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1. INTRODUCTION

Let $k$ be an algebraically closed field of prime characteristic $p$ , and
let $G$ and $H$ be finite groups with Sylow p–subgroups $P$ and $Q$ , re-
spectively. In representation theory of finite groups it seems important
to consider a problem that if the two group algebras $kG$ and $kH$ are
isomorphic as $k$-algebras, then which kind of properties of $G$ can be
heritable to $H$?

In this talk we consider this problem for a property that $\mathrm{N}_{G}(P)/P$ is
abelian, where $\mathrm{N}_{G}(P)$ is the normalizer of $P$ in $G$ . Namely, we want to
know whether the property $\mathrm{N}_{G}(P)/P$ is abelian implies that $\mathrm{N}_{H}(Q)/Q$

is abelian under the case that $kG\cong kH$ as $k$-algebras. Here, actually,
we consider the above problem for p–nilpotent groups and groups of
p–length 1. It seems that this problem is difficult even if groups are p-
nilpotent. For a p–nilpotent group $G$ , we give some necessary conditions
for $\mathrm{N}_{G}(P)/P$ to be abelian, but they cannot be sufficient conditions
since there exist trivial counter examples. For a group $G$ of p-length
1, we give some necessary and sufficient conditions for $\mathrm{N}_{G}(P)/P$ to
be abelian, but they contain some group theoretic condition. It seems
that the problem for groups of p–length 1 can be reduced to one for
p–nilpotent groups.

This is a joint $\mathrm{w}\mathrm{o}\mathrm{r}\dot{\mathrm{k}}$ with Professor Shigeo Koshitani.

2. PRELIMINARY

Let $H$ be a finite group, and let $K$ be a finite group acting on $H$ .
Then $1\mathrm{r}\mathrm{r}(H)$ denotes the set of all irreducible ordinary characters of
$H,$ $\mathrm{L}\mathrm{I}\mathrm{r}\mathrm{r}(H)$ denotes the set of all linear ordinary characters of $H$ , and
$\mathrm{I}\mathrm{r}\mathrm{r}_{K}(H)$ and LIrr$K(H)$ denote the set of all $K$-invariant irreducible
characters and the set of $K$-invariant linear characters of $H$ , respec-
tively. We fix a prime $p$ and an algebraically closed field $k$ of character-
istic $p$ , and $1\mathrm{B}\mathrm{r}(H)$ denotes the set of all irreducible p–Brauer characters
of $H$ . For a $k$-algebra $A,$ $\mathrm{I}\mathrm{R}\mathrm{R}(A)$ denotes the set of all non-isomorphic
irreducible (simple) $A$-modules, and $\mathrm{I}\mathrm{R}\mathrm{R}^{0}(A)$ denotes the set of all
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non-isomorphic irreducible $A$-modules whose $k$-dimensions are not di-
visible by $p$ . For the group algebra $kG$ of a p–solvable group $G$ and
$S\in 1\mathrm{R}\mathrm{R}(kG)$ , it follows from [2, Theorem 2.1] that $S$ is in $1\mathrm{R}\mathrm{R}^{0}(kG)$

if and only if the vertex of $S$ is a Sylow p–subgroup of $G$ . We write
$[G, G]$ for the commutator subgroup of $G$ and $|\mathrm{I}\mathrm{R}\mathrm{R}(A)|$ for the num-
ber of elements of $1\mathrm{R}\mathrm{R}(A)$ for a $k$-algebra $A$ . For other notation and
terminology see the books of Isaacs [3] and Nagao and Tsushima [6].
Throughout this paper groups mean always finite groups.

First we introduce some results related to our problem.

Proposition 2.1. Let $G$ and $H$ be finite groups, and let $P$ and $Q$ be
Sylow $p$-subgroups of $G$ and $H$ , respectively. Assume that $kG\cong kH$ as
$k$ -algebras. Then

(1) if $G$ is $p$ -nilpotent, then so is $H$,
(2) [Okuyama-Michler] if $G$ is $p$-closed, then so is $H$,
(3) [Morita] if $G/\mathrm{O}_{p’,p}(G)$ is abelian, then so is $H/\mathrm{o}_{p_{)}’p}(H)$ ,
(4) [Navarro] if $G$ is $q$ -nilpotent, then so is $H$, for $p\neq q$ ,
(5) if $G$ is of $p$-length 1, then so is $H$ .

Proof. (1) Well known.
(2) Okuyama [9, Theorem 2] for $p=2$ , and Michler [4, Theorem 5.5]

for $p\neq 2$ . It should be noted that in his proof the classification of finite
simple groups is used in the proof of Michler [4].

