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On Level Clustering in Regular ySpectra
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1 Introduction.

Let H(h) be the quantum Hamiltonian describing a-bounded, isolated physical system of
finite degrees of freedom. ( A is the Planck’s constant.) Then the spectrum of H(h) is
purely discrete, consisting of energy levels {E,(h)},>1 . Suppose further that H(h) , or
its spectrum itself, is obtained by quantizing (in a certain way) the classical Hamiltonian
H(p, q) defining the system. Now the classical dynamical system corresponding to H(p, q)
may belong to one of two extreme cases of being completely integrable or chaotic. It
was Percival [12] who proposed to distinguish the spectrum of H(#A) according to the
category to which the classical counterpart of H(h) belongs. He called the spectrum
regular [resp. irregular] if H(p,q) is integrable [resp. chaotic], and discussed possible
difference between these two kinds of spectra. Later, Berry and Tabor [2] argued that
regular and irregular spectra are distinguished by looking at the probability distribution
of the spacing between adjacent energy levels. Namely they argued that in the regular
spectra, the level spacing obeys the exponential distribution e~*dt , so that the spectrum
looks like a typical realization of the Poisson point process, which is the phenomenon
they called “level clustering 7. On the other hand, they conjectured that in the irregular
spectra, the level spacing distribution p(¢)dt satisfies p(t) ~ const.t” ;¢\ 0, with v > 0
(“level repulsion 7). Hence irregular spectra should typically look like the spectra of large
random matrices. This conjecture is supported by numerical studies performed later. (See
e.g. [3] for a review.)

However, neither the precise meaning of the “probability distribution ”of level spacing,
nor a mathematical formulation of the statistics for the spectrum of H(k) —the level
statistics—in general seems to have been explicitly given in physics litterature, although
some important ideas are stated in [2]. The present paper, which is an elaboration of a
part of the author’s previous note [10], aims at giving a mathematical formulation of level
statistics based on the idea of Berry and Tabor, and applying it to regular spectra. In §2,
we give the definition of strict (Definition 1) and wide (Definition 2) sense level clustering,
and prove some preliminary results for later references. These results are formulated in
analogy with corresponding propositions in the theory of stationary point processes. In
§3, we shall apply the level statistics thus formulated to regular spectra, and discuss
the closely related theorems by Sinai [15] and Major [7]. We argue that although it is
probably very difficult to apply theorems of Sinai and Major to prove the strict sense

*e-mail: minami@sakura.cc.tsukuba.ac jp



114

level clustering in generic regular spectra, there is some hope in proving the wide sense
level clustering for some concrete Hamiltonian such as rectangular billiard. Finally in §4,
we shall propose another formulation of level statistics, and with an example, shall argue
again that “level clustering "should not always mean strict Poissonian property of the
spectrum.

2 Strict and wide sense level clustering.

2.1 The unfolding of Berry and Tabor.

When one speaks of the “probability distribution ”of the spacing of the adjacent energy
levels of H(R) , the follwing two questions immediately arise:

1. There is no stochasticity in H(k) , hence in {£,(h)},>; too. Therfore, it will be
necessary to take the semiclassical limit &\, 0 to have sufficiently many levels in a
fixed energy intervals, and we will have to take statistics among these levels.

2. The mean level density is not uniform over the entire spectrum, so that the statistical
property of E,,; — E, may not be uniform in n . Hence we will need to “unfold
"the spectrum so that it will look like a uniformly distributed sequence.

Inspired by [2], we make a normalization of the spectrum {E,(k)},>, of H(k) which
meets the above two requirements simultaneously. For this purpose, we make the following
assumptions:

(A1) All levels are non-degenerate and F, (k) >0 ;
(A2) E,(h) ;0 monotonically as A\, 0 ;
(A3) For each fixed £ > 0, there is a constant v(£) > 0 such that

Nu(E) = #n > 1| Ey(h) < E} ~ o(E)A™ (R 0) . (1)

Let us take &2 > 0 , which we shall fix throughout. By (A1) and (A2), we can define
lij = h;j(E) as the unique solution of the equation F;(h) = E . If we define

A = v(E)h;(E)™, (2)
then from (A3), it is easily seen that
ML) =G> 1[N <L}~ L (L oo). (3)

Thus we have obtained a sequence {A}; which has asymptotically uniform distribution.
We will call the A;’s the unfolded levels, and call the above procedure “the unfolding of
Berry and Tabor 7. (It is also called “quantization of Planck’s constant "in [2].)
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2.2 Statistics for asymptotically uniformly distributed sequences.

