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Dynamics of Polynomial Automorphisms of C?:
Stable and unstable manifolds.
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Abstract

We study the structure of stable and unstable manifolds. Let a be
a saddle point and let W*“(a) be its unstable manifold. There exists a
biholomorphic mapping H : C — W¥(a). Then each of H = (hy,hs)
becomes a transcendental entire function. Such a function has many in-
teresting properties, so we are able to show the followings in this paper.
An arbitrary 1-dimensional algebraic variety intersects with W*(a) in-
finitely countable times. Yoccoz inequality for H~!(K) is satisfied under
a weaker condition than connectivity. Kt and W*(a) has an interesting
relation. -Moreover since the method to prove Yoccoz inequality is new
to polynomial dynamics of one variable, we .can obtain a new proof of an
improved Yoccoz inequality which holds with less assumptions.

1 Introduction

In this paper we use a notation z = (z,y) € C? and define 71(z) = z, m(2) =
y. Let p;j(y) be monic polynomials of degd; > 1 for j = 1,...,m. We call

- g5(z,y) = (y,p;(y) — ;) generalized Hénon mappings, where §; # 0. Moreover
we define

F=gpo0---0g1, 6=01"0m, d=di---dpm.

For convenience, we define F; = g;0---0g;.

In [FM] Friedland and Milnor classified polynomial automorphisms of C2
into three types: affine mapping, elementary mapping, composite of generalized
Hénon mappings. They investigated the former two mappings completely. So
we study the last one, i.e. F which we have defined.

Easily we obtain gj_l(:c, y) = (%pj () — %y, :1:) It is similar to g;(z,y) if z
and y are exchanged. Therefore once we obtain a property about F', immedi-
ately we can apply it to the case of F~! with a little modification. So we will
frequently omit the proofs.

1.1 Definitions and basic properties

We define K* = {z € C? | {F**(2) | n € N}is bounded}, J* = K=,
K=K"nK~,J=JtnJ". According to [BS1], they are closed invariant
sets.
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Let a be a k-periodic point and let elgenvalues of DF¥(a) be A\, X (]\| > I)\' -
We call a

e a source if |A[, |N| > 1,
e asink if 0 < |A|,|N] <1,
e asaddle point if 0 < [N] <1 < |\

Katok showed in [Ka] that there exist saddle points.

We can assume a is a fixed point, since we can replace F* by F.

Let d( , ) be an appropriate distance in C2. For X C C2, define the stable
set W*(X) and the unstable set W*(X) as follows:

W*(X) = {2 € C? | d(F"(2), F*(X)) - 0 (n — 00)},
W¥(X) = {z € C? | d(F™(z), F*(X)) » 0 (n — —o0)}.

The next theorem is well-known. See [MNTU, Theorem 6.4.3] for example. The
following equations act a main role in applying Nevanlinna theory to dynamical
systems. : :

Theorem 1.1. Assume a is a fized point of saddle type and A, N (|N| <1 < |A|)
are eigenvalues of DF(a). Then there exists a biholomorphic mapping H : C —
W*(a) such that

FoH(t)y=H(AX) (teC).
Similarly there is a biholomorphic mapping H' : C — W*(a) such that
FoH'(t)y=H'(\t) (teC).

By the theorem we can call stable/unstable set stable/unstable manifold
when a is a saddle point.

Remark 1.2. Even if a is not saddle type, sometimes similar theorems hold.
For ezample see [MNTU, Theorem 6.4.3] and [MNTU, Theorem 6.3.1]. There-
fore many assertions in this paper are true for such fized points.

Let us recall the notion of access. In general, let a be a fixed point and A
be a component of the compliment of (filled) Julia set (e.g. K*/~). Suppose
a € OA. Then we say that a is accessible from A if and only if there exists a
curve 7 : [0, 1] — A which suffices:

v(0) =a and ~«((0,1]) C A.

We call such v an access. Moreover we call v a periodic access, if it satisfies
F4(y) C vy or Fi(y) D+, where q € N is the period of A.

1.2 The main theorems

Of course we compute the order of H at first.

Theorem 2.1. Fach of H = (hl,hg) s a transcendental entire functzon and
they are of mean type of order p =logd/log|\|.

Using the transcendence, we obtain the following.
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Theorem 2.11. Let P(x,y) be a non-constant polynomial of two variables.
Then P o H has no Picard’s exceptional values, i.e. an arbitrary 1-dimensional
algebraic variety intersects with W*/*(a) infinitely countable times.

Suppose K=H ~1(K*). Then we have the following famous inequality
under a weaker assumption.

Theorem 3.9. (Yoccoz inequality). Assume K is bridged i.e. the compo-
nent of K containing 0 is not a point. Then the following holds.

Relog A > Ngq
|log A — 2mip/q|? ~ 2logd’

where we choose an appropriate branch of log A.

The above Yoccoz inequality does not need connectivity. Instead, we in-
troduce the notion of bridge whose property will be described in Proposition
3.8. It can be conclude that any components of K are compact unless Yoccoz
inequality holds.

In the sequel, we will investigate a relation between Kt and K.

Proposition 4.1. If a point zg € W*(a) is accessible from int Kt then K+ =
H~Y(K™) is bridged. Therefore Yoccoz inequality holds there.

