facts on the AR sequence of the Green correspondences that the middle
term of the AR sequence $A(M)$ of $M$ is indecomposable modulo projective if so is
the middle term of $A(M_{P})$ . However, by Lemma 1.4 of Erdmann [E2] and Lemma
2.2 (iii), it follows that $M_{P}$ lies at the end of its AR component. Thus Question 1
has an affirmative answer.

Rom the above, we have

(2.3) Two simple modules $M$ and $N$ lie in the same AR component if and only
if $\Omega^{2r}M\cong N$ for some $r$ .

Concerning Question 2, the duality is useful. As is mentioned in 2.4 of [Hu],
for a simple $kG$-module $L(\lambda)$ with weight $\lambda$ , we have $L(\lambda)^{*}\cong L(-w_{0}\lambda)$ , where $w_{0}$

is the longest element of the Weyl group of $G$ . Moreover, it is known that $-w_{0}$

coincides with the graph automorphism except in type $D_{\ell}$ ($\ell$ even), where $-w_{0}$ is
the identity. (See, for example, 15.3 of [Hu].) Thus, if $G$ is not of type $A_{\ell},$ $D_{\ell}(\ell$

odd) or $E_{6}$ , each simple module is self dual. Otherwise, $L(\lambda)^{*}\cong L(\lambda)^{\rho}$ , where $\rho$ is
the automorphism induced from the graph automorphism of order two.

Now suppose that two simple $kG$-modules $M$ and $N$ satisfy $\Omega^{2r}M\cong N$ for some
integer $r$ . Then using the above remark, it is not difficult to prove that $\Omega^{4r}M\cong M$ .
In particular, if $M$ is not periodic, then we have $r=0$. Thus Question 2 has
affirmative answer for non-periodic simple modules.

We now turn to periodic simple modules. Those modules are classified as in the
following theorem.

Theorem 2.4. (Fleischmann, Janiszczak, Jantzen [FlJt], $[\mathrm{J}\mathrm{i}\mathrm{J}\mathrm{t}]$ ) Let $G$ be a finite
group of Lie type defined over a field of characteristic $p$ . Suppose that there exists
a simple non-projective $pe7\dot{\eta}odi_{C}kG$ -module. Then, $G$ is of type $A_{1},2A_{2}$ or 2

$B_{2}$ .
In the above, if $G$ is simply connected, then types $A_{1},2A_{2}$ and 2 $B_{2}$ mean

$\mathrm{S}\mathrm{L}(2,p^{n}),$ $\mathrm{S}\mathrm{U}(3,p^{2n})$ and $\mathrm{S}\mathrm{u}\mathrm{z}(2n)$ , respectively. We use the notation $\mathrm{S}\mathrm{U}(3,p^{2n})$

for the 3 dimensional unitary group which consists of matrices in $\mathrm{S}\mathrm{L}(3,p^{2n})$ fixed
by the automorphism $\rho\sigma^{n}$ , where $\rho$ is the automorphism of $\mathrm{S}\mathrm{L}(3,p^{2n})$ induced by
the non-trivial graph automorphism of the Dynkin diagram of $A_{2}$ and $\sigma$ is the one
sending any $(a_{ij})$ in $\mathrm{S}\mathrm{L}(3,p^{2n})$ to $(a_{ij}^{p})$ . If the characteristic of $k$ is 2, then the
group $\mathrm{S}_{\mathrm{P}_{4}}(k)$ has an automorphism $\rho$ arising $\mathrm{h}\mathrm{o}\mathrm{m}$ a symmetry of the Dynkin dia-
gram, such that $\rho^{2}$ is the standard Robenius map sending any $(a_{ij})$ in $\mathrm{S}\mathrm{p}_{4}(k)$ to
$(a_{ij}^{2})$ . The group $\mathrm{S}\mathrm{u}\mathrm{z}(2n)$ for an odd $n$ is the subgroup of $\mathrm{S}_{\mathrm{P}_{4}}(k)$ consisting of the
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elements fixed by $\rho^{n}$ . Thus $\rho$ gives an automorphism of $\mathrm{S}\mathrm{u}\mathrm{z}(2n)$ of order $n$ . Except
for $A_{1}(2),$ $A_{1}(3),$ $2A_{2}(4)$ and 2 $B_{2}(2)$ , they are perfect.

Moreover, all the periodic simple modules are classified. To state it, we use the
following notation.

