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INTRODUCTION

We study here the problem of classification of complex analytic supermanifolds.
Clearly, with any holomorphic vector bundle $E$ over a complex manifold $M$ one
can associate the so-called split supermanifold $(M, \wedge \mathcal{E})$ , where $\mathcal{E}$ is the sheaf of
holomorphic sections of E. On the other hand, each supermanifold $(M, O)$ can be
deformed into a split one which is called the retract of $(M, \mathcal{O})$ . Thus, our problem
is reduced to the problem of classification of holomorphic vector bundles and to the
problem of classification of complex analytic supermanifolds with a given retract.
We give here a survey of results concerning the second problem. We consider the
case when $E=T(M)^{*}$ is the cotangent bundle of $M$ , though some important facts
exposed in Sections 1 and 3 are valid in the general case. Thus, we deal mainly
with the problem of classification of complex supermanifolds with retract $(M, \Omega)$ ,
where $\Omega$ is the sheaf of holomorphic forlns on a complex manifold $M$ .

Section 1 contains necessary definitions and some preliminary facts, including the
theorem of Green reducing our classification problem to a problem of non-abelian
cohomology theory. In Section 2 we give a direct construction of supermanifolds
with retract $(M, \Omega)$ starting from a $d$-closed $(1, 1)$ -form or from a holomorphic line
bundle on $M$ (see [11]). In particular, we see that for any compact K\"ahler manifold
$M$ with $\dim M>1$ there exist non-split supermanifolds of this sort. In Section
3 we construct a non-abelian cochain complex in the sense of $[8, 12]$ , whose 1-
cohomology set gives a solution of our problem. This complex is actually of a type
considered by Nijenhuis and Richardson [7] in connection with the deformation
theory of algebras, i.e., it is related to a differential graded Lie superalgebra. The
corresponding differential Lie superalgebra was introduced in [10]; its elements are
derivations of the sheaf of smooth differential forms on $M$ . For a compact manifold
$M$ , our complex gives rise to a finite-dimensional affine algebraic variety which
can serve as a moduli variety for our classification problem; it is analogous to
the Kuranishi family of complex structures on a compact manifold (see [5]). The
detailed exposition of this theory see in $[13, 15]$ . Section 4 contains applications to
the case when $M$ is a flag manifold.
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1. COMPLEX SUPERMANIFOLDS

We consider here complex analytic supermanifolds, i.e., $\mathbb{Z}_{2}$-graded ringed spaces
$(M, \mathcal{O})$ locally isomorphic to $( \overline{U}, \bigwedge_{F_{\mathfrak{n}}} (\xi_{1}, \ldots , \xi_{n\iota}))$ , where $\tilde{U}$ is an open subset of

$\mathbb{C}^{n}$ and $F_{n}$ the sheaf of hololnorphic functions in $\mathbb{C}^{n}$ and the exterior algebra sheaf
$\mathcal{F}_{n1m}=\bigwedge_{\mathcal{F}_{\mathfrak{n}}}(\xi_{1}, \ldots, \xi_{r’\iota})$ is $\mathbb{Z}_{2}$-graded in the usual way. Sucll a local isomorphism
gives us a chart on an $0_{1}$) $en$ subset $U\subset M$ . The coordinates $z_{1},$ $\ldots,$

$z_{n}$ of $\mathbb{C}^{n}$

are called even local coordinates on $U$ , while $\xi_{1},$
$\ldots,$

$\xi_{m}$ are called odd ones. If
$U$ and $V$ are two open subsets of $M$ admitting two charts with local coordinates
$x_{i}$ $(i=1, \ldots , n),$ $\xi_{j}(j=1, \ldots, m)$ and $y_{i}(i=1, \ldots , n),$ $\eta_{j}(j=1, \ldots, m)$ , then
in $U\cap V$ we can write

$y_{i}=\varphi_{i}(x_{1}, \ldots, x_{n}, \xi_{1}, \ldots, \xi_{m})$ , $i=1,$ $\ldots,$
$n$ ;

(1)
$\eta_{j}=\psi_{j}(x_{1}, \ldots, x_{n}, \xi_{1}, \ldots, \xi_{n\iota})$ , $j=1,$ $\ldots,$ $m$ ,

where $\varphi_{i},$ $\psi_{j}$ are, respectively, even and odd sections of $F_{n1m}$ called the transition
functions. We write $\dim(M, O)=n|m$ .