By the argument, we will show in Example 4.2 that there exists W*(a) such
that any points on it are not accessible from int K+ though W?(a) is a dense
subset of dint K. ' :

At last we will prove an improved Yoccoz inequality in dynamics of one
variable. Let P(z) be a monic polynomial of one variable and let a be a repelling
fixed point whose multiplier is \. Then there exists an entire function ¢ such
that '

Pog(t) = ¢(At) and ¢(0)=a.

Let K be the filled Julia set and define K = ¢~!(K). Then the following holds.

Theorem 5.5. (Yoccoz inequality). Assume that K is bridged, i.e. the
component of K containing 0 is not a point. Then

Relog A S Ngq
|log A — 2mip/q|? — 2logd

holds, where we choose an appropriate branch of log A.

2 Transcendental entire function

We denote H = (h1, h) and H' = (h%, hy).
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2.1 Transcendence
We recall that the order p of f € O(C) is:

loglogsup,_, |f(z
p= Ordf = lim sup ) lp[a?[—r |f( )I .
r—00 Ogr

Moreover if p is finite, the type 7 is:

. log supy ;| |f(z)]
7 = lim sup .
r—00 rP

We say f is of minimum type, mean type, maximum type when 7 =0,0 < 7 <
00, T = 00, respectively.

Theorem 2.1. hy, ho, hi, h% are transcendental entire functions. They are of
mean type of orders:

logd
log ||’

p =ordh] =ordh) = _logd

=ordh; =ordhy = .
P or 1 or 2 _lOgIAII,

To prove the theorem, we quote the following.

Lemma 2.2. [BS1]. For R > 0, define Vt = {(z,y) € C? | |z| > R, |z| > ||},
V™ ={(z,y) €C* | |yl > R, |y| > |z}, V = {(z,y) € C* | |z| < R, |y| < R}.
Then for sufficiently large R > 0, ‘

Kt cvuvt, F(KH)cVuvt (G=1,...,m—-1),
K- cVuVv™, FE)CVUV™ (j=1,...,m—1).

Corollary 2.3. For arbitrary € > 0, there exists M > 0 such that
(1 =gzl — M < |yl < (L +e)le|™ + M (z,y) e K7,
(1—g)z|% =M < |yl < L +e)le|% + M (z,y) € F3(K7),
forj=1,...,.m—1.

Proof. For (z1,y1) € F;(K ™), there is (zo, yo) € Fj—1(K ™) such that (z1,y1) =
9;(z0,yo0). By Lemma 2.2, for arbitrary € > 0 there is M > 0 such that

ly1] = Ipj(yo) — d520] < |pj(yo)| + |6;] max{|yol, R}
< (L+8)yol% + M = (1+¢)ea| + M,

ly1l = |p;(¥0) — 0520l = |P;(¥o)| — |85 max{|yol, R}
> (1—e)lyol® — M = (1 —&)|z1|% — M.

d
To compute the order, we prepare the following. Take (zo, o) € K~ and define
Yn = 20 F™(z0,90), n=1,2,....

For simplicity, we set C. = (1 + &) dm+ds-dmt-+1,
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Lemma 2.4. For arbitrary € > 0, there exists M > 0 such that
lynl < C&" max{lyo|®", M¥"}  for any (zo,y0) € K~
Proof. We define a more detailed sequence as follows.
(z0,%0) F (Jo, T1) ¥ -+ + = (Tm—1, Urm)-

Note that (gj—1,7;) € Fj(K™) for j = 1,...,m. According to Corollary 2.3
there exists M > 1 such that

7] € (14 &) max{|g;—1|%, M%} j=1,...,m.
Then

|92 < (1 + €) max{|71|%, M}
< (14 &) max{((1 +€)[Fo|™)®, (1 + )M )%, M=}
= (14 )% max{|go|%, M2},

By repeating the procedure, we obtain
[4m| < Ce max{|go|?, M?}, ie. |y1| < Cemax{lyo|?, M7}.
We have by repeating similarly,

n—1 m—1_, . n n n n n
lyn| < CZ7 HTH H  max{jyo| T, MY} < CF max{jyo|", M}

O
Lemma 2.5. For arbitrary 0 < € < 1, there exists M > 0 such that
max{|yn|, CL, M} > CZ |yo|""  for any (zo,y0) € K~

Proof. We use the same notation {¥g, . .., ym} as above. According to Corollary

2.3, there exists M > 1/(1 — ¢)? such that
(1 =e)|Fj-11% < max{|7;],(1 —e)M%} j=1,...,m.
Then
(1 =) (1 = &)[Fol™)* < (1 - &)(max{|G1], (1 —e)MH })®

= max{(1 - &)|7 |, (1 — &) Mm%}
< max{[fl, (1 — ) M%, (1 — )%+ i}
= max{|7z|, (1 — g)% Tl pmdrd2},

By repeating the procedure, we obtain

C_c|o|? < max{|Fm|, C_cM?}, ie. C_c|yol® < max{|y1|,C_.M%}.
Then we have by repeating similarly,

m—1 m—2, .. n n—1 -2, ... n
CoHETT gy )¢ L4 A e ™y

< max{|yn|
CZ_lyol " < max{|yn], CL. M},
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Proof of Theorem 2.1. We assume the order of hy is p = logd/ log |\| and com-
pute the type. If it is of mean type, we see the tentative order is true and hs is
transcendental. 4 ,

At first, we show that the type is bounded. By the maximum principle and
Theorem 1.1 and Lemma 2.4 we can compute as follows because H(t) € K~

log max|sj—, |ha(t)]

p = lim sup
r—00 7P
log max;;|—|y\n ho(t
< lim sup 28 PXitl={An 1t |h2(t)]
n—oo IAnt0|p
. log maxis|=|ato| |72 © F™ 0 H(t)]
= lim sup AT
n—00 I tOl
<1 log max|s|=|xeo] CF max{|ha(t)|*", M"}
< lim sup
n—o00 d”|t0|”
_ log C¢ + log max|s=|x¢, max{|ha(t)], M} c o

~ Jtol?