Let $G$ be either $\mathrm{S}\mathrm{L}(2,p^{n}),$ $\mathrm{S}\mathrm{U}(3,p^{2n})$ or $\mathrm{S}\mathrm{u}\mathrm{z}(2n)$ , and $\sigma$ be the Galois automor-
phism sending any $\alpha$ to $\alpha^{p}$ . Let $M$ be a simple module. We write

$M=M_{1}\otimes M_{2}^{\sigma}\otimes\cdots\otimes M_{n}\sigma^{n-}1$ ,

where $M_{i}’ \mathrm{s}$ are restricted simple modules over the corresponding Lie algebra, lifted
to $kG$-modules.

(2.5) Let $S$ be as follows.
If $G$ is $\mathrm{S}\mathrm{L}(2,p^{n})$ , then $S$ is the simple module with weight $(p-1)\lambda$ , where $\{\lambda\}$

is a basis of the weight lattice. (Note : $\dim_{k}S=p.$ )
If $G$ is $\mathrm{S}\mathrm{U}(3,p^{2n})$ , then $S$ is the simple module with weight $(p-1)(\lambda_{1}+\lambda_{2})$ ,

where $\{\lambda_{1}, \lambda_{2}\}$ form a basis of the weight lattice. (Note : $\dim_{k}S=p^{3}.$ )
If $G$ is $\mathrm{S}\mathrm{u}\mathrm{z}(2n)$ , then $S$ is the natural 4-dimensional module.
Then, simple periodic modules are described as follows.

Proposition 2.6. (Jeyakumar, Fleischmann, Jantzen) Let $G,$ $M$ and $S$ be as
above. Then $M$ is non-projective periodic if and only if there exists a unique $i$

with $1\leq i\leq n$ such that $M_{j}\cong S$ for all $j$ with $j\neq i$ and $M_{i}\not\cong S$ , and moreover, $in$

the case of $\mathrm{S}\mathrm{U}(3, q^{2}),$ $M_{i}$ must have weight either $(p-1)\lambda_{1}+r\lambda_{2\mathrm{z}}r\lambda_{1}+(p-1)\lambda 2$

or $r\lambda_{1}+(p-2-r)\lambda_{2}$ for some $r$ with $0\leq r\leq p-2$ .
For the proof, see [Je], Theorems 3.3 and 4.1 of [F12] and Section 3 of [FlJt]. See

also [Fll].

Proposition 2.6 is proved by looking at the rank varieties of modules. The rank
variety is defined as follows. Let $X$ be a $kG$-module. For an elementary abelian
p–subgroup $E=<x_{1},$ $\cdots$ , $x_{n}>\mathrm{o}\mathrm{f}G$ and $\mathrm{a}=(a_{1}, \cdots, a_{n})$ in $k^{n}$ , define an element
$u_{\mathrm{a}}$ of the group algebra $kE$ of $E$ over $k$ as follows.

$u_{\mathrm{a}}=1+ \sum_{i=1}a_{i}(xi-1)n$ .

Then $u_{\mathrm{a}}$ is a unit of order $p$ if and only if $\mathrm{a}\neq 0$ . The rank variety $V_{E}(X)$ is defined-
by

$V_{E}(X)=$ { $\mathrm{a}\in k^{n}|X_{<u_{\mathrm{a}}>}$ is not projective} $\cup\{0\}$ .

Note that $V_{E}(X)$ not only depends on $E$ but also on the generators of $E$ . The
rank variety is a homogeneous affine variety in $k^{n}$ and it is known that $X$ is periodic
if and only if $\dim_{k}V_{E}(X)=1$

Moreover, it is well known that $V_{E}(\Omega X)=V_{E}(X)$ and that $V_{E}(X\otimes_{k}X’)=$

$V_{E}(X)\cap V_{E}(x’)$ for any $kG$-modules $X$ and $X’$ . (For the proof, see [C12].) In
particular, if two modules lie in the same AR component, then their rank varieties
coincide (fixing $E$).

Using the above and explicit computation of $V_{E}(M)$ given by Theorem 4.1 of
[F12], Proposition (3.2) of [FlJt], we have the following.
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Proposition 2.7. Let $G$ and $M=M_{1}\otimes M_{2}^{\sigma}\otimes\cdots\otimes M_{n}^{\sigma^{n-1}}$ be as above, but we
exclude the case $\mathrm{S}\mathrm{U}(3,p^{2n}),$ $p$ odd. Let $S$ be as in (2.5). Then fixing a certain
maximal elementary abelian $p$-subgroup $E$ of $G$ , there $exi\mathit{8}tS$ an element $u$ of $k$ such
that $\{u, u^{\sigma}, \cdots, u^{\sigma^{n-1}}\}$ is a normal basis of $\mathrm{F}_{p^{n}}$ over $\mathrm{F}_{p}$ and the following hold.