In this subsection, we suppose that {A;}2, is simply a strictly increasing sequence of real
numbers satisfying (3) and Ao = 0, but still call X; the “j-th level 7. We introduce the
following notation:

N(t)=N(te)=t{7 21| N e (bt+d) =) lpuad) (4)
L
m@i%—%A Ly dt (5)
L
et = [ (M) a=% (1) a0 g
v ' ik

where
(1) =gii-0G=k+1); 7

and finally

. _ﬁ{jzll)‘ng»)\jH_)\jSC}
plal)= G>1h <) ' (8)

Here ¢ >0 and £ =0,1,2,... .

These notions have the following obvious probabilistic meanings. N(t;c) is nothing
but the number of levels in the interval (¢,¢ + ¢] . 7wi(c; L) is the probability that this
interval catches exactly k levels when ¢ is randomly chosen from (0, L] according to the
uniform distribution, and p(¢; L) 1s the k-th factorial moment of the random varible
N(:;ic) . Finally, p(c; L) is the relative frequency of those pairs of levels below L which
have spacing not exceeding c .

We also write

fix(c) = limsup pug(c; L) 5 p, (c) = liminf px(e; L) (9)
Lo - Lo
p(e) =limsupp(c; L) ; p(c) = liminf p(c; L) , (10)
Lo - L—oo
and also
mi(e) = lim mi(e; L) 5 pale) = lim pale; L) 5 ple) = lim p(e; L) (11)

~ whenever these limits exist. This p(c) will be called the limiting level spacing distribution
function.

Proposition 1 Under (8), we have uy(c) = ¢ for any ¢ >0 .
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Proof. By the definition,

L
pi(e L) = %Z/O 1pp,—en,)(t)dt - (12)

I :
[ e fe<A; <L
/D 1y, —ey)(t)dt = { 0, f A >L+c

and

L
/ ]_[/\]._CYAJY)(t)dt <c, if /\] <c¢c or L« /\j < L+c.
0
Hence for each fixed ¢ > 0 , it is obvious that

n(L)
L

(e, L) ~ ¢ as L — o0,

so that

:C,

. . n(L
pa(e) = Jim pr(e: L) = e Jim "

which was to be proved.

Now we give a definition of {A,}’s looking like Poisson point process in the following
way:

Definition 1 We shall say that one has the strict sense level clustering if

Ck-

mr(c) = Lh_)rrolo mi(e; L) = e_CH (13)

holds for each ¢ >0 and k >0 .

Note that if {);};>1 actually is the realization of Poisson point process on [0, 00) , then
by the ergodic theorem, one has the strict sense level clustering with probability one.
~ Obviously, the strict sense level clustering is equivalent to the weak convergence of the
family of probability distributions P(c; L) = {mi(c; L)}52, (L > 0) , on Z to the Poisson
distribution {e™°c*/k!}$, as L — oo . As is well known in elementary probability theory.
a sufficient condition for this weak convergence is that the factorial moments pi(c; L) of
all order of P(c; L) converges to those corresponding to the Poisson distribution. Namely
we have

Proposition 2 If

Ck

pe(e) = lim py(e L) = (14)

holds for each ¢ > 0 and k = 1,2,... , then one has the strict sense level clustering.
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If one has the strict sense level clustering, then the limiting level spacing distribution
exists and is the exponential distribution e™°de . This is a direct consequence of the
following more general proposition: ‘

Proposition 3 If mo(c) = limp o0 mo(c; L) exists and is differentiable with respect to c |
then p(c) = impe. p(c; L) also exists, and is given by

plc) =1+ %ﬂo(c) : (15)

In fact, if the strict sense level clustering holds, then one has in particular mo(c) = e™¢

. Hence by the above proposition, p(c¢) =1 —¢7°.

In §1 of [14], Sinai gave two definitions of {A;}’s similarity to the Poisson point process.
One is the strict sense level clustering as defined above, and the other is the existence of
the limiting level spacing distribution p(c) and its equality to the exponential distribution.
The above proposition shows that these two definitions are not independent.