In the calculation it is employed that |A|? = d.

Secondly, we show that the type is positive. hq is not constant because of
Corollary 2.3, so we can take the modulus of yo = hs(tg) as large as we like.
Therefore it can be assumed that

n

lyn] = C% lyo|®" n=1,2,...
by Lemma 2.5. Then we can compute similarly to the above.

log |ha(A™t0)] log |2 0 F™ o H(to)|

> limsu = lim su
p= n——>oop |)\nt0|p n—»oop |)\nt0|p
log C% |yo|?"  logC_. +1
> lim sup 28 =elbol” _ logCoc tloglyo| _
n—oo  d"[to]? [tol®
The rest of the proof is completed by the following lemma. O

Lemma 2.6. Let 7,7 be the types of hy, h} respectively. Then 0 < 7,7’ < 0o
and for j=0,1,...,m

log maxj|=r |71 0 F; o H(t)]

i —diy-eed

lirii.ljp TP 7 on
log maxs|— |2 0 F; 0 H(t

— L r[m2 0 Fy o H(t)| — d;--dor,
r—00 TP

. log max;|—, |71 0 Fj o H'(t)] T

lim sup = ’
m su > d;---dy

_ log maxyj—, |12 0 Fj o H'(t)] ul

lim sup ‘ = ’
rms00 re dj41---d

where dy = dp,, dm+1 = di. Especially, all are of mean type.
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Proof. For j =0,...,m, put
log maxjs|=, |m1 0 Fj 0 H(t)]

bl

a; = lim sup
J
r—00 rP

log max|s|—, T2 0 Fj o H(t)]

B; = lim sup
J
r—00 rf

By Corollary 2.3,

log maxy = {(1 + €)|m o Fj o H(t)|% + M}

< li
B; < im sup s
log maxs|—, |71 0 F; o H(t
= d; lim sup & ld r | J ®)l =d;a;.
r—00 TP

Moreover by definition of g;, we obtain 3; = aj ;1. Therefore we have
doag 2 Bo = a1, dio1 2 01 = a2, .., dm—10m-1 2 PBrn-1 = Qm.
On the other hand,

log max|y= |T10 Fo H(t)| log maxsj—, |h1(At)]

Q= lim sup = lim sup -
r—00 TP r—00 TP
log maxsj— |h1(t
= d lim sup g i=r [ (?)] = day.
r—00 TP

By putting the above inequalities and equations together, we have

1 1 d
> gy S>> = = ao.
O e T T Ay 1 de ™ dprdp 00
It has already known that 0 < 8y < oo. It concludes the assertion. O

Remark 2.7. Similarly, we can compute the lower order of ha, and it is the
same as the order. i.e.

.. .loglogmaxy— |h2| logd
lim inf = .
r—00 logr log |A|

2.2 Compositions with functions on C?
We shall investigate compositions of some kinds of functions and H.

Proposition 2.8. Let f € O(C?) be non-constant. Then f o H is a transcen-
dental entire function.

Proof. First we show that f o H(t) does not have t = oo as a pole. By Picard’s
theorem, for some yo € C there exist infinitely many t € C satisfying ho(t) = yo.
By Corollary 2.3, we see that {h1(t) | h2(t) = yo} is bounded. Then there is a
sequence {t;} such that t; — oo and a limit of H(t;) exists. Therefore the limit
of fo H(t;) also exists. This implies ¢ = oo is not a pole.

Secondly we prove that f o H is not constant. Assume fo H is constant. By
Picard’s theorem, for any y € C except for at most one point yg € C there exist
infinitely many ¢ satisfying ha(t) = y. By Corollary 2.3, {hi(t) | ho(t) = y} is



bounded. Therefore the set has at least one limit point. On the other hand,
f(h1(t),y) is constant where ho(t) = y. By uniqueness theorem we obtain that
f(-,y) is constant for each fixed y. Then f(-, ha(t)) becomes constant, so it is
concluded that f is a constant. O

Proposition 2.9. Let f be a non-constant rational function of two variables,
i.e. there are relatively prime polynomials P(z,y), Q(z,y) (Q # 0) which sat-
isfy f(z,y) = P(z,y)/Q(z,y). Then f o H is a transcendental meromorphic
function.

To prove the proposition we prepare a lemma.

Lemma 2.10. Let P(z,y) be a non-constant polynomial. Then K~ N P~1(0)
is compact unless empty.

Proof. Bedford and Smillie showed in [BS1, Proposition 4.2] that for sufficiently
large any n € N, the terms of highest total degree of P o F™(x,y) consist of
only power of y and some non-zero coefficient. Then we can have {(z,y) |
PoF™(z,y) =0} C VUV™*. Hence K~ N{(z,y) | PoF*(z,y) = 0} is compact.
Therefore

K™ n{(z,y) | P(z,y) =0} = K" NF" ({(z,y) | Po F™(z,y) = 0})
=F" (K~ n{(z,y) | Po F*(z,y) = 0})

is compact, too. O

Proof of Proposition 2.9. When @ is constant it reduces to Proposition 2.8. So
we assume () is non-constant. We will show that ¢ = oo is neither a pole nor a
regular point.

