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ANOMALOUS QUADRATIC EXPONENTIALS IN THE STAR-PRODUCTS

HIDEKI OMORI, YOSHIAKI MAEDA, NAOYA MIYAZAKI, AND AKIRA YOSHIOKA

1. EXTENSIONS OF PRODUCT FORMULA

The Weyl algebra W}, is the associative algebra generated over C by u, v with the fundamen-
tal relation u * v — v * u = —Hhz where 7 is a positive constant.

For such a noncommutative algebra, the ordering problem may be the viewed as the problem
of expression of elements of the algebra in a unique way. In the Weyl algebra, three kind of or-
derings; normal ordering, anti-normal ordering, and Weyl ordering, are mainly used. Through
such an ordering, one can linearly identify the algebra with the space of all polynomials.

Another word, through such an ordering, one can view that the Weyl algebra is a non com-
mutative associative product structure defined on the space Clu,v] of all polynomials. The
product formulas are give respectively as follows:

e In the normal ordering: the product * of the Weyl algebra is given by the ¥DO-product

formula as follows:
£(u,v) % g(u,v) = feM g
¢ In the anti-normal ordering: the product * of the Weyl algebra is given by the ¥DO-
product formula as follows:

F(u,0) % g(u,v) = fe i Tg

e In the Weyl ordering: the product = of the Weyl algebra is given by the Moyal-product
Sformula as follows:

£, ) * g(u,v) = fe¥ ™%y,
Every product formula yields u v — v *u = —/i4, and hence defines the Weyl algebra. Here,
commutative products play only a supplementary role to express elements in the unique way.
Since every of three product formula is given by concrete forms, these extends to the follow-
ing:
gI.,e.t #(C?) be the space of all entire functions on C? with the compact open topology.
e f % g is defined if one of f, g is a polynomial.
e For every polynomial p = p(u, v), the left-(resp. right-) multiplication p* (resp. *p) is a
continuous linear mapping of H(C?) into itself.
We call such a system a two-sided (Clu, v]; *)-module.

Proposition 1. In every product formula mentioned above, (Hc(C?), Clu,v], %) is a two-
sided (Clu, v]; x)-module.

By the polynomial approximation theorem, the associativity f*(g*h) = (f*g)h holds if
two of f, g, h are polynomials.

Starting from a two-sided (Clu, v]; *)-module, *-product extends to a wider class of func-
tions. Let €1 (C2) be the commutative algebra with respect to the ordinary product generated
by all polynomials p(u, v) and exponential functions e+,

By each product formula, we can compute eJ* €2’ as follows:
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o e x el = et i the YDO-product formula.

o eV x el = eMisteduttv i the WDO-product formula.
Nist .
o eftxel? =2 et in the Moyal product formula

where o, , - indicate the commutative product used in each product formula.

- For every positive p > 0, set
(1.1) E(C?) = {f € E(C*)|[|£llps = sup |f] K < 00,¥s > 0}

where [¢] = (Jul® + [v[*)*2. The family {|| ||p,s}s>0 induces a topology on &,(C?) and
(£,(C?), -) is an associative commutative Fréchet algebra, where the dott - is the ordinary mul-
tiplication for functions in £,(C?). It is easily seen that for 0 < p < p’, we have a continuous
' embedding

(1.2) E(C?) C Ey(C?)

as a commutative Fréchet algebra (cf.[GS]).

It is obvious that every polynomial is contained in €,(C?) and P(C?) is dense in &,(C?) for
any p > 0.

We remark that every exponential function e***#? js contained in £,(C?) for any p > 1, but
not in £;(C?), and functions such as e+ +2u are contained in &,(C2) for any p > 2, but
not in & (C?).

Theorem 2. The Moyal product formula (2.1) gives the following:
(i): For0 < p < 2, the space (£,(C?), x) forms a topological associative algebra.
(ii): For p > 2 and a fixed h € R, the Moyal product formula gives a continuous bi-liner
mapping of
(1.3) SP(CZ) X ‘SP’(Cz) - SP(C2)7
& (C) x £(C) = &,(C?),

for every p' such that & + 5 > 1.

