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Chaotic maps on measure spaces and
behavior of states

Shinzo KAWAMURA
(I REFFREE, W Hek)

Introduction. As well known, chaotic maps are considered as those (’s which have the
following property (cf.[1]).

(1) The set of all periodic points for ¢ are dense.

(2) ¢ is tramsitive.

(3) ¢ depends on sensitive initial condition.

Those properties are concerned with the orbit of a given initial point. In this note, we
consider how probability density functions changed by iteration of chaotic maps. More
generally, we study behavior of states by *-endomorphisms of von Neumann algebras asso-
ciated with chaotic maps. In particular, we show some theorems concerning the limits of
iterated states ,which are stated as follows.

(4) The sequence of iterated states by a chaotic map converges to a unique state in the
norm topology.

In Section 1 and 2, we note some results related to *-endomorphisms of von Neumann
algebras and iterated states by chaotic maps respectively, which are stated without proof.
Section 3 consists of examples only which give us the meaning of theorems in Section 2 and
provide fruitful discussion on our theory. Moreover we can find deep relationship between
our study and wavelets theory (cf.[4]). This note is a continuation of [5].

§1. A s-endomorphism of von Neumann algebra associated with a family of
isometries. Let H be a Hilbert space with inner product < -,- >. In this note {V;}{,
means a family of isometries on H satisfying the following property and is said to be a FIC
on ‘H for short.

(C.1) {V;V*}? | is a set of mutually orthogonal projections and Z iV =1
i1

Of course, this family {V;}? , on ‘H is the generators of the image of a representation of
Cuntz-algebra O, [3]. Moreover we can define a *-endomorphism ay of the full operator
algebra B(H) as follows.

(C2) av(T) = Y VAV (T € B(H))
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If a von Neumann algebra M on ‘H is invariant for ay, then ay becomes a *-endomorphism
of M. For n and a positive integer k, we denote by I(n) the set {1,2,...n} and I(n)* the
set of all k-tuples p = (41, ..., jx) With j; in {1,2,...n}. For pin I(n)* we denote by V(u)
the isometry V;,V, --- Vj, on (H). Then {V(u)|p € I(n)*} is a family of isometrics whose
final projections are mutually orthogonal. When ay is a *-endomorphism of M, af, is of
the form:

()= ¥ VTV, (TeM).

uel(n)*

Proposition 1.1. Let {V;}, be a FIC on 'H and e a unit vector in H such that Vie = e.
We put

ONS(e, V) = J{V (w)eln € I(n)*}.
k=1
Then ONS(e, V) is an orthonormal system.

Remark. An orthonormal system ONS(e, V) in the proposition above is regarded as the
sequence {ex}7>; which is inductively defined as follows: e; = e and

Citn(t~1) = Vies (2 € I(n),é € N)
(cf. 2 of [2])

For a von Neumann algebra M on ‘H, M, denotes the predual of M. We denote by of,
the transpose map of ay with respect to the duality of M and M,. The vector state in M,
associated with unit vector £ in H is denoted by we, that is, for T'in M, we(T) =< T¢,€ >
and

we(av(T)) =< av(T)§,§ >= ay (we)(T)-
Moreover we have

n
ay(we) =Y wyze.
=1

When e is a unit vector such that Vie = e, namely, it is an eigenvector for eigenvalue 1
of V1, we denote by H, the subspace of H spanned by ONS(e, V).

Proposition 1.2. Let {V;}?, be a FIC on H. If there erists a unit vector e such that
Vie = e, then for any unit vector £ in the subspace H. it follows that

lim(ay)"(we) =w. (norm topology).

Proposition 1.3. Let {V;}I, be a FIC on H. If there ezxists a unit vector e such that
Vie = e, then for any state w of the form w = Y32, we, where &’s are in H, it follows
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that
gxg(a;)n(w) =w, (norm topology).