Here is a classical example of a complex supermanifold. Let $M$ be a complex
manifold of dimension $n$ . By dcfinition, this is a ringed space $(M, \mathcal{F})$ , where $F$

is tlle sheaf of holomorphic functions on $M$ . Extending this sheaf to the sheaf
$\Omega=\oplus_{p=0}^{n}\Omega^{p}$ of holomorphic exterior forms on $M$ , we get the graded ringed space
$(M, \Omega)$ . This is a supermanifold of dimension $n|n$ . In fact, let $U$ be an open subset
of $M$ , where a chart with local coordinates $x_{1},$ $\ldots$ , $x_{\iota}$, is defined. Clearly, the sheaf
$\Omega|U$ can be identified with $\bigwedge_{\mathcal{F}_{\mathfrak{n}}}(dx_{1}, \ldots, dx_{n})$ . Denoting $\xi_{j}=dx_{j}$ , we see that
$x_{i},$ $\xi_{j}$ are local coordinates for $(\Lambda f, \Omega)$ . If $V$ is another open subset with local
coordinates $y_{i}$ and $\eta_{j}=dy_{j}$ , then the transition functions in $U\cap V$ have the form

$y_{i}=\varphi_{i}(x_{1}, \ldots, x_{n})$ , $i=1,$ $\ldots,$
$n$ ,

(2)
$\eta_{j}=\sum_{k=1}^{n}\frac{\partial y_{j}}{\partial x_{k}}\xi_{k}$ , $j=1,$ $\ldots,$

$n$ ,

where $\varphi_{i}$ are the usual transition functions for $M$ .
The transition functions (2) are very simple: $y_{i}$ do not depend on $\xi_{j}$ , while $\eta j$

contain only terms of degree 1 in $\xi_{j}$ . We express this fact by saying that $(M, \Omega)$ is
a split complex supermanifold. Quite similarly, we may associate a split complex
supermanifold with any holomorphic vector bundle $E$ over a complex manifold $M$ ;
our example corresponds to the case $E=T(M)^{*}$ (the cotangent bundle).

Consider now the following problem: $h\dot{o}w$ can we add to (2) additional terms
of degrees 2, 4 etc. for $y_{i}$ and of degrees 1, 3 etc. for $\eta_{j}$ , in order to get a
supermanifold $structur\dot{e}$ on $M$ , whose structure sheaf $\mathcal{O}$ is not isomorphic to $\Omega$?
The supermanifolds obtained in this way are called non-split supermanifolds with
retract $(M, \Omega)$ , and we would like to classify them up to isomorphism. A similar
problem can be posed for an $arbit\iota\cdot ary$ holomorphic vector bundle E.

For the complex grassmannians $M=Gr_{n,k}$. (and more generally, for complex
manifolds of flags), examples of supermanifolds with retract $(M, \Omega)$ were given
by Manin. These are the so-called $\Pi$-symmetric supergrassmannians $\Pi Gr_{n|n,k|k}$

defined in [6]. It is proved in [9] that II $Gr_{n|n,k|k}$. is non-split whenever $n>2$ .
The supermanifolds with a given retract can be classified in terms of the 1-

cohomology with values in an automorphism sheaf of the structure sheaf of the
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retract. In our case, consider the sheaf $Aut_{(2)}\Omega$ of automorphisms $a$ of the $\mathbb{Z}_{2^{-}}$

graded algebra sheaf $\Omega$ such that $a(\psi)-\psi\in\oplus_{p>2}\Omega^{p}$ for any $\psi\in\Omega$ . The group
Aut $T(M)^{*}$ acts on the automorphism sbeaf of $\Omega^{-}by$ inner automorphisms leaving
invariant the subsheaf $Aut_{(2)}\Omega$ and hence on the 1-cohomology of this subsheaf.
If $(M, \mathcal{O})$ is a supermanifold with retract $(M, \Omega)$ , then we may assume that its
transition functions (1) have the functions (2) as their first terms and thus are
obtained from (2) by an automorphism $g_{UV}\in\Gamma(U\cap V, Aut_{(2)}\Omega)$ . The following
theorem (in a more general form) was proved by Green [2].