At first we prove f o H(t) doesn’t have t = oo as a pole. Since Q o H is
transcendental by Proposition 2.8, there exists gop # 0 such that infinitely many
t € C satisfies Q o H(t) = go by Picard’s theorem. Because the image of H is
included in K, it can be seen that {H(t) | Qo H(t) = go} is bounded according
to the previous lemma. P o H is bounded on the set though ¢ can tend to oo.
Therefore ¢t = oo isn’t a pole.

Similarly it can be shown that ¢t = oo is not zero point of f o H(t).

Otherwise assume that lim;_,, f 0o H(t) = ¢, (¢ # 0,00). Then if we define
flz,y) = f(z,y) — ¢, we see that f o H(t) has t = oo as a zero point. It
contradicts with the previous statement. O

Theorem 2.11. Let P(x,y) be a non-constant polynomial of two wvariables.
Then P o H has no Picard’s exceptional values, i.e. an arbitrary 1-dimensional
algebraic variety intersects with W*/(a) infinitely countable times. Further the
intersection is bounded. )

The theorem insists that C2 is filled with W*/%(a) in the sense of algebraic
variety.

To prove the theorem, we use the following lemma obtained easily by com-
bining [Nr, 21.] and [Nr, 59.] (or [O, Theorem 3.3] and [O, Theorem 9.2]).

Lemma 2.12. Let fi,..., fn, be meromorphic functions on C. Assume all of
them have finite zero points and finite poles. If c1,...,¢c, € C\ {0} satisfies

lel +"'+Cnfn:O,
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then for some h # k, fn/fr becomes a rational function.

Proof of Theorem 2.11. We imitate a technique used in [Nt, Chapter 5]. It suf-
ficient to show that a composition of each non-constant irreducible polynomial
and H has infinite zero points.

First we show that at most two non-constant irreducible and relatively prime
polynomials can have 0 as Picard’s exceptional value when they are composed
with H.

Let Py, P>, P3 be non-constant, irreducible and relatively prime polynomials
of two variables. Assume that P; o H, P,o H, P30 H have finite zero points. Put

wi = Py(h1,h2), wa = Pa(hi,h2);, w3z = P3(h1,he).

Then w1, we, w3 are entire functions which have finite zero points. On the other
hand, we can utilize the polynomial ring’s theory to eliminate h;, ho in the
above equations. In fact, by the system of resultants there exists a non-constant
polynomial @ which satisfies

Q(w1, w2, w3) = 0.

Then we have by expanding @,
Q(w1, w2, ws) = Y gizrwiwjuwi = 0.
1,4,k

Since each term has finite zero points and no poles, we can use the previous
lemma and obtain that there exist (i1, j1, k1) # (i2, j2, k2) such that

.%:1 wécl
s

whw
1 i1—% j1—3j ki—k
LUE L Py(H) T PAH) P P H)
is rational. But it contradicts with Proposition 2.9.

Secondly we prove that the composition of each non-constant irreducible
polynomial and H can not have 0 as Picard’s exceptional value.

Assume P is a non-constant irreducible polynomial and P o H has finite zero
points. Then

PoF"oH(t)=PoH(\"t) (n€Z)

also have 0 as Picard’s exceptional value. Moreover P o F™ are irreducible
because F is bijective. Bedford and Smillie showed in [BS1, Proposition 4.2] that
there is n € N such that the terms of highest total degree of Po F"(z, y) consist
of only power of y and some non-zero coefficient. Therefore P o F™, P o F™11,
P o F™*2? are different and irreducible and relatively prime. It contradicts with
the first assertion.

The last statement is clear because of Lemma 2.10. O

3 Unstable slice

We denote K = H “1(K*) = H71(K) and call it unstable slice. K is invariant
under t — At by Theorem 1.1. ‘
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3.1 Preliminaries

In [BS1] Bedford and Smillie showed that G*(2) = limp o 7= log™ ||F n( )| is
plurisubharmonic and continuous. It is positive and pluriharmonic in C2\ K+,

and vanishes on K+. Therefore K = {t € C | G+ o H(t) = 0}. For simplicity
we denote ut(t) = G o H(t). K has positive capacity in any neighborhood of
arbitrary point in K because ut is a non-negative subharmonic function. Since

Gt oF =d-GT, we have
ut (M) =d-ut(t) (teC).
We can see that maxjs—, u*(t) > 0 for any r > 0.

Proposition 3.1. For a subharmonic function u on C, we define its order as
ordu = limsup,._, . log maxj;—, u(t)/logr. Then

logd
" log\’

p=ordu"

Proof. Using the maximum principle, we can compute simply as follows.

log max gy xjn+r ut (t) logmaxyy—1 d®T'ut(t)  logd

< 1' == 1. frmmned
p = limsup log [AI" v nlog || log A’
> lim su log maxiyj=japm ut (t) i su log maxjy=; d"u*(¢)  logd
p= ISP log [\|? P nlog [N| “log N

O

Throughout this section, we use the following quoted from [H].