We remark here about the statement (ii). Since p > 2, p’ must be p’ < 2, hence the statement
(i) gives that (£,(C?); %5 is a Fréchet algebra. So the statement (ii) means that every &,(C?),
p > 2, is a topological 2-sided &, (C?)-module.

We remark also that if /i > 0, then eA(e¥*+0v*+2ew0) ¢ £ (C2) for every p > 2.

Let £24(C?) = [,52&p(C?). E24.(C?) is a Fréchet space, but this is not closed under the

x-product, e.g. eRu 5 e~ RW diverges.
In the space &1 (C?), the *-product behaves anoumalously, that we are going to talking
about.

2. QUADRATIC FORMS

For every (a,b,c) € C*, we consider quadratic forms Q(u,v) = au® + bv? + 2cuv. We
define the product * by the Moyal product formula:

2.1) fxg= fexp %{53 ABi}g.
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It is easy to see that X = 3u®,Y = 3v% H = tuv form a Lie algebra with respect to the
commutator product [ , ].. Since
i 1, 1, i 1, 1 , .1 , 1, i
—uy, —=u’] = ———=v*, [wwv, —=v*] = —=v*, [—F=u’, —=v°] = —57u,
rw = TrAY Em R T REY T e avE Tz

this is the Lie algeba of SL(2, C). X,Y, H generate an associative algebra in the space Clu, v]
of all polynomials. This is an enveloping algebra of s{(2, C).
The Casimir element C = H? + (X*Y + Y'*X), that is

) 2 1 1 1 1
C = (—uv)’ + —u2sx——0% + ——p?x——u?
(2h ). AVEI VL) A8  RVB
is given by '
2

B
8H2C = uZxv® + vi¥u? — 2(u>|<'v+-éz)2 = uZxv? + v¥5u? — Quxvruxv — 2Riu*v + >

Hence, C = —%. This means that our enveloping algebra is restricted in the space C' = —13—6.

For every point (a, b, ¢; ) in C*, consider a curve s(t)er(@®u* +6(Ov*+2e0w) starting at the
point sex(au®+bv*+2cuv) thep the tangent vector is given as

("tf{((ﬂb'u,2 + b'0? + 2duv)s + §)er(etFivizen)
On the other hand, consider the quantity

e £ (a'u?+b v? 42 uv) * 36% (au?+-bv2+2cuv)

l =

%(a"lﬂ + 50?4 2cun) % ser(@wi i H2em)
=l(a’u2 + 0P + 2c up) ser(ev’+bv*+20u)
h
+2—hz{(b’v+c'u) (au-tcv) — (a'u+cv)(bu+cu)}ser @’ +ovi+2omw)
—é%{b'(ﬁa + 2(au+cv)?) — 2 (fic + 2(au+cv) (bv+cu))
+ 0’ (Bb + 2(bv-+cu)?) fser (v’ +bv* +2eu)

This may be written as

2
1 —(eHit, 8, —be+i), ~2]| % o
(2.2) - (J,I, b” c _az, —(c — 7:)2, _a(c - Z), _.a Seﬁ(au +bv?+2cuv)
R . . 2 || 2uv
2a(c+1), 2b(c—1), l+ab+c? ¢ 1

We denote this matrix by M (a, b, ¢; s), and by M (a, b, c) the submatrix of first three columns.
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3. *-EXPONENTIALS AND VACUUMS

2 2 2 2
In this section we define X® TV 2w gey hlav+v'+2eu0) _ pt o, 1), and consider the
differential equation

(3.1) %F(t, u,v) = (au?+bv*+2cuv) * F(t,u,v), F(0,u,v)=1
If we assume that e5(®¥ T +2080) _ goa(t)u+b(t)v? +2c()uvthen we have

£ (a(t), b(t),o(9)) = (@ b, )M(ale), bt), <(8)),  (a(0), (0), (0)) = (0,0,0)
The right hand side of (3.1) is computed by the Moyal product formula as follows:
(au?+bv®+2cuv) * F(t,u,v) = (au+bv?+2cuv) F+hi{ (bv+cu)d, F — (au+cv)d,F}
h2
- —Z{bazF—anv@uF+a63F}

