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LOCAL SUBGROUPS AND GROUP ALGEBRAS
OF FINITE p-SOLVABLE GROUPS

EBMKFEHEPE TEK ¥EF (AKIHIDE HANAKI)

1. INTRODUCTION

Let k be an algebraically closed field of prime characteristic p, and
let G and H be finite groups with Sylow p-subgroups P and @, re-
spectively. In representation theory of finite groups it seems important
to consider a problem that if the two group algebras kG and kH are
isomorphic as k-algebras, then which kind of properties of G can be
heritable to H?

In this talk we consider this problem for a property that N c¢(P)/P is
abelian, where Ng(P) is the normalizer of P in G. Namely, we want to
know whether the property Ng(P)/P is abelian implies that Nu(Q)/Q
is abelian under the case that kG = kH as k-algebras. Here, actually,
we consider the above problem for p-nilpotent groups and groups of
p-length 1. It seems that this problem is difficult even if groups are p-
nilpotent. For a p-nilpotent group G, we give some necessary conditions
for Ng(P)/P to be abelian, but they cannot be sufficient conditions
since there exist trivial counter examples. For a group G of p-length
1, we give some necessary and sufficient conditions for Ng(P)/P to
be abelian, but they contain some group theoretic condition. It seems
that the problem for groups of p-length 1 can be reduced to one for

 p-nilpotent groups.

This is a joint work with Professor Shlgeo Koshltam

2. PRELIMINARY

Let H be a finite group, and let K be a finite group acting on H.
Then Irr(H) denotes the set of all irreducible ordinary characters of
H, LIrr(H) denotes the set of all linear ordinary characters of H, and
Irrg (H) and LIrrg (H) denote the set of all K-invariant irreducible
characters and the set of K-invariant linear characters of H, respec-
tively. We fix a prime p and an algebraically closed field k of character-
istic p, and IBr(H) denotes the set of all irreducible p-Brauer characters
of H. For a k-algebra A, IRR(A) denotes the set of all non-isomorphic
irreducible (simple) A-modules, and IRR°(A) denotes the set of all
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non-isomorphic irreducible A-modules whose k-dimensions are not di-
visible by p. For the group algebra kG of a p-solvable group G and
S € IRR(kG), it follows from [2, Theorem 2.1] that S is in IRR?(kG)
if and only if the vertex of S is a Sylow p-subgroup of G. We write
[G,G] for the commutator subgroup of G and |IRR(A)| for the num-
ber of elements of IRR(A) for a k-algebra A. For other notation and
terminology see the books of Isaacs [3] and Nagao and Tsushima [6].
Throughout this paper groups mean always finite groups.

First we introduce some results related to our problem.

Proposition 2.1. Let G and H be finite groups, and let P and Q be
Sylow p-subgroups of G and H, respectively. Assume that kG = kH as
k-algebras. Then

(1) #f G is p-nilpotent, then so is H,

(2) [Okuyama-Michler] if G is p-closed, then so is H,

(3) [Morita] if G/Op ,(G) is abelian, then so is H/ Oy ,(H),

(4) [Navarro] if G is g-nilpotent, then so is H, forp # q,

(5) if G is of p-length 1, then so is H. )

Proof. (1) Well known.

(2) Okuyama [9, Theorem 2] for p = 2, and Michler [4, Theorem 5. 5]
for p # 2. It should be noted that in his proof the classification of finite
simple groups is used in the proof of Michler [4].

(3) Morita [5, Theorem 6).

(4) Navarro [7, Theorem]. o

(5) is proved essentially by almost the same argument in [9] and (2).
It seems that the proof is unpublished, but we omit it here since we do
not need this result for our argument. : I

Let A be a k-algebra. We say A is primary if A/J(A) is a simple
ring, and A is quasz—pmmary if A/J(A) is a direct sum of isomorphic
simple rings.

Theorem 2.2. [5, Theorem 6, 7] A finite group G is p-nilpotent iff
every block of the groups algebra kG is primary, and G/Op ,(G) is
abelian iff every block of the groups algebra kG is quasi-primary.

A block B of kG is quasi-primary if and only if all irreducible B-
modules have the same dimensions.
We prepare one more easy group theoretic lemma.

