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1 Introduction

For polynomial automorphisms of C2, there is a classification theorem on polynomial conjugation
([FM]). By the theorem, any polynomial automorphism is polynomially conjugate to an affine
transformation, an elementary mapping, or a finite composition of generalized Hénon mappings

(z,y) = (y,p(y) + dz),

where p(y) is a polynomial of degree at least two and d # 0. The proof is based on the fact
that the group of polynomial automorphisms of C? is the amalgamated free product of two
subgroups (the group of affine transformations and the group of elementary mappings), called
the theorem of Jung. In case of higher dimension, such a theorem on the generators of the group
of polynomial automorphisms is not known.

In this note, we will see a classification theorem of quadratic polynomial automorphisms
of C3 which is on polynomial conjugation. In the theorem, an invariant under polynomial
conjugation is used to characterize each class. It’s called dynamical (bi)degree, introduced by
Bedford and Smillie ([BS]). The proof is based on the theory of quadratic form or the fact that
the determinant of the Jacobian matrix of any polynomial automorphisms is a nonzero constant
([FW][M1]). Next, we will focus our attention on one of normal forms which is of the form

(z,y,2) = (y,z,yz + by + cz + dzx),

where d # 0. (If a constant term exists in the third component, it can be vanished by affine
conjugation sending one of two fixed points to the origin.) It is one of shift-like mappings of C3.
(Shift-like mappings were introduced by Bedford and Pambuccian [BP] as a generalization of
Hénon maps.) But there are some remarkable differences between Hénon maps and our map in
their dynamical properties. They will be seen through the proofs of convergence and continuity
of Green functions on C3. For a birational (polynomial) map of P?

(z,y) = (y, Ty + bz + cy) (imhomogeneous coordinate),

Nishimura introduced “another” Green function which does not vanish constantly in [N]. (If we
adopt the usual Green function as that in the case of holomorphic maps of P2, it vanishes in
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the whole space.) It was shown that there is a domain (C C2) in which the function converges
(proposition 4.5, p 199, [N]). It is easy to check that our approach for our map is also valid for
this birational map, so the domain of convergence will extend to the whole C2.

2 Quadratic polynomial automorphisms of C3

Let Auty(C3) be the family of polynomial automorphisms of degree at most 2 of C3. To identify
the map which will be studied in this note, we will see a classification theorem of Auty(C3). To
begin with, we will define subfamilies of Auty(C3).

¢ affine transformations
A : the group of affine transformations of C3.
e skew products (2 dimensional fibers)
E:: (az + b, 2,22 + L(x, 2) + dy), (ad # 0, deg L < 1)
Ex: (az +b,z,z2 +rz® + L(z,2) + dy),(ad # 0, degL < 1)
Es:(az +b,2,22 4+ qzz +rz? + L(z,2) + dy), (ad £ 0, deg L < 1).
o skew products (1 dimensional fibers)
: (az + b, Q(z) + cy, P(z,y) + dz), (acd # 0, max{deg P,degQ} = 2)
F2 (v,92 +a+ bz, P(z,y) + dz), (bd # 0,deg P < 2).
e shift-like mappings (1-shift)
G1: (y,2,y° + L(y,2) +dz),(d # 0, deg L < 1)
Ga: (y,2,yz+ L(y,z) +dz),(d #0, deg L < 1)
G3: (y,2,yz+ 1y’ + L(y,2z) +dz),(rd £ 0, deg L < 1)
Ga : (y,2,22 + L(y,2) + dz),(d #0, deg L < 1)
Gs: (y,2,2> + quz + L(y, 2) + dz), (qd # 0, deg L < 1)
Ge : (v, 2, 22+ qyz + 1’y2 + L(y,z) + dz),(rd # 0, deg L < 1)
o shift-like mappings (2-shift)
Hi: (y, 2,92 + Ly, z) + dz) o (y, 2,p'22 + ¢'yz + L' (y, 2) + d'z),
(d#0, ¢d #0, deg L,deg L' < 1)
Ha: (y, 2,92 + L(y, z) + dz) o (y, 2,p'22 + ¢'yz + r'y? + L' (y, 2) + d'z),
(d#0, r'd #0, deg L,deg L' < 1). ‘

Skew products are analogous to elementary maps of C? and shift-like maps to Hénon maps.
In general, shift-like mappings (m-shift) of CN are of the form :
G=Gnpo-0Gy,

where G
(mla"' 3 l’N) 4 (3:2,”' amNa-Pi(x%"' ,32N)+di$1), (1 < 1 Sm)a

"P; (1 <1< m) are polynomials and d; (1 <1 < m) are nonzero constants.