Suppose u(re®®) be an upper semi-continuous function of real §. Let D be
the set of all points re® such that u(re®®) has a positive lower bound in a
real neighborhood of 6y. Then we define 6(r) as follows. If u(t) > 0 for some
t € {|t| =r}\Dn{|t| =7}, then 6(r) = 0. If {|t| = r} C D or ulgj=r} =0,
then 6(r) = +oo. Otherwise, we define

1
0(r) = ;(the maximun length of the components of D N {|t| = r}).

Then the following holds. We call it Tsuji inequality according to Hayman.

Theorem 3.2. [H, Theorem 8.3.] (T'suji inequality). Let u be a non-negative
and non-constant subharmonic function on C. Define 6(r) as above.
Then for 1/e < k < 1 and ro < k%7, we have

KT d 1 — 3/2
log max u(t) > 77/ i log max u(t) + log L———f—)-———
[t]|=r ro/ kK 7"9( ) [t]|=ro 6

In the previous versions of this paper, [T, Theorem III. 68.] and the raw
he were used instead of the above inequality and u*. The author replaced
them since Bedford advised to use G+ o H, and Maegawa told that K may be
unbounded in C? case.

141



142

3.2 The case of broken K

Let us investigate the simplest case. For A C C and r > 0, define 14(r) as
follows: .

0 otherwise.

1A(r):{1 if An{|t| =7} #£0,

Theorem 3.3. Assume p < 1/2. Then for any ro > 0,

[Alro 9
__}_/ _K_(T_)dr < 2p.
log |A| Jr, r

Especially any compbnents of K are compact and C \ K is connected.

Proof. The essence of the proof is Wiman’s theorem. We use Tsuji inequality
which implies it. In fact, a precise form of Wiman’s theorem is proved in [T,
Theorem III. 72.].

If we apply Tsuji inequality to u™, we obtain

KT ] ~

KT d
log maxu™(t) > 7r/ T _ const. > / KO gr — const.
[t|=r 1 r(r) 1 2r

Take [ € N such that |A|'rg > 1. Then

= lim su > lim
p I?Liop logr - r_f;‘.fp logr 2r

1 K|)\|n7‘0 1 ~
> limsup ———— / K@ gy
n—oo log I/\In’l'o i)\llro 27‘

Con=1 APt 1.
= lim sup ! /I e —1K(T) dr
n—oo T ].Og |)\| -+ log To j=1 I}\|j7‘() 2r

—1 [Alro 1~ 1 [Alro 1 =~
= lim sup n / K g = / K@ g,
n—oo nlog|Al+logre /o, 2r log |A| Jr, 2r

log max¢=r u™(t) 1 /'" Iz dr
1

3.3 Yoccoz inequality

We examine the structure of the components of C\ K.
If the number of components of C\ K is infinite, the structure is too complex.
But fortunately we can obtain the following theorem.

Theorem 3.4. The number of components of (C\I? never exceeds max{2p,1}.
Therefore every component of C\ K is periodic.

The theorem is clear because of a variation of Denjoy-Carleman-Ahlfors The-
orem, i.e. for an arbitrary non-negative subharmonic function v on C the number
of the components of {t € C | u(t) > 0} does not exceed max{2p,1}. But we
prepare the following as a guide to prove Yoccoz inequality.
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Proof. Assume the number of the components is greater than 1. We take n
components Uy, ..., U,, where 1 < n < 0o. We want to show n < 2p.

Note that C\ K = {u*(t) > 0}. We put u;(t) = ut(t) for t € U;, and
u;(t) = 0 otherwise. Then {u;}}_; are subharmonic. Define §;(r) for each u,;.
We apply Tsuji inequality to u;, we have

1 « I~ [ dr
logmaxut(t) > = ) logmaxu;(t) > = 7T/ ——— — const.
n ; I n ; , r0i(r)

[t|=r |t|=r

Since n > 2, 3 6; < 27. By Schwarz inequality, we have

n? = (Z 5_23)2 <(X0) (Z%) s%Z%.

Therefore we obtain

log maxu™(t) > " Jog k7 — const.
[t|=r 2

By the definition of p, we can conclude p > n/2 easily. g

Corollary 3.5. 0 is accessible from arbitrary component of C\ K. Moreover
the access vy can be periodic, i.e. if q is the period of the component, -y satisfies

([0, 1]) € A7- ([0, 1]).
Especially, every saddle point is accessible from C?\ K*.

Proof. Take arbitrary to € C\ K and fix it. We will show there exists the above
« such that v(1) = to.

Theorem 3.4 implies that all components of C \ K are periodic of the same
period. Let g be the period. Then to/\? is also contained in the same compo-
nent. Therefore there exists a curve v : [3,1] — C \ K such that v(1) = to and
1(3) = to/A%.

Let us extend v as follows. For 0 < £ < 1, we define

©=1" we=0,
7= w=7(2"¢) for n € NU {0} such that 3 <27¢ < 1.

Then + is well-defined and continuous, and it satisfies v([0, 1]) C A?v([0,1]). O

Let us prepare for Yoccoz inequality. Theorem 3.4 tells that all components
of C\ K are periodic and have the same period under t — At.

Definition 3.6. [BxH]. Assume C\ K has ¢ components. Because all compo-
nents have the same period, suppose a component move to p’-th component under
t — At, counting counterclockwise, where 0 < p’ < q’. Then let p'/q' = p/q by
reduction and let N be the greatest common divider of p’ and ¢'.