(i) The rank variety $V_{E}(S)$ of $S$ can be $de\mathit{8}cribed$ as

$V_{E}(S)= \{(a_{0}, \cdots, a_{n-1})\in k^{n}|\sum_{\mu=0}^{n-1}a_{\mu}u^{\mathrm{P}^{\mu}}=0\}$.

(ii) Fix $i$ . Denote by $\tilde{M}_{i}$ the module $M$ such that $M_{j}\cong S$ for all $j$ with $j\neq i_{f}$

and $M_{i}\not\cong S$ . Then we have

$V_{E}(\tilde{M}_{i})=$ { $(a_{0},$ $\cdots,$ $a_{n-1}) \in k^{n}|\sum_{\mu=0}^{n-1}a_{\mu}u^{\mathrm{P}^{\mu+}}j-1=0$ for all $j$ with $j\neq i$}

(iii) We have $V_{E}(\tilde{M}_{i})=V_{E}(\tilde{M}_{i’})$ if and only if $i=i’$ .
Thus it follows from (iii) of the above that the exceptional index $i$ can be deter-

mined by looking at the rank varieties.

In case of $\mathrm{S}\mathrm{u}\mathrm{z}(2n)$ , this gives the affirmative answer, since the possibility for $M_{i}$

is only the trivial module.

For $\mathrm{S}\mathrm{L}(2,p^{n})$ , the module $M_{i}$ can be any simple module $T$ with $1\leq\dim_{k}T\leq$

$p-1$ , which is a restricted simple module over Lie algebra corresponding to $G$ . Then
$\dim_{k}\tilde{M}_{i}=p^{n-1}\dim kT$. Thus there is only one possibility for such a $T$ , if $\dim_{k}\tilde{M}_{i}$

is given. On the other hand, note that any simple module has dimension less than
or equal to $p^{n}$ and that two indecomposable modules $U$ and $V$ with $\tau^{r}U\cong V$ must
satisfy $\dim_{k}U\overline{=}\dim_{k}V$ mod $p^{n}$ . Thus two such modules $\tilde{M}_{i}$ with distinct $M_{i}$

must lie in different AR components.

For $\mathrm{S}\mathrm{U}(3,p2n)$ with odd $p$ , we use a result of Carlson which asserts that

Lemma 2.8. (Carlson [Cll]) Let $G$ be a finite $p$-group, $M$ a periodic indecompos-
able $kG$ -module. Let $E$ be a maximal elementary abelian subgroup of G. Then the

$\Omega$ -period of $M$ divides $2|G:E|$ .

Applying the above to the source $M_{P}$ of $M$ , we can show that $\Omega^{2r}M_{P}\cong M_{P}$

and thus it follows that $M_{P}\cong N_{P}$ . Hence $M\cong N$ by Lemma 2.2 (iv).

For $\mathrm{S}\mathrm{U}(3,2^{2n})$ , there are three possibilities for the module $M_{i}$ . That is, the
trivial module, three dimensional natural module and its dual. In this case, we
need to study those modules in detail by using the result of Sin [Si], and finally we
can conclude that any two of the above possible modules can not lie in the same
AR component. (See $[\mathrm{K}\mathrm{a}\mathrm{M}\mathrm{i}\mathrm{U}2]$ for detail.)

3. Symmetric groups and related groups

In this section, we consider the groups mentioned in the title of this section. Let
$S_{n}$ be the symmetric group of degree $n$ and $\tilde{S}_{n}$ its covering group, $A_{n}$ the alternating
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group of degree $n$ and $\tilde{A}_{n}$ its covering group. The covering groups (of $S_{n}$ or of $A_{n}$ )
are not unique but they are isoclinic. Let $G=S_{n}$ . As is well known, simple modules
over a field of characteristic zero are parameterized by partitions of $n$ and those over
a field of characteristic $p$ are parameterized by p–regular partitions. For a partition
$\lambda$ , we denote by $\chi_{\lambda}$ the ordinary irreducible character of $S_{n}$ corresponding to $\lambda$ ,
and if $\lambda$ is p–regular, the corresponding Brauer character of $S_{n}$ is denoted by $\varphi_{\lambda}$ .
We usually identifi a partition with the corresponding Young diagram. Let $d_{\lambda\mu}$ be
the decomposition number corresponding $\chi_{\lambda}$ and $\varphi_{\mu}$ . Thus $\chi_{\lambda}=\sum_{\mu}d_{\lambda\mu}\varphi_{\mu}$ holds
on the set of p–regular elements of $G$ . It is known that, if $\lambda$ is p–regular, then the
decomposition number $d_{\lambda\lambda}=1$ . (See 6.3.50 of $[\mathrm{J}\mathrm{m}\mathrm{K}\mathrm{e}].$)