Proposition 1.4. Let {V;}*, be a FIC on H and e a unit vector such that Vie = e, If
ONS(e, V) is complete, then for any state w in the predual of B(H) it follows that

lim (of,)"(w) =we (norm topology).

n—oo

Proposition 1.5. Let M be a Neumann algebra on H and {V;}; and {W;}}-,be a couple
of families of isometries on H satisfying (1.1). Suppose that M is invariant for ay and
aw. Then following conditions are eguivalent.

(1) ay(T) = aw(T) for ai T in M.
hll e hln
(2) (Wl""1Wn):(%-"'1VrL) : . : ;
hnl e hn'n.
that is, W; = Z V;hji, (1 <1i < n), where each h;; is a unitary element in the com-

J=1
mutant M’ of M on the Hilbert space 'H.

§2. Chaotic maps and behavior of states. Let X be a measure space with measure
m and ¢ a measurable map on X, Here we note some notations concerning X and .

(1) m o ¢ denotes the measure on X defined by m o ¢(F) = m(p(E)) and if the map ¢

is absolutely continuous with respect to m, the Radon-Nikodym derivative for m o ¢
dmop

dm
(2) a, denotes the *-endomorphism of L®(X) = L®(X,m) defined by a,(f) = f(¢(z))
for f in L*™(X).

and m is denoted by

(3) T,, denotes the linear operator on the Hilbert space H=L*(X) = L*(X,m) defined by
(T,6)(z) = E(p(a)) for & in H.

(4) For a subset Y of X, xy means the characteristic function of Y.

(5) For a measurable function f on X, M; denotes the multiplication operator on L*(X)
defined by M;¢ = f¢ for £ in L*(X).
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(6) For f in L*®(X), n(f) denotes the bounded multiplication operator on L%(X) defined
by m(f)¢ = f£ for £ in LX(X). |

Definition 2.1. Let X is a measure space with measure m. A measurable map ¢ of X
onto X is said to be a map with n-laps , MWnL for short, if there exists n measurable
subsets {X;}, of X such that

(1) U, X; =X and X; N X; = ¢ for i # j.

(2) Each restriction ¢; of ¢ to X is a bimeasurable map of X; onto X in the sense that ;
is an surjective map of X; onto ;(X;) with m(X\¢;(X;)) = 0 and ¢; ' is measurable,
too.

(3) For each i, ; and ;! are absolutely continuous with respect to m and non-singular
in the sense that

dmop
dm

dmo !

o () # 0, ae.x.

(z) #0, aex and

For a measure space (X,m) and a measurable map ¢ of X into itself, My and T, is not
necessarily defined on the full space H. Then each isometry V; in the following definition, if
necessary, is considered as a uniquely extended bounded linear operator on the full Hilbert
space H. -

Definition 2.2. Let ¢ be a MWnL on a measure space (X,m). We define a family
isometries {V;(p)}?, associated with ¢ as follows.

V;(‘P) = MWMX)QT!P (2 =1,.. .TL),
By the definition we can see that

M Vi) =M jgm T (@=1,...n).
(2) Vilp)Vilp)' = My,, (i=1,...n).

®) [ HelaDne)imta) = 3 [ TP (@))dm for n in Li(X,m).

Proposition 2.3. Let ¢ be a MWnL on a measure space (X, m) and {V; = Vi(p)}X, a
family isometries associated with @ defined in Definition 2.2. Then it follows that

(1) {Vi}2, satisfies condition (C.1) in §1, that is, {V;}, is @ FIC on L*(X,m).
(2) (e (f)) = av(n(f)) for all f in L=(X).
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Proposition 2.3 (2) implies that ay is a *-endomorphism of the von Neumann algebra
M~ (x) and we denote by A, the transpose of the restriction of ay to My=(x). Then we
have

(An)(z) = _z""““"ﬂ n(ei (@),

The transformation A, is known as Perron-Frobenius operator on L'(X,m).