(3) Morita [5, Theorem 6]. ‘

(4) Navarro [7, Theorem].
(5) is proved essentially by almost the same argument in [9] an’$\mathrm{d}(2)$ .

It seems that the proof is unpublished, but we omit it here since we do
not need this result for our argument. $\square$

Let $A$ be a $k$-algebra. We say $A$ is primary if $A/\mathrm{J}(\mathrm{A})$ is a simple
ring, and $A$ is quasi-primary if $A/.\mathrm{J}(\mathrm{A})$ is a direct sum of isomorphic
simple rings.

Theorem 2.2. [5, Theorem 6, 7] $A$ finite group $G$ is $p$-nilpotent iff
every block of the groups algebra $kG$ is primary, and $G/\mathrm{O}_{\mathrm{p}^{t},\mathrm{p}}(\mathrm{G})$ is
abelian iff every block of the groups algebra $kG$ is quasi-primary.

A block $B$ of $kG$ is quasi-primary if and only if all irreducible B-
modules have the same dimensions.

We $\mathrm{P}^{\mathrm{r}\mathrm{e}}.\mathrm{P}^{\mathrm{a}\mathrm{r}\mathrm{e}}$ one more easy group theoretic lemma.
Lemma 2.3. Assume that $G$ is a finite group of $p$ -length 1 with Sylow
$p$-subgroup P. Then

(1) $G=.\mathrm{N}_{G}(P)\mathrm{O}_{p}’(G)$ ,
(2) if $\mathrm{N}_{G}(P)/P$ is abelian, then so is $G/\mathrm{o}_{p}\prime_{p},(c)$ .
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Proof. (1) By Frattini argument, we have $G=\mathrm{N}_{G}(P)\mathrm{o}p’,p(G)$ . Now
the result holds clearly.

(2) By (1), $G/\mathrm{O}’,(ppG)\cong \mathrm{N}G(P)/(\mathrm{N}_{G}(p)\cap 0_{p}’,(pG))$ . Since $\mathrm{N}_{G}(P)\cap$

$\mathrm{o}_{p’,p}(G)$ contains $P$ , there is an epimorphism from $\mathrm{N}_{G}(P)/P$ to
$G/\mathrm{O}_{p’)p}(G)$ . $\square$

3. $p$-NILPOTENT CASE

Now we consider the condition that $\mathrm{N}_{G}(P)/P$ is abelian for a finite
group $G$ with a Sylow p–subgroup $P$ . Note that $N_{G}(P)/P\cong \mathrm{C}_{\mathrm{O}_{\mathrm{p}}},(G)(P)$

for a p–nilpotent group $G$ with Sylow p–subgroup $P$ . In this section,
we use character theoretic descriptions.

Theorem 3.1. Let $H$ be a finite $p’$ -group, and $P$ a finite $p$-group acting
on H. Assume that $\mathrm{C}_{H}(P)$ is abelian, $\chi\in 1\mathrm{r}\mathrm{r}_{P}(H)$ , and $\phi\in \mathrm{L}\mathrm{l}\mathrm{r}\mathrm{r}_{P}(H)$

which $i_{\mathit{8}}$ non-trivial. Then $\chi\neq\chi\phi$ .

Proof. Put $M=\mathrm{C}_{H}(P)$ . Then there exists the Glauberman correspon-
dence $\pi$ : $\mathrm{I}\mathrm{r}\mathrm{r}_{P}(H)arrow \mathrm{I}\mathrm{r}\mathrm{r}(M)$ (See [3, \S 13]). By [3, Theorem 13.1 $(\mathrm{c})$ ],
$\pi(\chi\phi)=\pi(\chi)\phi_{M}$ . Since $M$ is abelian, $\pi(\chi)$ is linear. So if $\phi_{M}$ is
non-trivial, then $\pi(\chi)\neq\pi(\chi\phi)$ and thus $\chi\neq\chi\phi$ .

By [1, Exercise 8.8], $H=M[H, P]$ . Since $\phi$ is $P$-invariant and linear,
$[H, P]$ is contained in the kernel of $\phi$ . So if $\phi_{M}$ is trivial, then $\phi$ must
be trivial. Now the result is proved. $\square$

Corollary 3.2. Let $G$ be a $p$-nilpotent group with a Sylow p-subgroup
P. If $\mathrm{N}_{G}(P)/P$ is abelian, then the number of linear characters of $G$

divides the number of irreducible characters of $G$ of degree $d$ for any
positive integer $d$ with $p\{d$ .