Let $B$ be a p–block of $S_{n}$ . Then there are integers $\ell$ and $w$ such that $n=pw+\ell$ ,
the defect group of $B$ is isomorphic to a Sylow rsubgroup of $S_{pw}$ and that $B$ is
induced up from the block $b_{0}\mathrm{x}b$ , where $b_{0}$ is the principal block of $S_{pw}$ and $b$ is a
block of $S_{\ell}$ which is defect zero. This $w$ is called the weight of $B$ . It is known that,
if the character $\chi_{\lambda}$ belongs to $B$ , then we can remove a p–hook (a hook of length
$p)$ from $\lambda$ , and after repeating these processes $w$ times we finally obtain a partition

$\mathrm{c}_{\mathrm{o}\mathrm{r}\mathrm{e}}(\lambda)$ of $\ell$ which does not contain any $I\succ \mathrm{h}\mathrm{o}\mathrm{o}\mathrm{k}$ . The partition $\mathrm{c}_{\mathrm{o}\mathrm{r}\mathrm{e}}(\lambda)$ does not
depend on the order of $p$-hooks which are removed from the partitions each time
and is called the p–core of $\lambda$ . Two irreducible characters $\chi_{\lambda_{1}}$ and $\chi_{\lambda_{2}}$ belong to
the same p–block if and only if the $r\mathrm{c}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{S}$ of $\lambda_{1}$ and $\lambda_{2}$ coincide. With using the
$\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{i}_{0}\dot{\mathrm{n}}$ of $p$-quotients, this ”removal of a hook” can be described as follows. Let
$(\lambda_{[0},$$\lambda][1],$ $\cdots,$ $\lambda_{[p]}-1)$ be the p–quotient of $\lambda$ . Then here $\lambda_{[0]},$ $\lambda_{[1]},$ $\cdots$ , $\lambda_{[\mathrm{p}-1]}$ are
partitions of $n_{0},$ $n_{1},$ $\cdots$ , $n_{p-1}$ , respectively, with $n_{0}+n_{1}+\cdots+n_{p-1}=w$ , which
are uniquely determined by $\lambda$ and $p$ . (Conversely, the p-core and the p-quotient
determine $\lambda.$ ) Let $\lambda$ be a partition of $n$ and suppose that $\lambda$ has a p–hook. Remove
a p–hook from $\lambda$ and denote the resulting partition by $\nu$ . Then, there exists the
unique $r$ with $0\leq r\leq p-1$ such that the p–quotient $(\nu_{[0]}, \nu_{1]}1, \cdots, \iota^{\text{ノ}}[p-1])$ of $\nu$

satisfies $\nu_{[i]}=\lambda_{[i]}$ for all $i$ with $i\neq r$ and $\nu_{[r]}$ is obtained by removing one node
from $\lambda[r]$ . For those facts, see for example [O1].

The following general result is quite useful in proving Theorem 6.
Proposition 3.1. ([Jm] 21.7) If $\nu$ is a partition of $n-p$, then the generalized
character of $S_{n}$ corresponding to

$\sum(-1)^{i}\chi\lambda$

is zero on all classes except those containing a $p$-cycle, where the sum is taken over
all $\lambda$ such that $\lambda\backslash \nu$ is a skew $p$-hook of leg length $i$ .

The above can be regarded as a version of Murnaghan-Nakayama Rule. If an
element $x$ in $S_{n}$ is p-regular, then it does not contain a p–cycle, and thus the above
sum is zero at $x$ .

Concerning removals of hooks we remark the following.
Lemma 3.2. Let $\nu_{1}$ and $\nu_{2}$ be distinct partitions of $n-p$ . For $i=1,2$, let $S_{i}$ be
the set of partitions $\mu$ of $n$ such that a removal of one $p$ -hook from $\mu$ gives $\nu_{i}$ . Then
$S_{1}\cap S_{2}$ is either empty or consists only of one element.

90



The proof of the above is easy by looking at p–quatients of $\nu_{1}$ and $\nu_{2}$ instead of
themselves. The elements in $S,$ $\nu_{1}$ and $\nu_{2}$ have almost the same p–quotients. They
differ always by one node.

Next we see what happens for a p–regular partition of $n$ which has only one
p–hook. The above is equivalent to the following.

(3.3) $\lambda$ is a p–regular partition of $n$ such that its p–quotient $(\lambda_{[0]}, \lambda_{[1]}, \cdots, \lambda_{[]})p-1$

satisfies that $\lambda_{[i]}$ is empty for all but one $i$ , say $r$ . Moreover, $\lambda_{[r]}$ is a rectangle, that
is $\lambda_{[r]}=(a, a, \cdots, a)$ for some positive integer $a$ .