Theorem 1.1. The automorphisms $g_{UV}$ form a \v{C}ech 1-cocycle of an open cover
of $M$ with values in the sheaf $Aut_{(2)}\Omega$ . This correspondence gives rise to a bijection
$between\cdot the$ isomorphy classes of supermanifolds with retract $(M, \Omega)$ and the orbits
of the group Aut $T(M)^{*}$ on $H^{1}(M, Aut_{(2)}\Omega)\uparrow mder$ the $act,ion$ dcscribed above. The
split superrnanifold $(M, \Omega)$ corresponds to the uoit elernc$7\iota te\in H^{1}(M, Aut_{(2)}\Omega)$ .

For an arbitrary complex supermanifold $(M, O)$ , denote by $\mathcal{T}=DerO$ the sheaf
of derivations of the structure sheaf $O$ . The sheaf $\mathcal{T}$ is called the tangent sheaf of
$M$ . The tangent sheaf is in a natural way a slleaf of $\mathbb{Z}_{2}$ -graded left $O$-modules. On
the other hand, it can be regarded as a sh.eaf of complex Lie supe.ralgebras under
the bracket

(3) $[u, v]=uv+(-1)^{p(u)p(v)+1}$ vu.

Sections of $\mathcal{T}$ ( $hoIomorphic$ vector fields on $(M,$ $O)$ ) form the Lie superalgebra
$\mathfrak{v}(M, \mathcal{O})=\Gamma(M, \mathcal{T})$ ; it is finite-dimensional whenever $M$ is compact.

In what follows, we shall use the coholnology groups $H^{p}(M, \mathcal{T})$
. with values in the

tangent sheaf, they are finite-dimensional vector spaces whenever $M$ is compact.
The bracket (3) induces a bracket in $H^{*}(M, \mathcal{T})=\oplus_{p\geq 0}H^{p}(M, \mathcal{T})$ giving a graded
Lie superalgebra that contains $H^{0}(M, \mathcal{T})=u(\Lambda f, \mathcal{O})$ as a subalgebra.

If the supermanifold $(M, \mathcal{O})$ is split, then $\mathcal{T}=\oplus_{p\geq-1}\mathcal{T}_{p}$ is a $\mathbb{Z}$-graded sheaf of
$\grave{L}ie$ superalgebras. E.g., for $\mathcal{O}=\Omega$ the grading is given by

$\mathcal{T}_{p}=Der_{p}\Omega=$ { $v\in \mathcal{T}|v(\Omega^{q})\subset\Omega^{q+P}$ for all $q\in \mathbb{Z}$ }.

The structure of the sheaf $\mathcal{T}=Der$ $\Omega$ is described by the following theo..rem
proved essentially by Fr\"olicher and Nijenhuis [1].

Theorem 1.2. There is $tl\iota e$ following exact sequence of locally free analytic sheaves
on $M$ :

$0arrow\Omega^{p+1}\otimes\ominusarrow \mathcal{T}_{p}arrow\Omega^{p}\otimes\ominus i\alphaarrow 0$ ,

Here $\ominus=Der\mathcal{F}$ is the tangent sheaf of the manifold $M$ , the mapping $\alpha$ is the
restriction of a derivation of degree $p$ onto the subsheaf $\mathcal{F}$ , and $i$ identifies any
sheaf homomorphism $\Omega^{1}arrow\Omega^{p+1}$ with a derivation of degree $p$ that is zero on $F$ .