Proof of Proposition 3. If A; < L and Aj41 — A; > ¢, then for any ¢ € (0, ¢) ‘, we have the

implication

te,—6)) = N(#8) >0, Nt+dc—06) =0,

where the intervals [\; — 4, );) are disjoint. Hence if we set
n(e D) =45 > 1|\ <L, Ayr—A > c},

then we have

. L
én(g L) = Z / 1[)\J_5’>\j)(t)dt
. 5

AJSL 5 )\j+1—)\J->C -

.
< 5+/ L{N (1:¢)>0,N(t-+8:c—8)=0} (1)t
0

L L
S / LN (t4550-5)=03 (t)dt = / Liv(=oy(t)dt
0 0

namely

Lo (L) -

or

Letting 6 \, 0 , we arrive at
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On the other hand, if N(¢;6) > 0 and N(t +d;¢) = 0, then there is a A; € (¢,1 + ]
such that A,4; — A, > ¢ . Hence the set

{t €0, L]

N(t;6) >0, N(t+6;¢) =0}
is the union of finitely many disjoint intervals [, each with length no greater than ¢ , and

for each I, , there corresponds a A\; < L + J satisfying A;41 — A; > ¢ . Hence the number
of these intervals does not exceed 1 + n(c¢; L) , and so :

L
5(1+‘71<C§L)) > / 1{N(t;5)>0,N(t+5;c):U}(t)dt
0

L L
= / LN (t48:0)=0} (1) dt —/ Lin(tcts)=0y (t)dt .
4] ’ 0

Dividing by L and letting L — oo , we have

Slimint i(LL)) = 3(1 = ple)) = mole) — mofe + 5)
or ﬁ(c) <1+ WO(C + 5) - Wu(C)

Again letting § \, 0 , we get

completing the proof.

As will be explained in §3, it seems to be a difficult problem to prove the strict sense
level clustering for any concrete Hamiltonian. In fact, no explicit example of regular
spectrum is known which shows strict sense level clustering. Moreover, as was shown in [8]
and will be discussed in §4, there is an example of one-dimensional Hamiltonian for which
the level statistics, in a somewhat different formulation, can be rigorously performed, but
the obtained level spacing distribution is different from the exponential distribution. In
that case, we have still p'(04) > 0, so that we should say that the level clustering is taking
place, and if we take the high disorder limit in the system, then the data p(c) converges
to the distribution function of e~¢dc¢ . This situation suggests us that the strict sense level
clustering can only be proved in some ideal limit, and generically level clustering should
not mean the strict Poissonian character of the unfolded spectrum. Thus we are led to
define the notion of level clustering in much weaker sense, nevertheless retaining some
physical significance. Taking the broadest statistical sense of the words “clustering ”and
“repulsion 7, we now make the following definition.

Definition 2 We shall say that one has the wide sense level clustering [resp. repulsion]

of
ple)

) . v
liminf == >0 |resp. limsup——= =0 (16)
e\O C c\O c

holds.
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We can give a criteria for the wide sense repulsion and clustering in terms of ug(c) ,
k <3 . Recall that we always have ui(c) = c.

Proposition 4 (i) If ia(c) = o(c?) as ¢ \, 0, then one has the wide sense level repulsion.

(i) If py(c) = %Cz for any ¢ > 0 and jis(c) = o(c?) as ¢ \y 0 , then one has the wide
sense level clustering '

Proof. Successively applying the equality

pk(c;L):Z<£>7rj(c;L) , k>1,

2k
we obtain
k o0 k
L=mlg L) =Y mleL) =Y (-1 u(a L)+ Y > (<1) ( ) mi(¢; L)
121 7=1 j=k+1 =0
for all k > 1. But sinse
: 1
St (4) = (V) iz k2o,
=0 .
we have the inequality
mo(6; L) < 1= pu(e; L) + pale; L) = - + (=1) (e L) (17)
when k is even and ;
mo(e; L) > 1= pa(e; L) + pale; L) = -+ -+ (=1)*us(e; L) (18)

when & is odd.
On the other hand, if L >0, N =n(L)+ 1, namely Ay < L < Any41, then

N-1

LT['()(C; L) = Z()\n_l_l - An — C)+ + {(/\]\7+1 - /\j\?’ - C)+ AN (L - )\]\7)}
n=0
N-1 N-1
= D O =da— )+ {e= Cupn = Aa)ly
n=0 n=0

+{()\N+l — )\N - C)+ A (L — )‘N)}
Ay —cN + cﬁ{n <N — 1|/\n+1 — A < C} + (L - )\N)
= L—cN+clp(gL).