$J$

Concerning the removal of the unique p–hook from a partition satisfying (3.3),
the following holds.

Lemma 3.4. Let $\lambda$ be a partition satisfying (3.3) and $\nu$ the partition of $n-p$ which
can be obtained by removing the unique $p$-hook from $\lambda$ . Let $S$ be the set ofpartitions
$\mu$ of $n$ such that a removal of one $p$-hook from $\mu$ gives $\nu$ . Let $w$ be the weight of the
$p$ -block containing $\chi_{\lambda}$ .

(i) If $w=1$ , we have $S=\{\lambda, \mu_{1}, \mu_{2}, \cdots, \mu_{p-1}\}$ . Here $\mu_{i}$ is a partition whose
$p$ -quotients satisfy the following.

$\mu i[i-1]$ is the partitions (1) of 1 for $1\leq i\leq r$ .
$\mu_{i[i]}$ is the partitions (1) of 1 for $r+1\leq i\leq p-1$ .
The others in p-quotient8 are empty.

(ii) If $w=2$, we have $S=\{\lambda, \mu, \mu_{0}, \mu 1, \cdots, \mu_{r-1}, \mu_{r+}1, \cdots , \mu_{p-1}\}.$ Moreover,
their $p$ -quotients satisfy the following.

$\{\lambda_{[r],\mu_{[}r]}\}=\{(1,1),$(2) $\}$ and $\mu_{i[i]}=\mu_{i[r}\mathrm{J}=(1)$ .
$\lambda_{[j],\mu_{[j}\mathrm{J}}$ and $\mu_{i[j]}$ are empty for all $i$ and $j$ with $0\leq i,j\leq p-1$ and $i\neq r\neq j$ .

(iii) If $w\geq 3$ , then $|S|\geq p$ and $\lambda$ is the unique partition in $S$ which satisfies
(3.3).

Again it is easy to see the above by looking at p–quotients of the partitions in $S$ .
Let us now consider the Cartan matrix of $S_{n}$ .

Proposition 3.5. Let $\lambda$ be a $p$ -regular partition of $n$ .
(i) Suppose that $\lambda ha\mathit{8}mp$ -hooks. Then we have $d_{\mu\lambda}\neq 0$ for at least $m+1$

partitions $\mu$ of $n$ . In $parti_{Cu}lar$, we have $c_{\lambda\lambda}\geq m+1$ .
(ii) Suppose that $\chi_{\lambda}$ belongs to a $p$ -block with weight $w\geq 3$ and that $\lambda$ has only

one $p$ -hook. Then we have $d_{\mu\lambda}\neq 0$ for at least 3 partitions $\mu$ of $n$ . In particular,
we have $c_{\lambda\lambda}\geq 3$ .

Proof. (i) Let $\nu_{1},$ $\nu_{2},$ $\cdots,$ $\nu_{m}$ be distinct partitions of $n-p$ which are obtained
by removing one p–hook form $\lambda$ . For each $i$ with $1\leq i\leq m$ , let $S_{i}$ be the set of
partitions $\mu$ of $n$ such that a removal of one p–hook from $\mu$ gives $\nu_{i}$ . Then, since
$d_{\lambda\lambda}\neq 0$ , Proposition 3.1 yields that there exists a partition $\mu_{i}$ in $S_{i}$ such that
$\mu_{i}\neq\lambda$ and $d_{\mu_{i}\lambda}\neq 0$ . Moreover, Lemma 3.2 yields that $\mu_{i}\neq\mu_{j}$ if $i\neq j$ . Hence we
obtain the desired consequence.

(ii) Recall that $\lambda$ satisfies (3.3) Then, letting $\nu$ and $S$ be as in Lemma 3.4, $\lambda$ is
the unique partition in $S$ which satisfies (3.3) by Lemma 3.4 (iii). On the other
hand, it follows by applying Proposition 3.1 to the character $\chi_{\nu}$ that there is a
partition $\mu_{1}$ in $S\backslash \{\lambda\}$ with $d_{\mu_{1}\lambda}\neq 0$ . Since $\mu_{1}$ does not satisfy (3.3), it has a
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p–hook such that the removal of this p–hook ffom $\mu_{1}$ gives a partition $\nu_{1}$ different
$\mathrm{h}\mathrm{o}\mathrm{m}\nu$ . Let $S’$ be the set of partitions $\mu$ of $n$ such that a removal of one p-hook
from $\mu$ gives $\nu_{1}$ . Then $S\cap S’=\{\mu_{1}\}$ by Lemma 3.2. By applying Proposition 3.1
to the character $\chi_{\nu_{1}}$ , we can find $\mu_{2}$ in $S’$ such that $d_{\mu_{2}\lambda}\neq 0$ and $\mu_{2}\neq\mu_{1}$ . Notice
that $\mu_{2}\neq\lambda$ . Therefore, $d_{\lambda\lambda},$ $d_{\mu_{1}\lambda}$ and $d_{\mu_{2}\lambda}$ are all nonzero. This completes the
proof.