Theorem 2.4. Let ¢ be a MWnL on a measure space (X, m). Suppose that there ezists a
FIC {W;}_, such that W, has eigenvalue 1 with eigenvector e and

ay(T) = aw(T) for T in M,

where M is a von Neumann algebra on H. Then for any state w of the form w = 3 ;2 we,
where & ’s are in H,, it follows that

Jim (ap)Mw) = we (norm topology on M,).
Moreover, this implies that

lim [|A(n) — |e[*|l: = 0.

n—oo

where n = |£|? for € in H,.

Proposition 2.5. Let ¢ be a MW2L on the interval [0, 1] with Lebesgue measure m. Then
the following conditions are equivalent.

(1) Vi(p) has eigenvalue 1 with eigenvector e.

(2) m({z € [0,1]|L£(z) = 1}) > 0.

Theorem 2.6. Let ¢ be a MWnL on a measure space (X,m) and e(z) =1 for a.e. z in
X. Then following conditions are equivalent.

(1) There ezists a FIC {W;}? , such that ay(T) = aw(T) for T in Mp~(x) and Wie = e.

(2) T, is an isometry.

3)de0(’0 ) =1 for a.e. z in X.

Definition 2.7. Let ¢ and v be two MWnL’s on (X,m). Two maps are said to be AC-
topologically conjugate if there exists a bijective map h of X onto itself satisfying following
conditions.

(1) p=hoohl
(2) Both m o h and m o h™! are absolutely continuous and non-singular with respect to m.
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Remark. Let h be a absolutely continuous map satisfying (2) of the definition above.
We put

U(h) = M\/WT’L'

Then U(h) is a unitary operator on H.

Theorem 2.8. Let ¢ and 1 be two MWnL’s on (X, m). Suppose that ¢ is AC-conjugate
to ¢ and there exists a FIC {W;}}_; satisfying following conditions.
(1) Wi has eigenvalue 1 with unit eigenvector e.
(2) av()(T) = aw(T) for T in M,
where M is a von Neumann algebra on M. Let f = U(h~')e. Then for any state w of the
form w = 22, we, where &’s are in Hy, it follows that
lim (o}, )"(w) =w. (norm topology on (U(h)MU(h)*).).

n—00

§3. Examples of MWnL. We give typical and interesting examples of map with n
laps. Each number in each example indicates the following.
(1) Measure space (X,m) on which a map is given.
(2) Map ¢ with n laps on X.
(3) Number n and partition {X;}, of X.
(4) {Vi}r, = {Vi(p)}, defined in Definition 2.2.
(4-1) An eigenvector e for eigenvalue 1 of W, and ONS(e, V) = {ex}2;-
(4-2) ONS(e, V) is complete or not.
(5) {W;}*_, such that ay(T) = ow(T) for T in a von Neumann algebra M on L*(X,m).
(6) The von Neumann algebra M on which ay = aw.
(6-1) An eigenvector e for eigenvalue 1 of Wi and ONS(e, W) = {ex}32;.
(6-2) ONS(e, W) is complete or not. |
(7) Perron-Frobenius operator A,.

Example 3.1. (Tent map)
(1) X =[0,1], and m =Lebesgue measure.
(2) @ is the map 7 defined by
T(z) =1-|1—2z|.

(3) n =2 and X; = [0,1/2), X = [1/2,1].

(4) Vi = V2Mp1 9Ty, Vi = V2ZMp oy T

(5) (W1, Ws) = (V1,Va) ( 1;\\2 —}1//{/55 ) )

b o . . -
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(6) M = B(L*[0,1])
(6‘1) 6(1}) =1 (.’L’ € [0, 1]) and €1 =¢€, ey = M[O’l/z)el — M[l/g,llel.
(6-2) ONS(e, W) is complete.

0 A =5 (1(3) +n(1-3)).
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Example 3.2. (Generalized tent map)
(1) X = [0,1], and m =Lebesgue measure.
(2) p =1¢ (0 < c < 1) defined by
_ 1 for 0 <z <c,

el@) = ?}T(x —1) fore<z <L
(3) n=2and X; =[0,1/2), Xp = [1/2,1].

a

L - - e e o = -

(4) Vvl = M\/i/——CMX(o,c]TTc’ ‘/2 = M\/me[c’“TTC.