For example, see the figure 1. The bold curves show a model of K. C \ K
has ¢’ = 6 components. The three arrows represent t — At. Each component
moves to p’ = 2-nd component counting counterclockwise. Then the period of
each component is ¢ = 3 and there are N = 2 cycles. Each component moves
p = 1-st component in the cycle.
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Figure 1: A model of an unstable slice.

Definition 3.7. Let A be a subset of C. When the component of A containing
0 is unbounded, we call the component a bridge. If A has a bridge, we say that
A is bridged.

Proposition 3.8. The following three conditions are equivalent.
(1) K is bridged.
(2) The component of K containing 0 is not a point.

(3) Some component of K is unbounded.

Proof. In (2), let A be the component containing 0. Since A is invariant under
t — At, the left side of

w ~
UNzAckK
=0
is connected and unbounded. It implies (1).
In (3), let A be an unbounded component. Define

oo, 1 _
B=Ugack.

B contains 0. Let B(0) be its component contalmng 0. Let us show B(0) is
unbounded. Assume B(0) is compact, then %here is a closed curve I' which
surrounds B(0) and never intersects B. But 54 NT # @ for sufficiently large
j € N. It contradicts. O

In [BxH] Buff and Hubbard have proved Yoccoz inequality on W*(a) when
K is connected. The following theorem is slightly improved because it does not
need the connectivity. Instead, we need the notion of bridge. The figure 2 is a
case in which an unstable slice is not connected but bridged. The right vertex is
the origin. Ushiki gave the Hénon map in a videocassette. But its bridgedness
and non-connectedness have not been proved mathematically yet.

Theorem 3.9. (Yoccoz inequality). Assume that K is bridged, i.e. the com-
ponent of K containing 0 is not a point. Then

Relog A > Ngq
|log A — 27ip/q|? — 2logd

holds, where we choose an appropriate branch of log \.



Figure 2: An unstable slice for F'(z,y) = (y,y? — 0.9 + 0.4z).

Remark 3.10. In Theorem 3.3, we have shown a sufficiency criterion that all
components of K become compact. The above theorem improves the criterion
slightly. In fact, given d, X. If any p,q, N cannot satisfy Yoccoz inequality, there
exist no bridges, i.e. any components of K are compact.

After the author had proved Theorem 3.4, Shishikura advised to geheralize
the method to prove Yoccoz inequality. Therefore the following proof is similar
to the proof of Theorem 3.4 and is independent of proofs by torus.

Proof. The way to prove is to transform t-plane into s-plane by loganthm and
apply Tsuji inequality on s-plane.

C\ K can be classified into cycles. Then we take one component from each
cycle and name them Uy, ..., Uy.

Define v(t) = max{u*(t)—1,0} and D = {t € C | v(t) > 0}. Let Dy, ..., Dy
be components of D such that Dj is a subset of U;. Define t = €, i.e. s = logt.
Let Dj; be a connected image of each D;. Since K is bridged, the transformation
is well-defined.

Then

D} 3 s+ s+qlog A — 2nip € D (3.1)

is well-defined for an appropriate branch of log . In fact, see Figure 3. In the
right, the orbit of D’ and their other branches are illustrated. Suppose A moves
to B in the same component on ¢-plane by multiplying by A?. To move A to B
on s-plane, we should add glog A to s. Moreover, if we subtract 27ip, B moves
to B’ and returns to the same component involving A.

Therefore, each D;- is a domain distributing along a line whose direction is
log A — 2mip/q, i.e.

Relog A
|log A — 2mip/q|

Res — |s|| is bounded for s € UD; (3.2)
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Figure 3: t-plane and s-plane.

On the other hand, since a circle in t-plane centered at 0 is mapped to a
27-length segment parallel to the imaginary axis in s-plane, the ordinary line
measure of {Res = const.} N |J; D; is at most 27/q in average. Precisely
speaking, if we let len() be the line measure, for any £ € R

N g-1
len [ {Res=¢}N U U log(A"U;) | < 2,

j=1n=0

because {A\"U;} are mutually disjoint forn =0,...,¢q~1,j =1,..., N. Further
we employ (3.1), we can see that Uj is invariant under s +— s+ glog A — 2mip,
so we obtain by integration

£+qRelog A N ¢-1
2w - qRelog A > / len | {Res=¢&}nN U U log(A\"Uj) | d§
€

j=1n=0

&+gRelog A N
—q / len [ {Res =€} | log(U}) | de
3

j=1
£4+qRelog A N

Zq/ len {Res:g}ﬂUD; de.
3 j=1

Therefore

1 £+q Relog A N , : o
] - : < =
qRelog)\_/g en| {Res =£}n UDJ = q

Jj=1

We define subharmonic functions {w;}}_; on s-plane. w;(s) = w(e®) for
t € D7, and w;(s) = 0 otherwise. Now, we apply Tsuji inequality to w;(s).