Proof. Put $H=\mathrm{o}_{p’}(G)$ . Then $\mathrm{N}_{G}(P)/P\cong \mathrm{c}_{H}(P)$ . Every P-invariant
character of $H$ is extendible to $G$ and the number of its extensions is
$|P$ : $[P, P]|$ . So $|\mathrm{L}\mathrm{I}\mathrm{r}\mathrm{r}(G)|=|\mathrm{L}\mathrm{I}\mathrm{r}\mathrm{r}_{P}(H)||P$ : $[P, P]|$ . Let $\chi\in \mathrm{I}\mathrm{r}\mathrm{r}_{P}(H)$ .
Then, by Theorem 3.1, there are $|\mathrm{L}\mathrm{I}\mathrm{r}\mathrm{r}_{P}(H)|$ distinct characters of the
form $\chi\phi,$ $\phi\in \mathrm{L}\mathrm{I}\mathrm{r}\mathrm{r}_{P}(H)$ , and each of them has $|P$ : $[P, P]|$ extensions.
Thus the assertion holds. $\square$

The converse of Corollary 3.2 is true for groups of small order, for
example, for 3-nilpotent groups of order $2^{n}\cdot 3,$ $n\leq 7$ . But there exists
a trivial counter example of it, consider a simple group of $p’$-order with
the trivial action of an arbitrary p-group.

4. $p$-LENGTH 1 CASE

In this section, we use module theoretic descriptions.
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Theorem 4.1. Let $G$ be a finite group of $p$-length 1 with a Sylow $\dot{p}$
-

subgroup P. The following are equivalent.
(1) $\mathrm{N}_{G}(P)/P$ is abelian.
(2) $\mathrm{N}_{G}(P)\cap \mathrm{O}_{p}’(G)$ is abelian, every block of $kG$ is quasi-primary,

and the restriction $S$ to $\mathrm{o}_{p’}(G)$ is irreducible for every irreducible
$kG$-module $S$ with $p\mathrm{f}^{\mathrm{d}\mathrm{i}}\mathrm{m}_{k}S$ .

Proof. Put $N=\mathrm{N}_{G}(P),$ $E=\mathrm{O}_{p’}(G)$ , and $M=N\cap E$ .
Assume (2). We can define the restriction map $R$ : $\mathrm{I}\mathrm{R}\mathrm{R}^{0}(kG)arrow$

lRRp $(kE)$ . First we shall show that $R$ is surjective. Let $X\in 1\mathrm{R}\mathrm{R}_{P}(E)$ .
Then $X$ can be extended to $PE$ . Let $S\in \mathrm{I}\mathrm{R}\mathrm{R}(kG)$ such that $S_{E}$ has
$X$ as a direct summand. Since $G$ is p–solvable, by [3, Corollary 11.29]
and Fong-Swan’s theorem, we have $p\{\dim_{k}S$ . Thus $S_{E}=X$ , and $R$

is surjective. Also $R$ is a $|G:PE[c, G]|$ to 1 map.
Let $\pi$ : $\mathrm{I}\mathrm{R}\mathrm{R}_{P}(kE)arrow \mathrm{I}\mathrm{R}\mathrm{R}(kM)$ be the Glauberman correspondence.

Let $X\in \mathrm{I}\mathrm{R}\mathrm{R}_{P}(kE)$ . By Lemma 2.3(1) and [8, Theorem 4.9 (2)], $X$

is extendible to $G$ if and only if $\pi(X)$ is extendible to $N$ . Since every
$X\in 1\mathrm{R}\mathrm{R}_{p(kE)}$ is extendible to $G$ , so is every $\mathrm{Y}\in 1\mathrm{R}\mathrm{R}(kM)$ to $N$ ,
and the number of extensions of $\mathrm{Y}$ to $N$ is $|N$ : $PM[N, N]|$ . But
$|G:PE[G, G]|=|N$ : $PM[N, N]|$ since $G/E\cong N/M$ . By [8, Theorem
4.1], $|\mathrm{I}\mathrm{R}\mathrm{R}^{0}(kG)|=|\mathrm{I}\mathrm{R}\mathrm{R}(kN)|$ . This yields that every irreducible kN-
module restricts irreducibly to $M$ . Since $M$ is abelian, every irreducible
$kN$-module is of dimension one, and thus $N/P$ is abelian. .