Theorem 2.1. ([M1]) Any element of Auty(C3) is polynomially conjugate to an element of
AEi(i=1,2,3),Fi(i=1,2),Gi(i=1,---,6) or Hj(i=1,2).
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Remark 2.2. In theorem 2.1, we may take an element of Auty(C3) as the coordinate transfor-
mation for the conjugation.

In the following theorem, Auty(C3) is devided into 9 classes. Each class is characterized by
an invariant under polynomial conjugation, called dynamical bidegree. Dynamical degree of f
is defined by d(f) = lim, o (deg f")'l-' and the limit exists for any polynomial selfmap f of CN
([BS]). In case f is inversible, we'll consider dynamical bidegree D(f) := (d(f),d(f™1)).
Denote by ¢ golden ratio l%@ .

Theorem 2.3. ([M1]) Elements of Auta(C3) are classified as follows by dynamical bidegree. (It
is also shown which classes the subfamilies belong to.) '

class | dynamical bidegree | family

I (1,1) A,Eq,Ep Fy

i} (v2,2) Gy

il X G2

IV (,2) Gs

\'% (2, V2) Ga

VI (2, ¢) Gs

VII (2,2) Es, F2, Ge
VIII (2,3) Hy

X (2,4) Ha

Remark 2.4.

(i) Unlike the case of C2, if a polynomial automorphism is polynomially conjugate to a shift-like
mapping (m-shift), then m is not uniquely determined.

(i) Unlike the case of C2, there is a shift-like mapping which is conjugate to a skew product.

3 Shift-like mappings of dynamical bidegree (¢, ¢)

Any element of III is conjugate to f(z,y,2) = (y,2,yz + by + cz + dz) where d is a nonzero
constant. In this section, we will see that Green function of f converges in C3. We will adopt the
following definition of the function. (If we use the usual definition as that in the case of Hénon
maps, then we have lim,_yo sclogt||f™(w)|| =0.)

Definition -3.1. For a polynomial mapping f from CV into ifself, we will define Green function

of f by

1 |
Flap) o= i +| fn + -
G* () i= lim <——log*||f" )il (1og* flul] = max{0,log [lul]} )

If the limit exists, then Gt (f(w)) = d(f)G*(w) holds. (The multiplier of the functional
equation is dynamical degree, not algebraic degree deg f.)
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When we’d like to see the convergence, there are remarkable differences between the cases
of Hénon map h(z,y) = (y,y% + ¢+ dz) and our map f(z,y,2) = (y, z,yz + by + cz + dz).

(1) Degree lowering, i.e. deg f™* < 2", (n > 2). In fact, {deg f™} is Fibonacci’s sequence.

(2) In the case of h, any orbit except bounded orbits converges to a superattracting fixed point
[0:1:0] € P2. But in our case, there isn’t such a fixed point. Any orbit except bounded orbits
accumulates at points of indeterminacy € P3, i.e. not nice orbit. (See [FS] for the definition.)
It’s not known whether such an orbit tends to infinity or not in general. (See theorem 3.20.)

(3) In the case of h, there is a compact polydisc D such that any bounded orbit gets into D in
forward iteration and never leave it. But in our case, for some parameters, the set of periodic
points is not bounded. This means that for our map, we cannot take such a polydisk as D.
Hence the expected proofs of convergence and continuity of Green functions cannot depend on
compactness of such a polydisk.

We will consider the following subsets in C3.

Definition 3.2. R: a positive number.

Vi ={lyl > R, || > R; |2| > |z[},
Vg ={lyl > R, |z| > R, || > |2]},
Wlll = {kr' 2 R, Iyl <R, |Z| < R}a
Wi ={lz| <R, [yl 2 R, |z| <R},
Wi ={lz| <R, ly| <R, |2| > R},
Wh={lz| > R, [yl <R, || > R},
Dp = {la'l <R, |"/‘ <R, Izl < R}'
4
Wg = (U W},) U Dg.
=1
We will denote f*(z,y,z) by (Zn,Yn, zn) for (z,y,2) € C3.