N N L
Zlog maxw;(s) > Z’R‘/ — const., (3.3)
2" ),

perSEL
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Figure 4: The area of |J D;

where we define 6;(r) for each D}. Note that r = |s|. We can have 6;(r) < oo
for sufficiently large 7.
We compute the right side at first. By Schwarz inequality, we obtain

2
v (S Ye) <(£9) (Z5).
v ([ R < ([ e ([ )
e f 50 2 /zdem = WN zz(%j_(:)zr

Recall (3.2) and len ({Res = const.} N|J D)) < 2m/q in average. See the figure
4. Then we find that the area of |JD; up to the radius r is approximately

Therefore

bounded by the area of | J D; up to the real coordinate lk)—gp:\-e—_—]%%r. Therefore
we obtain
KT —nelog A .
jlog A—2mip/ql|
/ ZTOJ- (r)dr < / len ({Res =£iN UD;) d¢ + const.
1
2m Relog A

< r -+ const.
g [log X — 2mip/q| " -

Hence, the right side of (3.3) can be estimated as:

dr N2q| log A — 2mip/q| (kr —1)2
Z _/ 70, ( r) 2Relog )\ K(r + const.) const. (3-4)

Secondly, let us estimate the left side of (3.3). Note that |e®| = eRe

N
lo maxw < Nlo max  v(e®
> logmaucu,() < Nlog _ max  v(e’)
J (3.5)

1 + (S
< max NRes-——-Oglu Gl
sel Dj,|s|=r log |6s|



Figure 5: An unstable slice for F(z,y) = (y,y? — 1.37 — 0.36z).

We put the above inequalities (3.3), (3.4), (3.5) together and obtain

1 +(,8 2 _ . 2
max NRes.—2Y (€°) > NZgllog A — 2mip/q| (kr —1)
SEU D;:ISlzr lOg lesl 2 Re lOg/\ Ii(’l" + Const')

— const.

Divide the both sides by r and let » — 0o, we have

2 _ .
Relog/\‘ ordut > N<g|log A — 27ip/q| ,
| log A — 2mip/q| 2Relog A

because Res/|s| tends to RelogA/|log A — 27ip/q|. Then we employ that
ordu™ =logd/ Relog A and that & is arbitrary (1/e < k < 1), we obtain
Nlogd S N2q|log A\ — 27ip/q|
|log A — 2mip/q| ~ 2Relog A ’

It reduces to Yoccoz inequality. O

It should be mentioned that Yoccoz inequality has a deep relation with
Ahlfors’ Spiral Theorem. See [H, Theorem 8.21.].

We have shown that if K is bridged then Yoccoz inequality holds. But the
converse is not true. In fact, Buff and Hubbard gave an example in [BxH] in
which Yoccoz inequality holds and any components of K are compact. The
Hénon map is

F(z,y) = (y,y? — 1.37 — 0.36z).

It has two fixed points, x = y = —0.674 and z = y = 2.034. When z = y =
2.034, the eigenvalues of DF are A = 3.977 and X’ = 0.091. Therefore the point
is of saddle type. On the other hand, the order is:
logd 1
= —— =0.502 > —.

P log | Al 2
We can see that Yoccoz inequality holds in this case. But according to the figure
5, any component of K are compact. The right vertex is the origin.

4 Collision

Let a be a fixed point of saddle type. Suppose a connected closed subset of K+
meets W*(a). Then by iteration the set runs to a along W*(a) and collides with
W(a) as a limit. Marks of the set will be left on the unstable manifold. The
marks are subsets of K. In this section we investigate how the set collides.
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4.1 Explanation

Let us describe precisely. Assume zg € W*(a) is accessible from int K7, i.e.
there exists a curve 7 : [0,1] — K™ such that

¥(0) =z and ~((0,1]) CintK™.

The 2 runs to a along W#(a) by iteration.

On the other hand, F' can be regularized around a as follows. Refer to
[MNTU, Theorem 6.4.1]. There exists a local biholomorphic mapping ® such
that ®(0) = a and it satisfies

Fla,y) = 1o Fod(z,y) = Nz + aya(z,y), Ay + 2yb(z,y)  (4.1)

in a neighborhood of 0, where A, A’ (0 < || < 1 <|A|) are eigenvalues of DF(a)
and a, (3 are holomorphlc functions around 0. We may assume Fis holomorphic

in a neighborhood of D for some 9 > 0, where D, = {z € C | |z| < 7o}
Clearly we have ®(D,, x {0}) C W#(a) and ®({0} x D,,) C W*(a).
Let us study the behavior of F™(v). For some ng, F™(zy) € ®(D,, x {0}).

We denote (x9,0) = &1 o F™0(2). Define L; C ﬁio (j=0,1,...) as follows.

Lo = the component of &~ (F™(y) N @(ﬁfo)) containing (xo,0),
L+, = the component of F(Lj) N ﬁiﬂ containing F/+1(zo,0).

Suppose 7o > 0 is sufficiently small. By the regular form (4.1), it can be
seen that L; approaches y-axis uniformly when j tends to oco. In fact choose

small € > 0 and ro > 0 so that ||+ rola(z,y)| <1 —¢ holds on ID . Then
Nz + zya(z, y)| < (N + rolalz, y)) x| < (1 —¢)lxl.

It reduces to the assertion. Furthermore L; stretches, i.e. there is Jjo for any
J 2 jo, max |ma(L;)| = 7o. It can be shown similarly.
Define L C {0} x D,, as follows.

2 € L<=liminfd(z,L;) =0<=>2 € ﬂ UL

—00
J n=0j=n

It is clear that ®(L) C K. The following holds.

Proposition 4.1. Assume a point zo € W*(a) is accessible from int K *. Then
L is a connected subset of {0} x D,,,. Hence KJr = H~Y(K™) is bridged. There-
fore Yoccoz inequality holds there.