IN

Dividing both sides by L and letting L — oo , we obtain from (18),
L+eple)—c > molo)
> 1= p(c) + pa(c) — fis(c)

1. .
= 1—c+§c‘2+o(cz),
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when the conditions of (ii) hold.
Hence we get

1
->0,
N C— 2

namely the wide sense level clustering.
Now suppose the condition of (i) hold. For each 0 < § < 1, one has

1
liminf —p(c) >

N-1 N-1
Lmo(c; L) = Z()‘nH — A=)+ Z{C = (Ant1 — An) by
n=0 n=0

H(ANs1 = Av =) AL = An)}
> Awv—cN+ DY {e=(up =M+ (L -y -0

)\n+1—An55C

> (L—c¢)=cN +(1-d)cp(dc; L) .
Again dividing by L and letting L — oo and noting (17),

L+ (1 =68)ep(de) —c < Tolc)
< 1= m(e) + o)
= 1—c+o(c?) .

Hence we have

1 1
limsup —p(¢) = limsup —p(d¢) =0,
e\ C Ny oc

namely the wide sense level repulsion.

At this point, let us discuss the relation of the factorial moment p(c) to the so called
k-th correlation Ry(c) defined by

Ri(c) = lim Ry(c; L) ; (19)
L—oo
Rk(C;L) = ﬁ{()‘jlv" 7)‘jk) ‘ /\jl << )‘jk <L ’ )‘jk _/\jl < C} s (20)

whenever the limit exists. In particular, Ry(c) is called the pair correlation (see e.g. [13]).

Proposition 5 (i) If ui(c) exists for each ¢ > 0 and is differentiable with respect to c ,
then Ry (c) also exists and

Re) = palc) e1)

(i) If Ry(c) exists for each ¢ > 0, then pi(c) also exists and

.L )
ue) = [ Fu(e)ae (22)
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Proof. Since

< N'I‘E?t) ) - Z 1(t.,t+c]()‘j1) T l(m'w]()\jk)

)\“<...<)\Jk
= Z 1[/\]1—c,>\11)(t) e l[k]k—c)\]k)(t) )
’\Jl<m<)‘1k
we can compute
Lpe(s L) = > |0, 2N [y, = )y,)
Ajy <<y
= > {ZAN) - -k
)‘J1<'"<)‘Jk »
- Z (c— Aje + )‘jl)+
x\Jl<~-<x\Jk;

Aj) SLAj, Ze

LD DR PV FESD D

L<,\j1<...<,\]k )\“<...<)\Jk<c

et Z (c——‘)\./k—‘lh)\]l)‘f'

Mgy <<y <L

+1D 0 (e=A At DL (e=X, + D)
A“<...</\]k; L<’\31<"'<)‘qu

Xy SL<A,

+ Z [’\jl - (C - /\jk + /\j1)+] :

/\Jl <...<)\jk <c

The third term is independent of L | hence is O(1) as L — oo . On the other hand, the
second term, which we denote by M(L) , can be estimated in two ways. To begin with,
we have

AJ(L) < Z (C - )‘jk + )‘jl)+

Ajl<~-<A]k:
’\Jl SL<AJk or L</\Jl <~-<1\Jk§L+c

— Z / 1(t,t+c](/\j1) e 1(t,t+c]()\jk)dt :

Ay <Ay

Ay SL<Xy, 07 L<Aj, <o<hy SLte

Suppose A;, < L < A, . Then we have 1(;,4(A;,) =0fort > L+ c and 1 14(A;,) =0
for t < L —c¢ . If, on the other hand, L. < A; < -+ < A;, < L+ ¢, then we have
Lierq(Aj) = 0 for t > L+ cand L qq(A),) =0 for t < L —c¢. Therefore

«L+c
ML) <)) / Lera (A - o L (A5t

Ajp <<y, Le

:,/LL"LC(N]E”)@:O(L), L oo

—c
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when g (c) exists.
On the other hand, we also have the inequality