This sequence is split, the splitting mapping $l:\Omega\otimesarrow \mathcal{T}$ being defined by

$l(\varphi)=[i(\varphi), d]$ ,

where $d$ is the exterior derivative regarded as a section of $\mathcal{T}_{1}$ .
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Corollary. There is the following decomposition into the direct sum of sheaves of
vector spaces:

$\mathcal{T}=i(\Omega\otimes\ominus)\oplus l(\Omega\otimes\ominus)$ .
Note that $\Omega\otimes\ominus is$ the so-called sheaf of holomorphic vector-valued forms. Also,

for $p=0$ the derivation $l(u),$ $u\in\ominus$ , is the classical Lie derivative along the vector
field $u$ .

As in the classical Lie tllcory, thcre cxists a $11:\iota tur:\iota 1rt’ 1_{\dot{\iota}1}.tiorls1\iota ip$ betwcen auto-
morphisms and derivations of the sheaf $\Omega$ (see [16]). Let us denote

$\mathcal{T}_{\overline{0}(2p)}=\bigoplus_{k\geq p}\mathcal{T}_{2k}$
.

Then we have the exponential mapping

$exp:\mathcal{T}_{\overline{0}(2)}arrow Aut_{(2)}\Omega$ .

It is expressed by the usual exponential series which is actually a polynomial, since
any $v\in \mathcal{T}_{\overline{0}(2)}$ satisfies $v^{k}=0$ for any $k>[ \frac{m}{2}]$ . One proves that $\exp$ is bijective.
Thus it is an isomorphism of sheaves of sets (but in general not of groups). We
denote $\log=\exp^{-1}$ . One provcs that

(4) $\lambda_{2}$ : $Aut_{(2)}\Omegaarrow \mathcal{T}_{2}$ ,

where $\lambda_{2}(a)$ is the 2-component of $\log a\in \mathcal{T}_{\overline{0}(2)}$ , is a homomorphism of sheaves of
groups.

2. A CONSTRUCTION OF NON-SPLIT SUPERMANIFOLDS

Here we give a direct construction of non-split supermanifolds with retract
$(M, \Omega)$ (see [11]). Let $Z\Omega^{1}$ denote the subsheaf of $\Omega^{1}$ consisting of closed forms and

$\beta$ : $Z\Omega^{1}arrow\Omega^{1}$ the inclusion mapping. Consider the mapping $\mu$ : $Z\Omega^{1}arrow Aut_{(2)}\Omega$

given by
$\mu(\psi)=\exp(\psi d)=id+\psi d$ , $\psi\in Z\Omega^{1}$ .

One verifies easily that this is a homomorphism of sheaves of groups. It follows
that we have the cohomology homomorphism (i.e. a mapping, taking $0$ to the unit
element)

$\mu^{*}$ : $H^{1}(M, Z\Omega^{1})arrow H^{1}(M, Aut_{(2)}\Omega)$ .

Using Theorem 1.2 and the homomorphism $\lambda_{2}$ given by (4), wc get

Proposition 2.1. Suppose that $\dim M>1$ and that $\zeta,$ $\zeta’\in H^{1}(M, Z\Omega^{1})$ . If
$\mu^{*}(\zeta)=\mu^{*}(\zeta’)$ , then $\beta^{*}(\zeta)=\beta^{*}(\zeta’)$ .

Let $U=(U, V, \ldots)$ be an open cover of $M$ and let $\psi=(\psi_{UV})$ be a cocycle from
$Z^{1}(U, Z\Omega^{1})$ . Then the above construction assignes to $\psi$ the supermanifold given
by the cocycle $g=(g_{UV})\in Z^{1}(l1, Aut_{(2)}\Omega)$ , where

(5) $g_{UV}=id+\psi_{UV}d$ .