Assume (1). By Lemma 2.3(2), $G/PE$ and $M$ are both abelian. Let
$X\in \mathrm{I}\mathrm{R}\mathrm{R}_{P}(E)$ . Since $N/P$ is abelian, $\pi(X)$ is extendible to $N$ , and so
is $X$ to $G$ . Similar argument as the above yields (2). $\square$

Corollary 4.2. Let $G$ be a finite group of $p$ -length 1 with a Sylow
$p$-subgroup P. Assume $\mathrm{N}_{G}(P)/P$ is abelian. Then the number of ir-
reducible $kG$-modules of $k$ -dimension one divides the number of irre-
ducible $kG$-modules of $k$ -dimension $d$ for any positive integer $d$ with
$p\{d$ .
Proof. Put $E=\mathrm{O}_{p’}(c)$ . Let $S$ be an irreducible $kG$-module with
$p\{\dim_{k}S$ . Then $S_{E}$ is irreducible by Theorem 4.1. So we can define
the restriction map $R$ : $\mathrm{I}\mathrm{R}\mathrm{R}^{0}(kG)arrow \mathrm{I}\mathrm{r}\mathrm{r}_{P}(E)$ . As in the proof of
Theorem 4.1, $R$ is surjective and for any element $\chi\in \mathrm{I}\mathrm{r}\mathrm{r}_{P}(E)$ there
are exactly $|G:PE|$ distinct elements in $1\mathrm{R}\mathrm{R}^{0}(kG)$ which are sent to
$\chi$ through $R$ , and clearly $R$ preserves the degrees. Now Corollary 3.2
yields the result. $\square$

Theorem 4.3. Let $G$ be a finite group of $p$-length 1 with a Sylow p-
subgroup P. Then the following are equivalent.

(1) $\mathrm{N}_{G}(P)/P$ is abelian.
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(2) $\mathrm{N}_{G}(P)\cap \mathrm{O}_{p’}(c)$ is abelian, every block of $kG$ is quasi-primary,
and all full defect blocks of $kG$ have the same numbers of irre-
ducible modules.

Proof. Put $N=\mathrm{N}_{G}(P)$ and $M=N\cap \mathrm{O}_{p’}(G)$ .
Let $B$ be a block of $kG$ of full defect, and let $b$ be the block of $kN$

which is the Brauer correspondent of $B$ . By [5], afl irreducible $kG-$

modules in $B$ have the same degrees, and by [8, Theorem 4.9], we have
$|\mathrm{I}\mathrm{R}\mathrm{R}(B)|=|\mathrm{I}\mathrm{R}\mathrm{R}(b)|$ .

Assume (1). Let $\beta$ be a block of $kM$ . Since $M$ is central in $N$ ,
only one block $b$ of $kN$ covers $\beta$ . By the assumption that $\mathrm{N}_{G}(P)/P$ is
abelian, we have $|\mathrm{I}\mathrm{R}\mathrm{R}(b)|=|N:PM|$ . Thus (2) holds.

Assume (2). Let $b_{0}$ is the principal block of $kN$. Since $N/PM$ is
abelian, $|\mathrm{I}\mathrm{R}\mathrm{R}(b0)|=|N$ : $PM|$ . Thus $|\mathrm{I}\mathrm{R}\mathrm{R}(b)|=|N$ : $PM|$ for any
$kN$-block $b$ . We know that $N$-conjugacy classes of $\mathrm{I}\mathrm{r}\mathrm{r}(M)$ correspond
to blocks $kN$ . Let $\xi\in \mathrm{I}\mathrm{r}\mathrm{r}(M)$ , let $b$ be a block of $kN$ which covers
blocks $\{\xi\}$ of $kM$, and let $T$ be the inertial group of $\xi$ in $N$ . If $T\leq N$

then $|\mathrm{I}\mathrm{R}\mathrm{R}(b)|\leq|T$ : $PM|\leq|\mathrm{I}\mathrm{R}\mathrm{R}(b0)|$ . So $\xi$ is $N$-invariant. Since
$|\mathrm{I}\mathrm{R}\mathrm{R}(b)|=|N$ : $PM|,$ $\xi$ must be extendible to $N$ and any irreducible
Brauer character in $b$ is a extension of $\xi$ . Since $M$ is abelian, $\xi$ is of
degree 1, and so is any irreducible Brauer character in $b$ . Now the proof
is complete. $\square$

$\ln$ Theorem 4.3(2), the conditions except $\mathrm{N}_{G}(P)\cap \mathrm{O}_{p’}(G)$ being
abelian are characterized by the structure of $kG$ as a $k$-algebra. So
it seems for us that the problem for groups of p–length 1 can be re-
duced to one for p–nilpotent groups.
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