M(L) < ¢ Z Loy, —a, <)

Agy <Ay
A SL<Ay OF L<Xj < <Ay, <Lte

S ¢ : : 1{’\Jk—)\1150} - ¢ : : 1{’\11{_’\J1S‘3} :
Ay <Ay Shte Agy <<y <L

Obviously, the right hand side is of o(L) as L — oo when Rj(c) exists. Therefore, under
either of the conditions of (i) or (ii), one has

L D)= S (e= A+ A)s +o(L).
>‘J1<”'<’\Jk<L
Let us prove (i). From the above remark and
(e 0= +A5)+ —(e= X +A5)+ 2 014, -0, <)

we see .
pr(c+3) — pr(c) > 51iansup T Z L, =2, <e) -
—oo Ajy < <Xy, <L
Similarly, we have
pr(e) — pr(c—0) < 51151_1)1010116 Z Z Lin, =2y, <e} -
Ay <<, <L
Under the assumption of the differentiability of ux(c) , we can let 6 N\, 0 , to obtain
1 d
Ri(c)=lim — > lp, oy <= Za(e) -

Lo L
Ajy <-<A; <L

We turn to the proof of (ii). Let £ € N and write § = ¢/f and A = X;, — );, . Then
14 14

) Z Licsatmsy S (c—A)y <6 Z Lie>atmsy -
m=1 m=0
Hence
¢ 1 1
ZZ 7 Y lpyeasemey S I Yo =4
m=1 " Jj <-<A;, <L Ajy <<y, <L

o
< %Z% Z Lin,, -a,, <c=megey-

m=0 Aj; <<y, <L

Letting L — oo , we obtain

(/ZR’“ 1—— )<11m1nf,uk(c L)<11msupukc L) ZR’“ ,

m=1 m=0
for all / € N . Hence letting £ — oo , we arrive at
1 -C
pi(c) = lim ue(e; L) = c/ Ri(c(l — 2))dz = / Ri()dc
L—oo 0 0
completing the proof.
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2.3 Comparison with the theory of stationary point processes.

Let us consider a point process N, (dz) on R defined for w in a probability space (2, F, P)
equipped with an ergodic measure preserving flow § = {0;}.cr . We assume that N is
f-stationary in the sense that Ny,, = IV, o 77!, where 7,2 = z — t is the translation on
R . and that V, has no multiple points so that one can write NV, = Z]' 5,\J (w) With

<A (w) < Ap(w) €0 < A (w) < Ag(w) < -+ (23)

Let us furhter suppose that m = E[N(0,1]] = 1 and that E[(N(0,1])¥] < oo for all k > 2
. Now it is known that there is a measure P(dw) on (9, F) , which is called the Palm
measure of the stationary point process N , such that for all jointly measurable function
f(w,s) > 0on Q x R, the following formula holds:

[ Pt [ Notas)006) = [ B(ds) [ dssons). (24)

P is concentrated on the set Q = {w|N,({0}) > 0} and turns out to be a probability
measure when m = 1 . In this case, P(dw) has an intuitive meaning of the conditional
probability P(dw|N({0}) > 0) . (See [11] for detail.)

Now we can apply the individual ergodic theorem and (24), to prove that the following
relations hold with probability one: '

(0)

%NW(O, L] = E[N,(0,1] =1;

N S )
Jim ZHi > () < L} = Jim

(1)

' 1 -L ) 1 L
7(]\.;(6) = lim Z/ 1{Nd(t,t+c]=k}dt = Lhm z—/ l{Netw(U:C]‘—‘k}dt = P(N(O,C] = k‘) N .
0 0

L—oo —+00

(i)
ple) = Jim THG > () S L, Anale) = Ai(w) < ¢} = PN (0, > 0)

ﬂk(c)zggg%/oL<Nw(t;€t+c] )‘“:EK N(g;c] ﬂ ;

v 1 [ ~ N(0; ]
Ri(c) = Lh_{go Z/o Z Loy, @)-2, @< = B [( k:(—l ﬂ ,

Ajp (W) <<y (W)L

(iii)