By using the above and Lemma 2, we can prove Theorem 6 for $S_{n}$ .
Now let us consider the case of $p$ odd and $G=\tilde{S}_{n}$ . The set of partitions of $n$

into distinct parts is denoted by $D(n)$ . We write $D^{+}(n)$ and $D^{-}(n)$ for the sets
of partitions $\lambda$ in $D(n)$ with $n-\ell(\lambda)$ even and odd, respectively. Here $\ell(\lambda)$ is the
number of parts in $\lambda$ . The associate classes of spin characters of $\tilde{S}_{n}$ are labeled
canonically by the partitions in $D(n)$ . For each $\lambda\in D^{+}(n)$ there is a self-associate
spin character $\eta_{\lambda}=\mathrm{S}\mathrm{g}\mathrm{n}\eta_{\lambda}$ , and to each $\lambda\in D^{-}(n)$ there is a pair of associate
spin characters $\eta_{\lambda},$

$\eta_{\lambda^{l}}=\mathrm{S}\mathrm{g}\mathrm{n}\eta_{\lambda}$ . We write $\eta_{\lambda}^{o}$ for a choice of associate, and $\hat{\eta}$ for
$\eta_{\lambda}$ if $\lambda\in D^{+}(n)$ and for $\eta_{\lambda}+\eta_{\lambda’}$ if $\lambda\in D^{-}(n)$ . The role played by hooks and
hook partition in the case of $S_{n}$ characters is taken on by bars and bar partitions
in the case of the spin characters of the covering groups. Here we mean by a bar

,

p–bars recursively ffom $\lambda$ , we obtain a partition called the $\overline{p}$-core of $\lambda$ . Moreover,
we can define the $\overline{p}$-quotient $(\lambda_{\overline{[0]}}, \lambda\overline{[1]}’\ldots, \lambda_{\overline{[t]}})$ of $\lambda$ . Here $t=(p-1)/2$ and $\lambda_{\overline{[0]}}$ ,
$\lambda_{\overline{[1]}},$ $\cdots,$ $\lambda_{\overline{[t]}}$ are partitions of $n_{0},$ $n_{1},$ $\cdots$ , $n_{t}$ with $n_{0}+n_{1}+\cdots+n_{t}=w$ . This $w$

is also called the weight of the p–block to which $\eta_{\lambda}$ belongs and plays an important
role when investigating the block structure. It is known that $\eta_{\lambda_{1}}$ and $\eta_{\lambda_{2}}$ belong
to the same p–block if and only if $\lambda_{1}$ and $\lambda_{2}$ have the same $\overline{p}$-core. The $\overline{p}$-quotient
of $\lambda$ describes removals of p–bars from $\lambda$ . Therefore, essentially the same method
can be used to prove that Question 1 has an affirmative answer for p–blocks of $\tilde{S}_{n}$

with weight $w\geq 3$ . When doing it, the most crucial assertion is an analogue of
Proposition 3.1, which is stated as follows and proved in $[\mathrm{B}\mathrm{s}\mathrm{U}]$ .
Proposition 3.6. Let $p$ be an odd prime with $p\leq n$ . Let $\nu\in D(n-p)$ be a
partition. If $p$ is not a part of $\nu$ , then set $\lambda_{0}=\nu\cup\{p\}$ and let $b_{0}=\lambda_{0}\backslash \nu$ be the
corresponding $p$-bar of $\lambda_{0}$ . Then the generalized character $\chi$ of $\tilde{S}_{n}$ given by

$\chi=$ $ifp\not\in\nu\in D^{-}otherwiSe(n-p)$

is zero on all classes except possibly those $corre\mathit{8}ponding$ to partitions with $p$ as a
part. Here $L(b)$ is the leg length of a $p$-bar $b$ .

Character relations in the nature of Propositions 3.1 and 3.6 are related to the
equations among reduced (Q-)Schur functions. See $[\mathrm{A}\mathrm{N}\mathrm{k}\mathrm{Y}]$ and $[\mathrm{N}\mathrm{k}\mathrm{Y}]$ . In any case,
remark however that there is no known parameterization of simple $k\tilde{S}_{n}$-modules
which is valid for all primes $p$ .