Lemma 3.3. There is a positive number R such that if w = (z,y, 2) € V,'{ , then
(1= dr)lyllz| < Ja1] < (1 +dR)lyll=l,

where §p = (|b] + |c| + |d}).
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proof : If R is large enough, then for w € Vg ,

|zl =lyzl | < |21 —y2|

= |by + cz + dz|
1ol , lel Idml)
< lyz (——+—+—-
AT 1ol ™ e
< églyz|

O

Remark 3.4. Since f~!(z,y,2) = (5(——:1:;1/ — bz — cy+ 2),z,y), the similar inequality to lemma
3.3 hold for f~!, exchanging the roles of = and z. (But, then the coefficients are not 1 + §g.)

Proposition 3.5. For any number p > 1, there is a positive number R such that the following
hold.

) VR CVigforaln>l.
i) f™(Vgy)C V,;_,R forall n>1.

i) €= fHC3\ V). (the limit of an increasing sequence.)
R

n=0

oo
iv) C= U F™(C3\ Vz ). (the limit of an increasing sequence.)
n=0
(v) For any compact set K in C?, there is a natural number N
such that f~™(K) C C?\ V,'{ foralln> N.
(vi)  For any compact set K in C3, there is a natural number N
such that f"(K) C (Ca\V,'{ for all n> N.

proof : By the symmetry of f and =1 we have only to prove (i), (iii), (v). (See remark 3.4.)
(i) By lemma 3.3, if R is large enough,

lz1l > plzl, olyl.

Since y1 = z and z1 = y, we have f(V7) C Vg . Applying this inequality to (z1,y1, 21), we have
2v) c Vp-ll'?,' In the same way, f™(V{) C Vp+-lR hold for all n > 1.

(iii) By (i), the sequence {f™(C3\ Vg’ )}, is increasing, and

i) =9

n=0
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Hence, we have the equality.

(v) From (iii) and the compactness of K, it follows immediately.

Remark 3.6. From the proof of (i), we know f2(ﬁ) C V,'{ .
Denote Fibonacci sequence by {a,}32g, where ag =0, a1 =1, anq2 = any1 + an.
Proposition 8.7. There is a positive number R such that if w = (z,y,2) € V,'{ , then

(1= 8Rr)*+* " y|™ |2|*+! < |za| < (1+ 8R) 27 y|™ [2]+,
(1= 8R)™ 1~ |yl 2] < lyal S (1+6R)™ 17 [y[on= |2|*

hold for all n > 1.

proof : Take I} in lemma 3.3. By lemma 3.3, if w = (z,y,2) € V,'{, then

(1=8r)yllzl € |z1] < (1+6R)lyll=,
|z £yl <zl

Applying these inequalities to (z1,y1, 21),

(1=0)2yllzI? < 22| < (1+6R)%y]|2%
(A =6r)lllzl £ lyal < (1+0R)|yllz|.

By induction, then, we have the inequalities for all n > 1.

O

Proposition 3.8. There is a positive number R such that if w € Wg and f*(w) € Wg for some
n > 1, then

where kr = R+ |b| + |c| + |d].

proof : Take R(> 1) in proposition 3.5. Suppose w € Wg and f(w) € Wg.

e if w € W}, then f(w) € W3 U Dg and ||f(w)|| < max{R, R? + |b|R + |c|R + |d]||w]||}. Since
R > 1 and ||w|| > R, we have ||f(w)|| < (R + |b] + || + |d])|jw}].

o ifwe Wﬁ, then f(w) € WhU W4 and ||f(w)|| < max{||w]||, [[w]|R + [b]||w]| + |c|R + |d|R}.
Since R > 1 and ||w|| > R, we have ||f(w)|| < (R + |b] + |c| + |d})||w]|.

e if w € W}, then f(w) € W3 and ||f(w)]| = |lw||. Since R > 1, we have ||f(w)]| <
(R + [b] + ] + |d]]wl].
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o if w € W}, then f(w) € W3 and ||f(w)]| € |lw||. Since R > 1, we have ||f(w)] <
(R +[b] + |e| + |d])[fw]].

e ifw € Dy, then f(w) € WRUDg and [|(w)]] < max{fwll, o]+ [bl[kel|+ el ol |+l
Since R > 1 and ||w]| £ R, we have ||f(w)|| < (R+ [b] + |¢| + |d])]|w]].