Due to Theorem 1.1, we see from Proposition 2.1 that this supermanifold is non-
split if and only if the cohomology class of $\psi$ in $H^{1}(M, \Omega^{1})$ is non-zero.
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Now we pass to an important case, where a”closed cocycle” $\psi$ appears. Let
$\omega$ be a $(1,1)$ -form on $M$ satisfying $d\omega=0$ . Then, clearly, $\overline{\partial}\omega=0$ , and hence
$\omega$ determines a Dolbeault cohomology class $[\omega]\in H^{1,1}(M, \mathbb{C})$ . If we denote by
$D$ : $H^{1,1}(M, \mathbb{C})arrow H^{1}(M, \Omega^{1})$ the Dolbeault isomorphism, then it turns out that
$D([\omega])$ can be represented by a closed \v{C}ech cocycle. Denote by $\Phi^{p,q}$ the sheaf of
smooth complex-valued $(p, q)$ -forms on $\Lambda f$ . Then we have the exact sequence of
$sl\iota eavcs$ :

$0arrow Z\Omega^{1}arrow\Phi_{\partial}^{1,0}arrow Z\Phi^{1,1}\overline{0}arrow 0$ ,

where $\Phi_{\partial}^{1,0}\subset\Phi^{1,0}$ is the subsheaf of $\partial$-closed $(1, 0)$ -forms and $Z\Phi^{1,1}\subset\Phi^{1,1}$ the
subsheaf of $d$-closed $(1, 1)$ -forms. Consider the corresponding connecting homomor-
phism

$\delta^{*}:$ $\Gamma(M, Z\Phi^{1,1})arrow H^{1}(M, Z\Omega^{1})$ .

Then $\beta^{*}\delta^{*}\omega$ is the Dolbeault class of $\omega$ . As a result, we get the mapping

$\mu^{*}\circ\delta^{*}$ : $\Gamma(M, ZeI^{)}1,1)arrow H^{1}(M, Aut_{(2)}\Omega)$ .

Thus, any $(1, 1)$ -form $\omega$ on $M$ such that $d\omega=0$ determines a supermanifold with
retract $(M, \Omega)$ . To obtain an expression of the corresponding cocycle $g$ , we consider
an open cover $ll=(U, V, \ldots)$ of $M$ such that $\omega=\overline{\partial}\psi_{U}$ in any $U$ , where $\psi_{U}\in$

$\Phi_{\partial}^{1,0}(U)$ . Then $\delta^{*}\omega$ is represented by the cocycle $\psi=(\psi_{UV})\in Z^{1}(U, Z\Omega^{1})$ , where
$\psi_{UV}=\psi_{V}-\psi_{U}$ in $U\cap V\neq\emptyset.$ Finally) the cocycle $g$ is given by (5).

Using Proposition 2.1, we deduce the following result.

Theorem 2.1. If $M$ is a compact K\"ahler manifold, then we have a linear mapping
$\tilde{\delta}$ : $H^{1,1}(M, \mathbb{C})arrow H^{1}(M, Z\Omega^{1})$ such that $\beta^{*}\circ\tilde{\delta}=$ D. The mapping $\mu^{*}0\tilde{\delta}$ :
$H^{1,1}(M, \mathbb{C})arrow H^{1}(M, Aut_{(2)}\Omega)$ is injective, whencver $n>1$ , and takes $0$ to $e$ .

Applying the above construction, we can associate a supermanifold $(M, \mathcal{O})$ with
retract $(M, \Omega)$ with any holomorphic line bundle $L$ over $M$ . The closed $(1, 1)$-form
$\omega$ will be here the curvature form of a Hermitian metric on $L$ . More precisely, we
have the mapping

$\mu^{*}\circ \mathfrak{D}^{*}$ : $Pic(M)=H^{1}(M, \mathcal{F}^{x})arrow H^{1}(M, Aut_{(2)}\Omega)$

corresponding to the homomorphism of sheaves of groups

$\mu\circ \mathfrak{D}$ : $F^{\cross}arrow Aut_{(2)}\Omega$ ,

where $\mathfrak{D}$ is the logarithmic differential, i.e.,

$\mathfrak{D}f=f^{-1}df=d\log f$ , $f\in F^{\cross}$ .