For $A_{n}$ or $\tilde{A}_{n}$ when $p$ is an odd prime, we use a reduction lemma, which gives
information on the relationship between simple $kG$-modules and those for a normal
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subgroup $N$ of $G$ . It is obtained by using several standard results on Clifford theory
of AR components. (See [Ka2] and [U2].)

Concerning Question 2, it suffices to remark that all the simple $kS_{n}$-modules are
self dual. This follows from the facts that all the ordinary irreducible $kS_{n}$-modules
are self dual and that the decomposition matrix is lower triangular if partitions are
ordered appropriately. Since it is impossible that two self dual modules lie in the
same $\tau$-orbit of an AR component which is not a tube, Question 2 has an affirmative
answer for non-periodic simple $kS_{n}$-modules. (Notice that if an AR component
contains a self dual module, then the duality gives a graph automorphism of it
which reverses the direction of all the arrows.) Finally, by using standard Clifford
theory on AR components, one can show that Question 2 has an affirmative answer
for non-periodic simple $kA_{n}$-modules, too.

4. Groups with abelian Sylow 2-subgroups

Let $G$ be a finite group with an abelian Sylow 2-subgroup, and $B$ the principal
2-block of $G$ . We suppose also that $B$ is a wild block. Let $O(G)$ be the maximal
normal subgroup of odd order. Then by the results of Walter, Janko, $-$ Bombieri,
Thompson and Ward, we have the following.

Theorem 4.1. ([W1], see also p.485 of [Go]) Let $G$ be a finite group with an abelian
Sylow 2-subgroup. Then $G$ contains a normal subgroup $H$ containing $O(G)$ with
odd index such that $H/O(G)$ is a direct product of groups of the following types:

(a) An abelian 2-group.
(b) $\mathrm{P}\mathrm{S}\mathrm{L}(2, q),$ $q>3,$ $q\equiv 3$ or 5 mod 8.
(c) $\mathrm{P}\mathrm{S}\mathrm{L}(2,2^{n}),$ $n>1$ .
(d) $J_{1}$ , the smallest Janko group of order 175560.
(e) $R(q)$ , a simple group of $Ree$ type with $q=3^{2n+1}$ .

Since $B$ is the principal 2-block, the elements of $O(G)$ act trivially on modules
belonging to $B$ . Because we consider only the modules in the principal block of $G$ ,
in order to consider the questions, we may assume that

$O(G)=\{1\}$ .

Let us write
$H=H_{1}\cross H_{2}\cross\cdots\cross H_{m}$ ,

where $H_{1},$ $H_{2},$ $\cdots$ , $H_{m}$ are groups in Theorem 4.1. We assume that $|H_{i}|>1$ for
all $i$ and that $H_{i}$ is abelian for at most one $i$ .

Let us look at individual groups appearing in Theorem 4.1.

(4.2) The case where $G$ is an abelian 2-group.

There is only one simple module, namely, the trivial module. Because $G$ is not
cyclic, the trivial module is not periodic. Moreover, by [We] Theorem $\mathrm{E}$ , it lies at
the end of its AR component in the case where $kG$ is wild. Thus it is clear that all
the questions have affirmative answers.
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(4.3) The case where $G=\mathrm{P}\mathrm{S}\mathrm{L}(2, q)$ for $q\equiv 3$ or 5 mod 8.

Then the defect group is an elementary abelian of order $2^{2}$ and the block is tame.
There are 3 simple modules. If $q\equiv 3$ mod 8, then all of them are not periodic.
If $q\equiv 5$ mod 8, then two non-trivial simple modules are periodic with $\Omega$-period
3. In fact, the principal 2-block of $\mathrm{P}\mathrm{S}\mathrm{L}(2, q)$ for $q\equiv 3$ mod 8 is Morita equivalent
to the group algebra of the alternating group of degree 4 and that of $\mathrm{P}\mathrm{S}\mathrm{L}(2, q)$ for
$q\equiv 5$ mod 8 is Morita equivalent to the principal block of the alternating group of
degree 5. Among simple modules, only periodic ones (which exist only when $q\equiv 5$

mod 8) lie at the end of infinite tubes of rank three. Moreover, each infinite tube
has at most one simple module. (See [E1].)

(4.4) The case where $G=\mathrm{P}\mathrm{S}\mathrm{L}(2,2^{n}),$ $n\geq 2$ .