Lemma 2.3. Assume that G is a finite group of p-length 1 with Sylow
p-subgroup P. Then

(1) G =Ng(P)0,(G), ”

(2) if Ng(P)/P is abelian, then so is G/Op ,(@).



Proof. (1) By Frattini argument, we have G = Ng(P)Op »(G). Now
the result holds clearly.

(2) By (1), G/Op »(G) = Ng(P)/(Ng(P)NOp »(G)). Since Ng(P)N
O, »(G) contains P, there is an epimorphism from Ng(P)/P to
G /Oy »(G). O

3. p-NILPOTENT CASE

Now we consider the condition that Ng(P)/P is abelian for a finite
group G with a Sylow p-subgroup P. Note that Ng(P)/P = COP,(G)(P)
for a p-nilpotent group G with Sylow p-subgroup P. In this section,
we use character theoretic descriptions.

Theorem 3.1. Let H be a finite p’-group, and P a finite p-group acting
on H. Assume that Cy(P) is abelian, x € Irrp(H), and ¢ € Llrrp(H)
which is non-trivial. Then x # x¢.

Proof. Put M = Cy(P). Then there exists the Glauberman correspon-
dence 7 : Irrp(H) — Irr(M) (See [3, §13]). By [3, Theorem 13.1(c)],
w(x¢) = m(x)¢m. Since M is abelian, 7(x) is linear. So if @y is
non-trivial, then 7(x) # m(x¢#) and thus x # x¢.

By [1, Exercise 8.8], H = M[H, P]. Since ¢ is P-invariant and linear,
[H, P] is contained in the kernel of ¢. So if ¢y is trivial, then ¢ must
be trivial. Now the result is proved. , O

Corollary 3.2. Let G be a p-nilpotent group with a Sylow p-subgroup
P. If Ng(P)/P is abelian, then the number of linear characters of G
divides the number of irreducible characters of G of degree d for any
positive integer d with p {d.

Proof. Put H = Op(G). Then Ng(P)/P = Cgx(P). Every P-invariant
character of H is extendible to G and the number of its extensions is
|P : [P,P]|. So |LIrz(G)| = |LIrrp(H)||P : [P, P]|. Let x € Irrp(H).
Then, by Theorem 3.1, there are |LIrrp(H)| distinct characters of the
form x¢, ¢ € LIrrp(H), and each of them has |P : [P, P]| extensions.
Thus the assertion holds. O

‘The converse of Corollary 3.2 is true for groups of small order, for
example, for 3-nilpotent groups of order 2™ -3, n < 7. But there exists
a trivial counter example of it, consider a simple group of p’-order with
the trivial action of an arbitrary p-group.

4. p-LENGTH 1 CASE

In this section, we use module theoretic descriptions.
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Theorem 4.1. Let G be a finite group of p-length 1 with a Sylow p-
subgroup P. The following are equivalent.
(1) Ng(P)/P is abelian.
(2) Ng(P) N Oy (G) is abelian, every block of kG is quasi-primary,
and the restriction S to O (G) is irreducible for every irreducible
kG-module S with p { dim; S.

Proof. Put N = Ng(P), E = Op(G),and M = NNE.

Assume (2). We can define the restriction map R : IRR°(kG) —
IRRp(kE). First we shall show that R is surjective. Let X € IRRp(E).
Then X can be extended to PE. Let S € IRR(kG) such that Sg has
X as a direct summand. Since G is p-solvable, by [3, Corollary 11.29]
and Fong-Swan’s theorem, we have p { dim; S. Thus Sg = X, and R
is surjective. Also R is a |G : PE[G, G]| to 1 map.

Let 7 : IRRp(kE) — IRR(kM) be the Glauberman correspondence.
Let X € IRRp(kE). By Lemma 2.3(1) and [8, Theorem 4.9 (2)], X
is extendible to G if and only if 7(X) is extendible to N. Since every
X € IRRp(kE) is extendible to G, so is every Y € IRR(kM) to N,
and the number of extensions of Y to N is |N : PM[N,N]|. But
|G : PE[G,G]| = |N : PM[N, N]| since G/E =2 N/M. By [8, Theorem
4.1], IRR°(kG)| = [IRR(kN)|. This yields that every irreducible kN-
module restricts irreducibly to M. Since M is abelian, every irreducible
kN-module is of dimension one, and thus N/P is abelian.