Hence, in any case, we have ||f(w)|| < kg||w||. If w € Wk and f™(w) € W for some n > 1, then
fP(w), ( =1,--- ,n— 1) are also contained in Wg by proposition 3.5. Thus, the proposition
follows. ‘

O

S

Theorem 3.9. Let ¢ be the golden ratio L%——

(i) {G}}2, converges uniformly on any compact set in Unso f™ (Vg ), and Gt is positive
pluriharmonic on oz, f~"(VH).

(i) Gt (z,y,2) = $1; log |y| + élog |z + O(1) on Vt.
(iii) {G}}o2, converges to zero on C3\ |32, f™(VH).
(iv) G*(f(w)) = Gt (w).

(v) Gt is continuous plurisubharmonic on C3.

proof : Let R be a large number(> 1).
(i),(ii) By proposition 3.5 (i), for any compact set K in Uneo f ‘"(VR+ ), there is a natural
number m such that f™(K) C V7. If {G,+ (w)}§2, converges uniformly on f™(K), then G} w(w)

converges uniformly on K since G nw) = T(:.%Gf (f™(w)) and 5’—‘}*—% is convergent. Hence,

we will prove uniform convergence on compact sets in V,}L .

From the proof of proposition 3.5 (i), we know |z1| > |y1|, |z1], R for w = (z,y,2) € V§.
Hence, log* ||f(w)|| = log |z1|. From the definition,

n 1 n
G (2,y,2) = ;22 log ly| + 2L log 2| + -1 log prezliaherr

By proposition 3.7,

n -1 n n -1 3
9—;1—1’-’; log(1 — ég) < a"1+2 log 'y|,,"'fz'!."+, < aa“:iz log(1 + dR). Hence, we know {G;}}2, is

locally uniformly bounded in V;} since {a_:f;}%ll and {Z—:—E— o° 1 is convergent.

Let K be any compact set in Vg . For any € > 0, there is a positive number R, s.t.
“ﬁ‘z—_llog(l :|:6R_¢)| < € for all n > 1. Take a natural number m s.t. f™(K) C VI{' For

An42

wy, € f™(K) and k,1 > 1,

aj aj
Ak42 a2

Gk+1 Q141

|G;:(wm) - G1+(wm)| <
Cfy2 a2

log |2m| + 2e.
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By the convergence of {a:_i;}?;l and {Z24L}%  there is a natural number Ny s.t. for k,I > N,

Uy ) N=
IG,:r(wm) - G,'"(wm)| <e+e+2e=4e on f™(K).
Forwe K, k12>1,

Gt . (w) -G (w)] = ——’“ﬁ—cfr( ) — 22 G (w )I
l mtk m+ I Am+4k+2 m Am+142 Ym
k42 Q)42 ar42 al42
< _+_G+(wm)— ——+——Gl+(wm) ——+—G+( m) — —+ G,'"(wm).
Am+k+2 Om+k+2 Am+k+2 Am+i+2
k42 ak42 ar42
< —— |G (W) = Gf (wm)| + |—22 — =221 |G} (wp)] .
A4+ k42 U +-k42 A 4142
By the convergence of {ﬁ—’; =1 and the locally uniform boundedness of {G;}} ;, there is

a natural number N1(> Np) s.t. for k,1 > Ny,
|Gm+k(w) G (w)] < 1-4¢+e=5e.

Thus, it turns out that Gt is posmve pluriharmonic on Un—-o f ‘"’(V,'{ ), and Gt(z,y,2) =
——;log ly| + 1 ¢ loglz| + O(1) in Vi

(iii) We have only to prove the claim for w € Wr N (C3 \ Unzo ‘"(V,'{ )) By proposition 3.8,

1™ (w)|] < Bxl|wl|
for all n > 1. By definition,

GF(w) < —— log* k3 lu]l.
An+2

The right hand side tends to zero as n — co.

i ITian + 1 Sn

7 )] = 42 L log* ||+ (w)]]. By limn-seo 2242 = , the
equation holds.
(v) We will prove the continuity of G at boundary points of | J°°, f~" (V};r ). We have only

to prove the continuity at the boundary points contained in thR Let p be any point in
0 (UsZo f™(VF)) NintWg. Take a neighborhood O of p contained in Wg. M := sup,co |lwl|.