Let $L\in$ Pic(M) be given by a cocycle $h=(h_{UV})\in Z^{1}(l1, \mathcal{F}^{\cross})$ . Then $(M, \mathcal{O})$ is
determined by the following cocycle $g=(g_{UV})\in Z^{1}(M, Aut_{(2)}\Omega)$ :

$g_{UV}=id+(h_{UV}^{-1}dl\iota_{UV})d$ .

For example, the canonical line bundle $IC_{M}=\wedge^{n}T(M)^{*}$ gives rise to a super-
manifold called the canonical supermanifold over $M$ . It corresponds to the canonical
form defined by Koszul [4] and is not necessarily non-split.
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3. A GENERAL CLASSIFICATION THEOREM

We retain the notation of the preceeding sections. Here we are going to express
the cohomology set $H^{1}(M, Aut_{(2)}\Omega)$ (see Theorem 1.1) in terms of differential forms
on $M$ . To do this, we use a non-linear complex similar to the non-linear de Rham
and Dolbeault complexes studied, e.g., in [3, 8, 15]. Actually, a general complex of
this sort was considered $iI1[7]$ , but it woe $\iota\iota scd$ tllcre only in tlle fillile-dimensional
situation. We consider here the split supermanifold $(M, \Omega)$ , but the cotangent
bundle can be easily replaced by an arbitrary holomorphic vector bundle over $M$

in all general theorems formulated below.
The first step is the construction of a fine resolution of the sheaf $\mathcal{T}=Der$ $\Omega$ .

Theorem 1.2 implies that $\mathcal{T}$ is a locally free analytic sheaf on $M$ , and hence we can
form the standard Dolbeault–Serre resolution of $\mathcal{T}$ . More precisely, we set

$\mathcal{R}_{p,q}=\Phi^{0,q}\otimes \mathcal{T}_{p}$ ,

$\mathcal{R}=\bigoplus_{p\geq-1,q\geq 0}\mathcal{R}_{p,q}$
,

$\overline{\partial}(\varphi\otimes u)=(\overline{\partial}\varphi)\otimes u$, $\varphi\in \mathcal{R}_{0,q},$ $u\in \mathcal{T}_{p}$ .

Then the sequence

(6) $0arrow \mathcal{T}arrow \mathcal{R}_{*,0}arrow \mathcal{R}_{*,1}i\overline{\partial}arrow\overline{\partial}\ldots$

is the desired resolution. However, it is convenient to write this resolution in a more
complicated form, using derivations of the sheaf $\Phi$ of smooth forms. Our purpose is
to obtain a resolution endowed with a bracket operation that extends the operation
(3) given in $\mathcal{T}$ .

Consider the sheaf of graded Lie algebras $Der\Phi$ and denote

$\overline{D}=ad\overline{\partial}$ .

Clearly, $\overline{D}$ is a derivation of bidegree $(0,1))$ of $Der\Phi$ , and

$\overline{D}^{2}\overline{\sim}\frac{1}{2}[\overline{D},\overline{D}]=\frac{1}{2}ad[\overline{\partial},\overline{\partial}]=0$ .

Set
$S=$ {$u\in Der\Phi|u(\overline{f})=u(d\overline{f})=0$ for any $f\in \mathcal{F}$}.

One sees readily that $S$ is a subsheaf of bigraded subalgebras of $Der\Phi$ that is
invariant under $\overline{D}$ . Moreover, $\mathcal{T}$ is identified with the kernel of the mapping $\overline{D}$ :
$S_{*,0}arrow S_{*,1}$ . Thus, we get the sequence

(7) $0arrow \mathcal{T}arrow S_{*,0}arrow S_{*,1}iDarrow\overline{D}$ ... .