If ab — ¢ > 0, then this is the heat equation and the existence of solutions is not ensured in
general. However, the umqueness holds in the category of real analytic functions in . Hence

2
we assume that e2® 2" +2%) us 2 function of au? + bv? + 2cuv; that is @+ +2eu) _
fi(au?+bv*+2cuv). Then, we have

(au?+-bv?+2cuv) * fi(au®+bv?+2cuv)
=(au?+bv?+2cuv) fi(au+bv?+2cuv)
— B2 (ab—c?) (fi(av®+v2+2cuv) + £/’ (au®+bv?+2cuv) (au®+bv®+2cuv)).
Setting z = au®+bv?+2cuv, we have
d
(3.2) 7/1(@) = zfi(a) — ¥ (ad—c*) (fi(2) + o/ ()

Lemma 3. The solution of (3.2) with the initial function 1 is given by

tanh(Avab—c? t)}

1 T
file) = cosh(fiv/ab—c%t) xp fiv/ab—c?
Proof. Assuming the shape f;(z) = g(¢)e"®=, we see that
{g'(t) + (ab—c*) K2 g(t)A(t) + zg(t){F'(t) — 1 + (ab—C?)A%h(t)*} }e*P= =0
and hence we have A'(t) — 1 + (ab — cz)ﬁ?h(t)2 = 0. h(t) is given as
h(t) = - m tanh(h(vab—c?)t).

Note that the ambiguity of v/ab — ¢? does not suffer the result.
Next, we solve the equation

1
'(t) + g(t)(ab — ¢*)i* ————= tanh(A(Vab — c2)t) = 0
10)+ 9(0)ab — W2 tanh (/5 = ) =
to obtain g(t) = m. This also does not depend on the sign of ==v/ab — ¢2. In this
argument ¢ need not be restricted in the real number. a
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By Lemma 3, we have

ei(‘“‘z +ov?+2cuv) _ 1 e(mﬂ~x-1n:2+2cuu)(-h7;1;:-:.i tanh(Avab—c? t)
3.3) cosh(Av/ab—c?t)
_ 1 e(au2+bv2+2cuu)(m tan(hv/cZ—ab t)
cos(fiv/c2—abt)
It is equivalent with
(3.4) \/me L(au? b +2cuv) _ eéﬁ(&rctm \/3—_06)(01;2+bu?+20u11).

If ab — ¢* = 0, then ;—=— tanh(kiv/ab — ¢?t) = ¢, and
ei(au2+b02+2cuv) = et(au2+bu2+2cuu), ab—c? =0.

This means that if au® + bv? + 2cuv = (v/au + vbv)?, then the *-exponential coincides with
the ordinary exponential function.

By the uniqueness of analytic solutions, the exponential law

eisa: * eit:z: — ei(s+t)z

holds where both sides are defined. If v/ab — c%t € R, then €¥® forms a one parameter group.

Lemma 4. Fors,o € C such that 1 + so(ab — c?) # 0, we have

e%(au2+bv2+2cuu) % e%(au2+bv2+2cuv) — 1 i _H:(:b_c 3 (au?+4bv?+2cuv)
1+ so(ab—c?)

Thus, we have idempotent elements

2e:l:w‘=};j(au2+bv2+2cuv) . 26:!:;7‘-:}:7(au2+b02+2cuv) . 2eim(au2+bv2+2wv)

1 2 2
We call 2e#ab—c2 (aut b4 2ou) a vacuum. By the Moyal product formula, we easily see that
(yu + 0v) * eR(@tBOut®) = 0 for of — By =1.
Corollary 5.

W prmrs : 2 pbu242
Qenatoet (au?+bv2+2cuv) — Lim eitmem(au +bv?+2cuv)

t—ro0
is a vacuum.

r__1 2 b2 n___1 2 5.2
o (au?+bv+2cuv) % T (au?+bv*+2cuv)
el V3-ab = -1, and el V-

is singular.
We show that {exp, (au? + bv? + 2cuv); ¢ — ab+ 1 # 0} form a group which is isomorphic
o SL(2,C). :
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