_ ve o Vi-c
© twwa) = v (Ve Y9,
(6) M = B(L*[0,1])
(6-1) e(z) =1 (x € [0,1]) and e; =, ey(z) = { “_\7071_:1_ i::. 2 f l’ E ;
(6-2) ONS(e, W) is complete.

(7) Ar.(n)(@) = cln(cz)) + (1 = Jn((c — 1)z + 1)).

| a4

-

P
P ]

- - --
o -

[}
i
[ ——

e, e,

-

Remark. 7, and 7. are topologically conjugate (cf.[6],[8]) but they are AC-conjugate only
ifc=d.

Example 3.3.(Logistic map) (cf.[9])
(1) X = [0,1], and m =Lebesgue measure.
(2) ¢ is the map A defined by
Mz)=4z(1 —z) 3) n=2and X; =[0,1/2), X5 = [1/2,1].
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1

(4)Vl 2\/———‘ X101/2]T Ve = 2\/237— X[1/211T
(5) (Wi, W) = (V, ) ( 1;‘/\[; 1/1‘/[\/5 ) .

(6) M = B(L?[0, 1})
(6" ) el(m) - e = 1/ V"T\/ .’17(1 - :L') and 62(‘7" X(o 1/2¢ MX[1/2,1161

(6-2) ONS(e, W) is complete.
() Anlo)e) = gz (1 (<52 - (@))

1
i ‘ ’
( [} :
| ' '
) i [
1 7 i ]
{ | P

c | e 2 € 3 64.
(The logistic map is topologically conjugate to the tent map with conjugacy

h(z) = sin®(rz/2) (cf.[7])).

\
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Example 3.4. (Typical map with 3 laps)
(1) X = [0,1], and m =Lebesgue measure.
(2) ¢ is the map defined by

3z for 0 <z <1/3,

p(r) =< 3z-1 for1/3 <z <2/3,
3r—2 for2/3<z<1.

(3) n =3 and X; = [0,1/3), Xy = [1/3,2/3), X» = [2/3,1].

(4) Vi= \/§MX10,1/3)T“” Ve = ‘/ngu/a.z/a)va Vs = \/ngtz/a,llTﬂP‘
1/v3  1/V3 1/v3

(5) (Wi, Wa, W3) = (W, Vo, Va) | 1/v3 (3—3)/6 (-3—+/3)/6
1/v3 (-3-v3)/6 (3-V3)/6

(6) M = B(L*[0,1])
V3-—1 —v3-1

(6-1) e(z) =1 (z € [0,1]) and e; =, e(z) = X[0,1/3) + 3 X(1/3,2/3) + *T—"Xp/z,l],
—Vv3-1 V3-1
e3(x) = Xjo,1/3) + g X[1/32/3) + 2 Xi2/3,1)-
(6-2) ONS(e, W) is complete.
1 T r 1 r 2
N 4@ =3 (1(3) +1(5+3) +1(5+3))
(M) Ape(n)(@) = 3 (n(3) +n{3+3)+n 3+3
' % "—_—: ey
‘l i v : ; : —
n I
€. €, L3 Cs L 1
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Example 3.5. (MW2L on [0, 1] such that V, has an eigenvector for eigenvalue 1:a)
(1) X =[0,1] and m is the Lebesgue measure.
(2) ¢ is the map defined by

z for 0 < z < 1/4,

o(x) =< (6z—1)/2 for1/4 <z <1/2,

—2r+2 for1/2<z<1
(3)n=2and X, = [0,1/2), Xz = [1/2,1]
(Vi = Myo,1/0 + \/_MX[1/4,1/2)’ 2= \/§MX[1/2,1]‘
(4'1) €1 —=e= 2X[0,1/4), €y = 2\/§X(7/’8,1], €3 = 2\/6X(11/24,1/2] €4 = 4X[1/2,9/16)-
(4-2) ONS(e, V) is not complete.
(6) M = B(L?[0,1])

2z +1

(7) Ap(m)(z) = n(z)x(0,1/4(z) + %77 (T> X[1/4,1] + —\}51) <—$U2+ 2).