By [10], this is a fine resolution of $\mathcal{T}$ isomorphic to (6). Moreover, $i$ is a homomor-
phism of graded Lie algebra sheaves, and hence the natural bracket in $S$ may be
used to calculate the bracket in $H^{*}(M, \mathcal{T})$ induced by the Lie bracket defined in $\mathcal{T}$ .
We also need the sheaf of groups

$\mathcal{P}Aut\Phi=$ { $a\in Aut\Phi|a(\overline{\psi})=\overline{\psi}$ for all $\psi\in\Omega$ }.
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and its subsheaf

$PAut_{(2)} \Phi=\{a\in Aut\Phi|a(\psi)-\psi\in\bigoplus_{p\geq 2}\Phi^{p}, \psi\in\Phi\}$
.

The sheaf of groups $PAut_{(2)}\Phi$ acts on $S$ by the automorphisms Int $a$

.
$(u)=aua^{-1}$ .

Consider now the triple $(K^{0}, K^{1}, K^{2})$ , where

$K^{0}=\Gamma(M, PAut_{(2)}\Phi)$ ,
$K^{p}= \bigoplus_{k\geq 2}\Gamma(M,S_{2k,p}),$

$p=1,2$ ,

and define the mappings $\delta_{0}$ : $K^{0}arrow K^{1}$ and $\delta_{1}$ : $K^{1}arrow K^{2}$ by

$\delta_{0}(a)=\overline{\partial}-a\overline{\partial}a^{-1}$ ,

$\delta_{1}(u)=\overline{D}u-\frac{1}{2}[u, u]=-\frac{1}{2}[u-\overline{\partial},u-\overline{\partial}]$ .

$Clearly_{)}\delta_{1}(0)=0$ .
Proposition 3.1.

(1) The ma..pping $\delta_{0}$ is a crossed homomorphism, $i.e.$ ,

$\delta_{0}(\alpha b)=\delta_{0}(a)+a\delta_{0}(b)a^{-1}$ , $a,$ $b\in K^{0}$ .

(2) The corresponding affine action of $K^{0}$ on $K^{1}$ is given by

$\rho(a)(u)^{d}=^{ef}\delta_{0}(a)+aua^{-1}=a(u-\overline{\partial})a^{-1}+\overline{\partial}$ .

(3) The mapping $\delta_{1}$ satisfies
$\delta_{1}(\rho(a)(u))=a\delta_{1}(u)a^{-1}$ .

This proposition shows that the triple $K=(K^{0}, K^{1}, K^{2})$ with coboundary map-
pings $\delta_{p}$ and actions Int of $K^{0}$ on $K^{p},$ $p=1,2$ , is a non-abelian cochain complex
in the sense of $[8, 15]$ . In particular, we can define its 1-cohomology set

$H^{1}(K)=Ker\delta_{1}/\rho$

with the distinguished point $0$ . Using the machinery of non-abelian complexes, we
get the following result (see [13]).

Theorem 3.1. We have an isomorphism of sets with distinguished points

$\nu$ : $H^{1}(K)arrow H^{1}(M, Aut_{(2)}\Omega)$ .

The mapping $\nu$ can be expressed quite explicitly. Take $z\in K^{1}$ such that $\delta_{1}(z)=$

$0$ . There exists an open cover $U=(U, V, \ldots)$ of $M$ such that $z=\delta_{0}(a_{U})$ , where
$a_{U}\in\Gamma(U, PAut_{(2)}\Phi)$ for any $U$ . Define $b\in Z^{1}(U, PAut_{(2)}\Phi)$ by $b_{UV}=a_{U}^{-1}a_{V}$ .
One sees that $b_{UV}$ preserve the subsheaf $\Omega|U\cap V$ , and hence we may regard $b$ as a
cocycle from $Z^{1}(U, Aut_{(2)}\Omega)$ . Then $\nu$ maps the cohomology class of $z$ onto that of
$b$ .
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Example. Without going into details, we show, how to express the construction
of Section 2 in terms of the complex $K$ .