We will estimate G* on B, = 0N (f "(Vg’) \ f-(= 1)(V**R)). Since f"~1(B,) is contained in
WRr, by proposition 3.8, f*~1(B,,) is contained in {||w|] < k""lM} Hence, f"(B ) is contained
in C, = {|lw]] < max{k""]M (k% ]M)2+(‘bl+|c]+|d[)k"”1M}}ﬂV+ Ly := supy,ec, Gt (w).
By (iv), Gt(w) < ———L on Bp. By the estimate (ii), 5=Ln tends to zero as n — oco. Since

Gt =0o0n O\ (U2, B,), the continuity of G* at p follows.
a
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Remark 3.10. Any point w such that G (w) > 0 has an orbit which converges to [0: 0:1: 0]
in forward time. ([0: 0: 1 : 0] is a point of indeterminacy.)

Since f(z,y,2) = ( (—zy — bz — cy + 2),z,y), by changing the scale, the coefficient of :ru
becomes 1. Considering to exchange the roles of = and z, we will obtain Green function of f~!
Denote the function by G~ (w). We’ll define the following subsets in C3.

Definition 3.11.
U* = {(z,y,2) € C* | G*(z,y,2) > 0},
Et=C3\U* = {(z,y,2) € C? | G*(z,y,2) = 0}.
U~ ={(z,y,2) € C* | G~ (z,y,2) > 0},
“=C\U" ={(z,y,2) €C} | G~ (z,y,2) = 0}.
E=ETNE".
A point in E* does not necessarily have a bounded orbit.

Example 3.12. Let b= c=0. Each of the z,y, z azies is f3-invariant.

(1) If |[d] > 1, then any point in the azies tends to infinity in forward time although Green
function vanishes there. The limit points of the orbit are [1 : 0 : 0 : 0], [0 : 1 : 0 : O] and
[0:0:1:0]. (These points are of indeterminacy.) Hence we know that [0 : 0 : 1 : 0] is not
only the limit point of orbits with higher rate of escape but also that of orbits with lower rate of
escape. (See remark 3.10.)

(2) If |d| = 1, then any point in the azies has a bounded orbit in foward and backward time.

Since G¥ are plurisubharmonic, the current p* = dd°G¥ are positive, d-closed (1,1)-currents.
From theorem 3.9 (iv), f*ut = ¢pt and f*u~ = %u‘ hold.

Proposition 3.13. supp ut=0E*

proof : Gt is pluriharmonic on Ut U (intE*). Hence, supp ut C OET. Suppose there is a
neighborhood O of a point p € 8E* s.t. Gt puts no mass on O. Then G is pluriharmonic on
O. But Gt|p has a minimal at p though it is not constant. This is a contradiction. O

Since Gt and G~ are continuous, g = pt A p~ = dd°G* A dd°G~ is a positive (2,2)-current.
(See [K], pp.113.)

Proposition 3.14.

(1) The current p s f-invariant.

(i) ptApt=0
proof :

G) it Ap) =A@ =¢pt A =pt Ap.

(ii) Since G* is pluriharmonic on Ut, we have {dd°max(Gt,¢)}? = 0 for all £ > 0. Then
lete 0. : O

The following propositioné are on the properties of U%, E* and E. (The precision and the
proofs of them will appear in a forthcoming paper [M2].)
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Proposition 3.15. Let h(t) be a non-constant holomorphic map from C to C3. Then, h(C) is
contained in a level set {G*(w) = a}, (a > 0) or meets Et at infinitely many points.

Proposition 3.16.
(i) intE* are polynomially conves if they are not empty.
(i) U* are pseudoconvez domains.

Proposition 3.17. For any complez numbers o, s.t. |B| is greater than R, we have {z =
a, y=PB}NU" is connected. The slice of U by a hyperplane {y = B} is also connected.

Proposition 3.18. For any complex number B s.t. |B| is greater than R, the slice of E by a
hyperplane {y = B} is not empty. In particular, E is an unbounded closed set in C3.

Theorem 3.19. m(U%) =Z o Z.

Theorem 3.20. Let |d| < 1. Then, there is a number r > 0 such that for any (b,c) € {|b], || <
r}, the set of points which have bounded orbits in forward time is precisely equal to EY and the
non-wandering set is compact.
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