Then the defect group of the principal 2-block $B$ of $G$ is an elementary abelian
of order $2^{n}$ . There are $n$ simple modules. If $n\geq 3$ , then all the questions have
affirmative answers by the results in Section 2. If $n=2$ , then $kG$ is isomorphic
to the group algebra of the alternating group of degree 5. Thus as is remarked in
(4.3), $B$ has two periodic simple modules which lie at the end of distinct infinite
tubes of rank three. Therefore, all the questions have affirmative answers, as well.

(4.5) The case where $G=J_{1}$ .

Then the defect group of the principal 2-block $B$ of $G$ is an elementary abelian
of order $2^{3}$ . There are 5 simple modules. They are all self dual. Among those, the
simple $B$-module of dimension 20 is the unique periodic simple module, and it has
$\Omega$-period 7. (See $[\mathrm{L}\mathrm{a}\mathrm{M}\mathrm{i}\mathrm{l}].$) By looking at Cartan matrix (see p. 209 of $[\mathrm{L}\mathrm{a}\mathrm{M}\mathrm{i}\mathrm{l}]$),
it follows from Lemma 2 that simple modules lie at the end. The unique periodic
simple module lies at the end of an infinite tube of rank 7, and of course, this is
the unique infinite tube which contains a simple module. On the other hand, since
all simple modules are self dual, any AR component isomorphic to $\mathrm{Z}A_{\infty}$ can have
at most one simple module. Therefore, all the questions have affirmative answers.

(4.6) The case where $G=R(q),$ $q=3^{2n+1}$ .

Then the defect group of the principal 2-block $B$ of $G$ is an elementary abelian
of order $2^{3}$ . There are 5 simple modules. Three of them are self dual and the
remaining two are dual to each other. However, the Green correspondents of those
two have dimension 1. Among those 5 simple $B$-modules, the simple module of
dimension $q^{2}+1-m(q+1)$ , where $m=3^{n}$ , is the unique periodic simple module,
and it has $\Omega$-period 7. (See $[\mathrm{L}\mathrm{a}\mathrm{M}\mathrm{i}2].$) By looking at Cartan matrix (see Theorem
3.9 (b) of $[\mathrm{L}\mathrm{a}\mathrm{M}\mathrm{i}2])$ , it follows from Lemma 2 that simple $kH$-modules lie at the
end. The unique periodic simple module lies at the end of an infinite tube of rank
7, and of course, this is the unique infinite tube which contains a simple module.
For non-periodic simple modules, we can not use the same argument as in (4.5),
since there exists a simple module which is not self dual. However, fortunately, the
Green correspondents of those modules are simple, and one can show that they lie
in distinct AR components. Since it is known that the Green correspondence gives a
graph monomorphism, those simple $B$-modules also lie in distinct AR components.
Finally, considering duality, one can conclude that all non-periodic simple modules
lie in distinct AR components. Therefore, all the questions have affirmative answers.
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In a general case, several reduction methods, which reduce the problems to those
for normal subgroups and factor groups are necessary. Most of them are standard
results in AR theory for group algebras, and found in [Bn], [G], [Kal], [Ka2], [Ka3],
$[\mathrm{O}\mathrm{k}\mathrm{U}1],$ $[\mathrm{O}\mathrm{k}\mathrm{U}2]$ , [U1] and [U2]. Among others, we raise only one result which in
fact reduces problems to almost simple cases.

Lemma 4.7. Suppose that there exists a simple $kG$ -module $S$ such that it lies in
an $AR$ component $\Theta$ whose tree class is $A_{\infty}$ and it lies in the i-th row from the end
of $$ with $i\geq 2$ . Let $N$ be a normal subgroup of $G$ , and assume further that any
module in $$ are not $N$ -projective. Then one of the following $hold_{\mathit{8}}$ for any simple
direct summand $V$ of $S_{N}$ .

(i) $V$ belongs to a block of defect zero.
(ii) $p=2$ and $V$ belongs to a block whose defect group is cyclic of order 2.

Finally we add a remark on the rank of infinite tubes which contain simple
modules. See $[\mathrm{K}\mathrm{a}\mathrm{M}\mathrm{i}\mathrm{U}2]$ for detail. Note that we include also the case of $G\neq H$ .

Remark 4.8. (i) If there is a simple $B$ -module, then the group $H$ in the above
argument must be simple.

(ii) The rank of an infinite tube which contains a simple $kG$-module in $B$ is as
follows. The case of $H=\mathrm{P}\mathrm{S}\mathrm{L}(2,2^{n}),$ $n\geq 2$ , the rank is always $2^{n}-1$ , and for
$H=J_{1}$ or $R(q)$ , the rank is always 7. Therefore, these ranks are always $2^{m}-1$ ,
where $m$ is the rank of Sylow 2-8ubgroup.
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