3

A
|

a——— - —————-

.- e

- -
P

T'
|
|
|

€, € Cs e“‘

Example 3.6. (MW2L on [0, 1] such that V} has an eigenvector for eigenvalue 1:b)
(1) X = [0,1] and m is the Lebesgue measure.
(2) ¢ is the map defined by

-5z +1 for 0 <z < 1/8, : :

p(z) =< —z+(1/2) for1/8 <z <1/2, "'““g‘“ —
2z —1 for1/2<z<1 | !
(8) n=2and X; = [0,1/2), X2:[1/2,1] : '
4)V1 \/_MX[O 1/8) + MX(x/s 1/2)? \/_M‘qx/z 1"
4-1) e; = e = 2x/8,3/8)) €2 = 2\/§X[9/16 11/16), €3 = 2\/_X[5/80 7/80] €a = 4X{25/32,27/32)-

(

(

(4-2) ONS(e, V) is not complete.
(6) M = B(L*[0,1))

(7) A -2z +1

7 ()():n( ) xoam(@) + 20 (5 ) xuma + sn ()

=3
]

[

b o = >
-c-..]
fe o0 .-
- -
P

r-.-.-—
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Example 3.7.(Square root map)
(1) X = [0, 1] and m =Lebesgue measure.
(2) ¢ is the map defined by :
@(T):{\/Q—x for0 <z <1/2, I
’ 1—v2z -1 for1/2<z<1.
(3) n=2and X; = [0,1/2), Xz = [1/2,1].

(4)Vl = (l/ﬂ;)Mx[a,uz)Tw Vo= (1/ V2 — 1)MX(1/2,1IT‘P'

(5) (Wi, Wa) = (Vi, V) ( Mpgz My ) |
M iz Mgs
(6) M = ML°°[O,1]

(6-1) ex(z) = e(z) = 1, ea(x) = /(1/v22) — Ixpou/(2) — /(1/v2z — 1) — Lxq/2,(2)

(6-2) Now we cannot find whether ONS(e, W) is complete or not.

e =1 (n(% )+ 7 (E222)).

€\

Example 3.8.(Map of broken line)
(1) X = [0,1] and m =Lebesgue measure.
(2) ¢ is the map defined by s :
8z/5 for 0 <z < 1/4, e :
(122 - 1)/5 for1/4<z<1/2, ___'_--;___“'_
(122 +13)/7 for 1/2 <z < 17/20,
(-8 +8)/3 for7/20<z<1,
(3)n=2and X; =[0,1/2), Xo =[1/2,1].
(4)1/1 = (\/éEMY[O,I/d) + \/—]"—ZEMYU/«;,U@)TW V2 = ( 12/7MX[1/2,17/20) + MMX[17/W,1])T¢

(5)(Wl Wg) — (vl V2) V 5/8MX[0,2/5) + V 5/12MX[2/5,11’ V 3/8MX(0,2/5) + 7/12MX[2/5,1) .
\/ 3/8Mxlo,2/5) + \/ 7/12MX12/5,11’ \/ 5/8MX[032/5) - 5/12MX[2/5,1]

(6) M = B(L?[0,2/5]) & B(L?%[2/5,1])

p(z) =

3/5 for0<z<1/4,
7/5 for1/4 <z <1/2,

—4/5/7 for1/2 <z < 17/20,
—/5/3 for7/20<z <1,

(6-1) ex(z) = e(z) =1, eg(z) =



136

(6-2) Now we cannot find whether ON.S(e, W) is complete or not.
S5 (o 5 (dz+1
(7) Ap(n)(z) = 3" (?) Xpo,2/5)(z) + " ( ) X2/5,1)(x)

+%n <_32+ 8) X(0,2/5)(Z) + 1—72-77 (%) Xi2/5,1)(%)-
HE
‘: -I —
i v : —
aj
e, € 2 =

Example 3.9. (Product of tent maps)