(iv)

where E[-] and E[] denote the integration with respect to the measures P and P respec-
tively.
If we let
fwy8) = Lo (8) L (0.0-51=5)
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in (24), we obtain the so called Palm-Khinchin formula:
PN, <) = [ PON(,5] = ). (25)

(See [6] for another approach.)
This can be used to relate the right hand sides of (i) and (ii), (iii) and (iv). Indeed,

letting 7 = 0 in Palm-Khinchin formula above, one obtains
P(N(0,¢] = 0) :/ P(N(0,s] = 0)ds ,

namely
| moe) = [ (1= pls)ds
or

(¢c)=1+ -d—7T (¢)
whenever p(-) is continuous at ¢ . On the other hand,

E K N(]S;C] ﬂ 3 < . )P(N(O,c] > n)

n>k

- Z(Z:i )/OCP(N(O,S]:n—l)a’s

- Te[(he e

ue) = [ Rals)is

0

namely

(Compare [5].)

Hence when the sequence {);} is the typical realization of a stationary point process,
then mo(c) , p(c) , ux(c) and Ri(c) all exist with probability one, and are expressed as
appropriate expectation values which are related with each other through Palm- Khinchin
formula. By this observation, we are inclined to call the considerations developed in §2
“deterministic point process theory ”. After all, the energy level statistics is based upon
~ the hypothesis, often tacitly supposed, that the spectrum of a quantum Hamiltonian
looks, after a suitable normalization, like a typical realization of a stationary point pro-
cess. Hence the phenomenological side of the theory of energy level statistics should be
developed in analogy of the theory of point processes.

3 Level statistics for regular spectra.

Suppose that the classical Hamiltonian system associated to H(p,q) is completely in-
tegrable. Then one can transform the variable (p,q) € R* x R into the action-angle
. variable (I,¢) = (Iy,... ,1a;1,... ,¢a) , and H(p,q) = H(I) depends only on the action
variable (see [1]).
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Now following Percival ([12]) , Berry and Tabor ([2]), we shall say that H(%) , the
quantizationof H(p, q) ,has regular spectrum if its energy levels are (approximately) given
by quantizing the action variables I,...,[; appearing in H(I) . Namely, we suppose
that the energy levels of H(h) are

E.(h) = H(h(n + ia)) ; n=(ny,...,ng) € 2%, | (26)
where a € Zi’ is the Maslov index. This procedure is called the EBK quantization after
the names of Einstein, Brillouin and Keller, and it gives the exact spectrum in such
concrete examples as the rectangular billiards and the harmonic oscillators.

Under mild conditions on H(I) (e.g. H(I) being convex, positive with H(0) =0 ) ,
regular spectra satisfy the conditions (Al)-(A3) stated in §1 with

I/(E) = /-"/d 1{H(I)§E}d]1"'d1d . (27)
. RS :

Let us apply the unfolding of Berry and Tabor as formulated in §2-1 to our regular
spectrum. Note that the suffix n distinguishing the levels is now d-dimensional. :

For « € RL\ {0} define A(z) = hg(z) > 0 by the equation H(h(z)-2) = E , where
£ > 0 will be fixed throughout, and let A(z) = v(E)hg(z)™® . Our unfolded levels are
then given by AMn + %) , n € Z% . Since A(fz) = B4\(z) for B > 0 , we have the
equivalence :

1 1
An + Za) €(t,t+c¢ ©@n+ Yk e I1.(¢) , (28)
where we have defined
(1) = {z € RY | 9N (p(2)) ™4 < Ja| < (t+ )Y M\(w(2)) 7}, (29)
with .
p(z) = — .
2]

[t is easy to see |[I.(¢)| = ¢, where |II.(t)]| is the volume of II.(¢) .
Thus the number N () = N(t;c) of unfolded levels in (¢,¢+ ¢] is equal to the number
of lattice points (which are shifted by ;) in the domain II.(¢) , namely we have

N(t) = H{IL() 0 (24 + ) (30)