Assume (1). By Lemma 2.3(2), G/PE and M are both abelian. Let
X € IRRp(E). Since N/P is abelian, 7(X) is extendible to N, and so
is X to G. Similar argument as the above yields (2). O

Corollary 4.2. Let G be a finite group of p-length 1 with a Sylow
p-subgroup P. Assume Ng(P)/P is abelian. Then the number of ir-
reducible kG-modules of k-dimension one divides the number of irre-
ducible kG-modules of k-dimension d for any positive integer d with

pid.

Proof. Put E = On(G). Let S be an irreducible kG-module with
p 1 dim; S. Then Sg is irreducible by Theorem 4.1. So we can define
the restriction map R : IRR%(kG) — Irrp(E). As in the proof of
Theorem 4.1, R is surjective and for any element x € Irrp(E) there
are exactly |G : PE| distinct elements in IRR°(kG) which are sent to
x through R, and clearly R preserves the degrees. Now Corollary 3.2
yields the result. O

Theorem 4.3. Let G be a finite group of p-length 1 with a Sylow p-
subgroup P. Then the following are equivalent.

(1) Ng(P)/P is abelian.
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(2) Ng(P) N Op(Q) s abelian, every block of kG is quasi-primary,
and all full defect blocks of kG have the same numbers of irre-
ducible modules.

Proof. Put N = Ng(P) and M = N N Oyx(G).

Let B be a block of kG of full defect, and let b be the block of kN
which is the Brauer correspondent of B. By [5], all irreducible kG-
modules in B have the same degrees, and by [8, Theorem 4.9}, we have
[ IRR(B)| = [IRR(d)|.

Assume (1). Let 8 be a block of kM. Since M is central in N,
only one block b of kN covers . By the assumption that Ng(P)/P is
abelian, we have [IRR(b)| = |N : PM|. Thus (2) holds.

Assume (2). Let by is the principal block of kN. Since N/PM is
abelian, [IRR(by)| = |N : PM]|. Thus |[IRR(b)| = |N : PM]| for any
kN-block b. We know that N-conjugacy classes of Irr(M) correspond
to blocks kN. Let ¢ € Irr(M), let b be a block of kIN which covers
blocks {{} of kM, and let T be the inertial group of é in N. f T < N
then [IRR(d)| < |T : PM| < |IRR(bg)|]. So { is N-invariant. Since
IRR(b)| = |N : PM|, £ must be extendible to N and any irreducible
- Brauer character in b is a extension of £. Since M is abelian, ¢ is of
degree 1, and so is any irreducible Brauer character in b. Now the proof
is complete. O

In Theorem 4.3(2), the conditions except Ng(P) N O,(G) being
abelian are characterized by the structure of kG as a k-algebra. So
it seems for us that the problem for groups of p-length 1 can be re-
duced to one for p-nilpotent groups.

REFERENCES

1. M. Aschbacher, Finite Group Theory, Cambridge, 1986.
2. W. Hamernik and G. Michler, On vertices of simple modules in p-solvable
groups, Mitt. Math. Sem. Giessen, 121 (1976), 147-162.

. I. M. Isaacs, Character Theory of Finite Groups, Dover, 1994.

4. G. O. Michler, A finite simple group of Lie type has p-block with different
defects, p # 2, J. Alg. 104 (1986), 220-230.

5. K. Morita, On group rings over a modular field which possess radicals ex-
pressible as principal ideals, Sci. Rep. Tokyo Bunrika Daigaku. Sec.A 4 (1951),
177-194.

6. H. Nagao and Y. Tsushima, Representations of Finite Groups, Academic Press,
1989.

7. G. Navarro, Two groups with isomorphic group algebras, Arch. Math. 55
(1990), 35-37.

8. T. Okuyama, Module correspondence in finite groups, Hokkaido J. Math. 10
(1981), 299-318. '

9. T. Okuyama, On a problem of Wallace, unpublished.

w

20