(1) X =[0,1] x [0, 1] and m =Lebesgue measure. E

(2) ¢ is the map defined by

o(z,y) = (7(z),7(y))
where T is the tent maps defined in Example 3.1.
(3)n=4and X; =[0,1/2)%x[0,1/2), Xo =[1/2,1]x[0,1/2), X3 =[1/2,1}x[1/2,1], X4 =
[0,1/2) x [1/2,1].
(4)V1 = 2MX[0,1/2)><10,1/2)T<P7 V2 - 2MX[1/2 1] x[o, 1/2)T<P1 V3 - 2MX[0 1/2]x|1/2,1}
/2 1/2 1/2 1/2
1/2 -1/2 -1/2 1/2
/2 1/2 —-1/2 -1/2
1/2 -1/2  1/2 -1/2

T, Vi=2M

X[1/2, 11x[1/2 1}
(5) (W1, Wa, W3, Wy) = (Wi, Vo, V3, Vi)

(6) M = B(L*([0,1] x [0,1]))
(6‘1) el(m)y) = e(x1 y) =1 ((x1y) € [0’ 1} X [01 1]) and

62(95) = X[0,1/2)x[0,1/2) — X[1/2,1]x[0,1/2) T+ X[o,1/2]x[1/2,1] = X[1/2,1]x[1/2,1]-
(6-2) ONS(e, W) is complete.

MA@ =7 (1(Z2) +n(1-5.2) +n(51-2) +n(1-21-2)).

Example 3.10. (Baker’s transformation)
(1) X =1[0,1] x [0,1] and m =Lebesgue measure.
(2) ¢ is the map (3 defined by
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Ba )—{ (22,9/2) o=z <, ‘
1Y) = (2x_1,(y+1)/2) for1/2<z<1. /4'/ = ——>
(3)n=1and X; =X / P

(4 Vi=Tp

(4'1) 61($, y) = e(w, y) =1
(4-2) ONS(e, W) = {e;} is not complete.
(6) M = B(L*([0,1] x [0,1}))
(7) Ap(n) (=) = n(B(z))

Remark. Baker’s transformation is strong-mixing but { (of)™(we) }2.; does not converges

to w, in the norm topology in M,.

Example 3.11.(Unilateral shift map)
(1) X =T12,{1,2} and m =usual measure.
(2)¢ is the map o defined by
o((z1,%2,23,...)) = (22, 73, T4, . . .),
(B)n=2and X; = X(1) = {(2,)2,; € X|z; =1}, Xz = X(2) = {(zn)2; € X[z, =2}
W Vi=VeMxyT,, V= V2MxeT,.

1/v2 1/V2 )

© W) = v (V2 V2

(6) M = B(L*(X))
(6-1) e(z)=1(zx € X)‘ and e; = e, e3 = xx()€1 — Xx(@)e1-
(6-2) ONS(e, W) is complete.

(7) Aoln)(2) = 5n(m) + n(ow)),
where v1((z1, 22, 23,...)) = (1,21, 23,...) and Y((z1, T2, 23,...)) = (2,21, 29, .. .).

Example 3.12. (MW2L on the set N of all natural numbers)
(1) X = N and m is the counting measure. I z 3

4 5
(2)  is the map defined by ® ll-’ g‘./g ,5/9"_5 .

©(2k — 1) = k and ¢(2k) = k (k € N)
(3)n=2and X; =2N -1, X,=2N. 902 f\_\
2 3 4

Vi = My, To, Vo= My 5y T '

(4-1) e = e; = x{1) and the sequence {ex}32; is the canonical CONS of £2(N).

5
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(4-2) ONS(e, V) is complete.
(6) M = B(KZ(N))'.
(7) Ap(n) (k) = n(2k — 1) + n(2k).

* ' ¢ 1
2 ! :
i———.—'—-—'—’ ————— ; """"" 7—‘—.:-_—_"-"-- __.*’_—';‘—_-""‘_
1 2 3 4 1 2 3 &4 1 23 4 123 4
€, €. , es €4
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