Proof. Assume L is disconnected. Because L is a compact set contained in y-
axis, the components can be separated by a closed curve I' contained in y-axis.
Take z; € L such that z; and 0 are in opposite sides of I' each other. By
definition we can choose a subsequence {L;, } so that

d(z1,L;,) < d(zl,I‘) (k € N).
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By the way, because {L;, } is connected, we have
(ﬁm X 7T2(F)) N ij # 0

for any k € N. Therefore it can be concluded that I' N L # 0 because L;
approaches y-axis uniformly. It contradicts.
Because ®(L) C K* and ®(L) C W*(a) we have

H'o®(L)c HY(K*)=K*.

Hlo®(L)isa connected set which contains 0 and is not a point. Therefore
by Proposition 3.8, K+ is bridged. O

4.2 Example
Example 4.2. Let us study the Hénon map:

F(z,y) = (y,y° — 2 —0.7z).

We show that it has a stable manifold W*(a) of a fixed point a of saddle type,
which satisfies that:

(1) No points on W*(a) are accessible from int KT,
(2) W*(a) is dense in dint K.

Especially a is not accessible from int Kt. It contrasts sharply with Corollary
3.5. :
In fact, the Hénon map has two fixed points, z = y = —0.8 and z = y = 2.5.
When z = y = —0.8, the eigenvalues of DF are A = —0.8 + 0.245; and
X' = —0.8 —0.245:. The point is a sink. Let U be the basin of the sink. In [BS2]
Bedford and Smillie showed that J* = U and J* = W5(a). Therefore W*(a)
is dense in dint K. '

When z = y = 2.5, A = 4.856, ' = 0.144. Therefore the point is of saddle
type. On the other hand, the order is:

logd 1
= =04 —.
P log ] 0.439 < 5

Theorem 3.3 tells that the unstable slice is not bridged. By Proposition 4.1,
every point on W¥(a) is not accessible from int K.
The figure 6 is the slice of the KT by z = —0.8.

5 Yoccoz inequality in dynamics of one variable

In the third section, we have shown Yoccoz inequality on W*(a) without the
hypothesis of connectivity. In this section we apply the method to prove an
improved Yoccoz inequality of one variable.



151

Figure 6: The slice of K+ of F(z,y) = (y,4%> — 2 — 0.7z) by z = —0.8.

5.1 Statements

Suppose P(z) is a monic polynomial of one variable of degree d > 2. Let us

study the dynamics P : C — C. Let a be a repelling fixed point whose multiplier

DP(a) = A € C\D, where D = {x € C | |z] < 1}. In the sequel, most proofs

are omitted. |
It is well-known that there exists ¢ € O(C) such that

Pog(t)=¢(At) and ¢(0)=a.

Theorem 5.1. ¢ is a transcendental entire function and

Moreover ¢ is of mean type.

Let K be the filled Julia set of P and define K = ¢~(K). K is invariant
under ¢ — At.

Theorem 5.2. Assume p < 1/2. Then for any ro >0

1 |Alro 1g(r)
dr <2
log |A| _/ro r "= b

where

1,~<<r>={1 if Kn{jt|=r}#0,

0 otherwise.

Especially any components of K are compact and C \ K is connected.

Theorem 5.3. The number of components of C\ K never ezceeds max{2p, 1}.
Therefore every component of C\ K is periodic.

Corollary 5.4. 0 is accessible from arbitrary component of C\ K. Therefore
a is accessible from C\ K. : .



The above assertions have been already shown by Erémenko and Levin in
[EL]. They also use the equation P o ¢(t) = ¢(At).

The previous theorem implies that all components of C \ K have the same
period ¢g. Choose g components which move each other under ¢ — At. Let a
component move to p-th in ¢ components counting counterclockwise. Let N be
the number of cycles.

Theorem 5.5. (Yoccoz inequality). Assume that K is bridged, i.e. the com-
ponent of K containing 0 is not a point. Then

Relog A > Ng
|log A — 27ip/q|? — 2logd

holds, where we choose an appropriate branch of log A.

The proof is the same as Theorem 3.9. Refer to Pi‘oposition 3.8, too.

5.2 Applications

We have stripped the connectivity crlterlon from Yoccoz inequality. Therefore
we can obtain several assertions.

Theorem 5.6. Let P be a polynomial and let a be a repelling fixed point. If P
does not satisfy Yoccoz inequality at a then the component of the filled Julia set
containing a consists of a point.

Proof. It is clear because of the fact that ¢ is locally conformal at 0 and Theorem
5.9. O

Proposition 5.7. Let P(x) be a monic cubic polynomial. Then all non-trivial
components of filled Julia set are preperiodic. If any fized points do not satisfy
Yoccoz inequality, then no non-trivial components of filled Julia set are invari-
ant, i.e. period > 2.

Proof. In [BbH], Branner and Hubbard have shown the followings. When P is
cubic, all non-trivial components of filled Julia set are preperiodic . Let X be
a non-trivial periodic component of filled Julia set of P and let k be its period.
Then there exists a polynomial-like mapping (V, U, P¥) such that the filled Julia
set of (V,U, P¥) is X and (V, U, P¥) is hybrid equivalent to z? + ¢ where c is in
Mandelbrot set.

Therefore if X is invariant, X has a repelling or parabolic fixed point. The
hypothesis is that any fixed points don’t suffice Yoccoz inequality, so X can
contain neither repelling nor parabolic fixed points by the previous theorem.

Hence no non-trivial components of filled Julia set are invariant. O
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