Let $\omega\in\Gamma(M, \Phi^{1,1})$ be a $(1,1)$-form satisfying $d\omega=0$ . Consider the derivation
$u=\omega\partial$ of $\Phi$ . Clearly, $u\in S_{2,1}$ . Moreover, $\overline{D}u=[u, u]=0$ , and hence $\delta_{1}(u)=0$ .
By Theorem 3.1, $u$ determines a cohomology class $\tilde{u}\in H^{1}(M, Aut_{(2)}\Omega)$ . One sees
that $\tilde{u}=\mu^{*}\delta^{*}(u)$ .

In the case when $M$ is compact, Theorem 3.1 allows to use Hodge theory for
constructing a moduli variety for our classification problem (see [13]). This variety
is actually an algebraic subvariety of $H^{1}(M, \oplus_{k\geq 1}\mathcal{T}_{2k})$ . Note the following simple
case when this variety coincides with $H^{1}(M, \mathcal{T}_{2})$ .
Proposition 3.2. If $H^{1}(M, \mathcal{T}_{2q})=H^{2}(M, \mathcal{T}_{2q})=0$ for all $q\geq 3$ , then $\lambda_{2}^{*}$ :
$H^{1}(M, Aut_{(2)}\Omega)arrow H^{1}(M, \mathcal{T}_{2})$ is an isomorphism.

This can be deduced from Theorem 3.1 (a more direct proof see in [14]).

4. APPLICATIONS TO FLAG MANIFOLDS

In this section, we consider the case when $M$ is a flag manifold of a connected
semisimple complex Lie group $G$ . We may identify $M$ with the coset space $G/P$ ,
where $P$ is a parabolic subgroup of $G$ . The subgroup $P$ is determined by a subset
$S\subset\Pi$ , where II is the system of simple roots of $G$ . E.g., $P$ is maximal whenever
$|\Pi\backslash S|=1$ . Let $\Gamma$ denote the subgroup of Aut II leaving $S$ invariant. It is known
that $\Gamma$ can be interpreted as a group of biholomorphic transformations of $M$ .

Since $M$ is K\"ahler, the construction of Section 2 gives rise to a non-empty family
of non-split supermanifolds having $(M, \Omega)$ as their retract. More precisely, Theorem
2.1 implies

Theorem 4.1. Let $M=G/P$ is a flag manifold of dimension $\geq 2$ , where $G$

is simple, and denote $r=|\Pi\backslash S|$ . Then there exists a family of distinct non-
split supermanifolds parametrized by $\mathbb{C}P^{r-1}/\Gamma$ and having $(M, \Omega)$ as their common
retract.

If $P$ is maximal, then this family consists of a unique supermanifold, which is
isomorphic to the canonical one.

Now suppose that $M$ is a simply connected irreducible compact Hermitian sym-
metric space. One proves (see [9]) that the conditions of Proposition 3.2 are sat-
isfied. Moreover, our problem for these manifolds $M$ has the following complete
solution.

Theorem 4.2. Suppose that $M$ is a simply connected irreducible compact Hermit-
ian symmetric space of.dimension $\geq 2$ .

If $M=Gr_{n,s},$ $1<s<n-1$ , then non-split supermanifolds with retract $(M, \Omega)$

are parametrizcd by $\mathbb{C}P^{1}/\Gamma$ , where

$\Gamma=\{$

$\mathbb{Z}_{2}$ if $n=2s$

$\{e\}$ otherwise.

Otherwise, there exists (up to isomorphism) precisely one non-split supermanifold
with retract $(M, \Omega)$ , namely, the canonical one.

It follows that the $\Pi$-symmetric supergrassmannian $\Pi Gr_{n|n,k|k}$. is not rigid, ex-
cept of the case when $k=1$ or $n-1$ , i.e., $M=\mathbb{C}P^{n-1}$ .
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In [9] the Lie superalgebra a $((M, \mathcal{O}))$ for all supermanifolds described in The-
orem 4.2 is calculated. It is proved, in particular, that $\Pi Gr_{n|n,k|k}$ is the only
homogeneous non-split supermanifold with retract $(M, \Omega)$ , where $M$ is a simply
connected irreducible compact Hermitian symmetric space.
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