As t gets large, then the domain II.(¢) expands in the space R} , at the same time
getting thinner and thinner to keep its volume constant. Hence provided the boundary of
[T.(1) is not too degenerate, e.g. flat, then each lattice point in Zi would randomly belong
to 11.(¢) il ¢ were chosen at random from a long interval [0, L] , so that the total number
of lattice points in II.(¢) , namely N(¢) , would obey the Poisson distribution. This is
conceivable if one recalls how Poisson’s law of small numbers was proved in elementary
probability theory. But it must be a very difficult peoblem to justify this intuitive idea
for concretely specified TI.(¢) . In fact no example of Hamiltonian is known for which this

program is rigorously performed, to prove the strict sense level clustering.
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At this point, it is appropriate to discuss the results of Sinai [15] and Major [7] (see
also [9]). They considered the case in which d = 2, @ = 0 and the curve (written in polar
coordinate) » = f(p) = A(p) ¢ which defines the boundary of Il.(¢) is very random.
Especially, Major proved that ux(c) = c¢*/k!, k > 1 holds for almost all realization of the
random curve r = f(¢) . Although the randomness they assume is so strong that the
curve r = f(¢) consisting the boundary of I1.(¢) cannot be smooth, violating the natural
connection between level statistics and the lattice points counting, their proof suggests us
that it would be possible to prove ux(c) = */k! for k = 1,... | K with a finite K if the
boundary of II.(¢) has finite dimensional randomness as we are going to argue now.

The conditions for the random curve r = f(¢) , 0 < ¢ < 7/2 assumed by Sinai and
Major (see [7] or [9]) are the following:

< by, [f(w2) — fler)] < bsles — ¢ for some positive constants b; |

(b) Forany k> 1,0 <¢; < - < ¢ <27, the joint probability distribution of f(¢;)
,j=1,...,k has a C' density

Pe(Y1s- - s Yklers - s Pk) -

(c) For some 7 € (1,2), one has
k
Pe(Y1s - Ykler, o k) < Const-H(s@j —pj-1)7"
j=2
(d) Similar conditions for derivatives of pk; .
Define
M(t f) = {2 € R*0 < p(2) O, VIf(p(a)) <la| < Vit cflp(x))} . (31)
Then the area of Il.(¢; f) equals A(f) = %foe fle)?de . Let £(t; f) = $(IL.(¢; f) N Z2) be
the number of lattice points caught in II.(¢; f) . Then the following proposition holds
([15], [7] and [9]):

Proposition 6 (i) Under the conditions (a) to (c) above, we have

lim Ep K 5(2” )} LB k> (32)

t—o0 k!
(it) Under the conditions (a) to (d) above, we have with probability one,
. 1 @bl /et f) 1
A C) = P I = — > .
pr(c) = lim (e =)l /(“L ( 3 dt =), k21, (33)

where 0 < ay < ay .

We make the following observations:
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(1) Under (b) and (c), the curve r = f(p) is not of C? , as noticed by Major [7].

(2) Condition (b) means that one has “infinite dimensional randomness ”of the curve
r = f{¢) . But the proof of the convergence of up to k—th moments requires the
existence of the density py only, in the assertion (i) of the above proposition, and
pak » in the assertion (ii).

3) The hardest part of the proof consists in obtaining good bounds of the number of
g e
lattice points in Il.(¢; f) for which their angles ¢ are very close together. For this
purpose, it is necessary to impose a condition like (c) .

Now let us consider, for example, the d-dimensional billiard of a particle of mass 1 in
the rectangle A = I19_,[0, ;] . Then its classical Hamiltonian is H(I) = % Z;-lzl([j/a]-)'2
, if expressed in terms of action variables, and its quantization is H (k) = —%A with the
Dirichlet boundary condition on A . Its energy levels (eigenvalues) are exactly given by

2z 4,
En(h) = H(hn) = T Z(_J_)Z (n = (nlv"' ,T’Ld) Ny 2 1) ) (34)

2 aj

J=1

and I1.(#) is given by

= 4

d 2d g
(1) = {= € R} | /4 < (57) (Ha,-) SEP <+, 3

=1

where ¢, is the volume of the unit ball. We can then conjecture that if (a,...,ay) is
a d-dimensional random variable with smooth density, then the surface of II.(¢) has d-
dimensional randomness and for sufficiently large d , one would have px(c) = c*/k! for
k =2 and 3 for almost all (a;...,aq) , yielding the wide sense level clustering according
to Proposition 4. ,

Before closing this section, we remark that Sarnak [13] proved R;(¢) = ¢ by a num-
ber theoretic method for the quantized uniform motion on a two dimensional flat torus.
According to Proposition 5 in §2, this is equivalent to us(c) = ¢*/2 . Unfortunately,
we cannot apply Proposition 4 to conclude the wide sense level clustering in this case,
because we have no information on fis(c) .

We also remark that if {);} is a typical realization of renewal process, namely a
stationary point process N in which A, ; — A, , n > 1 are 1.1.d under the Palm measure
P, then Ry(c) = ¢ implies that N is Poissonian. Indeed, if we set

F(c)= P(N(0,d > 0) = P(Anp1 — M < ©)

which does not depend on n , then

R,(c) = E[N(0,d]] i P(N(0,c] > n) i Ii: ]+1—/\j§c)=§:(F”*)(c),
n=1 n=1 7=0 n=1

where [ is the n-fold convolution of F' . Hence if L(£) = fooo e¢°dF(c) is the Laplace
transform of dF'(c) , then from Ry(c) = ¢, we get

S ( N B |
S = T = [ e

n=1
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namely £(£) = 1/(1 +¢) . Hence dF(c) = e °dc . But the Poisson point process is the
only renewal process for which A,,; — A, obeys the exponential distribution.

4 An example of level statistics, in which non-Poissonian
level clustering is observed.

Consider the one-dimensional Schrodinger operator
H,(h) = —h —+UZM—£] 0<z<1 (36)

with Dirichlet boundary condition at # = 0,1 . Here v > 0 and
0—_-.170<l‘1 < - <In<;'l’,vl+1:1 .

Let E,(h) be the energy levels of H,(h) and let x, \/ . Then
E
t{n|k,(R) SE}NFL , F/h = oo . (37)

It is not obvious if Assumption (A2) holds, but the above asymptotics is stronger than
Assumption (A3), so we shall directly consider the statistics for {s,(h)} .

We can prove the following ([8]):

Let 0 < a; < ay and let

Ni(t;¢) = t{n|r.(R) € (t,t + chl]} . (38)
Then the limit
. 1 2 . .
mi(c) = ;I_lli‘r(l) p— /al Linpte)y=mydt , k=1 (39)

always exists, and when y; = ;41 —x; , 7 =0,1,... ,n are rationally independent, they
are explicitly computable. In particular

H (1—cy,) (40)

for ¢ > 0 such that cy; <1 ,7=0,1,... ,n. Hence by Proposition 3 in §2,
~ Y T
plc) = 1—(21 ) [ = )
‘] —cy; " L
7=0 =0

~ (1= "yk), e\ O
7=0

so that p/(0+) =1 — Z?:o yf > 0 . Hence we have level clustering, but the level spacing
distribution dp(c) is different from the exponential distribution.
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Now let X;,X,,... be i.i.d random variables uniformly distributed in (0,1) , and let
X](”) < oo < XM be the rearrangement of X,,,... , X, according to its magnitude. Let
S X}"L) ,j=1,...,n,in (36) . Then it can be shown that with probability one,

k

lim (e X, Xy = e k>0 (41)
=00 " k"
Moreover,
lim p(c; Xl(n),... 7X,,(L”)) =1—e"°. (42)
n—y OO

Thus we obtain Poisson distribution in the high disorder limit.

We note that considering «, (k) instead of F, (k) amounts to unfolding the spectrum
{F,(h)} so that it will have asymptotically uniform distribution with mean density 1/A ,
as can be seen from (37) . We then take the limit 2, 0 to accomplish the level statistics.
This procedure, compared to the unfolding of Berry and Tabor, looks more natural in
spirit, but if we apply it to regular spectra, the connection of the level statistics to lattice
points counting is not as clear-cut as in §3.

References
[1] Arnold, V.I.: Mathematical methods of classical mechanics. Springer (1978)

[2] Berry, M.V., Tabor, M.: Level clustering in the regular spectrum. Proc. R. Soc. Lond.
A. vol.356 (1977) 375-394

(3] O. Bohigas, M. J. Giannoni: Chaotic motion and random matrix theories. in:
J. S. Dehesa et al. (eds.) Mathematical and computational methods in nuclear
physics. Lect. Notes in Phys. vol.209, 1--99 (1934)

[4] Cheng, Z., Lebowitz, J.L., Major, P.: On the number of lattice points between two
enlarged and randomly shifted copies of an oval. Probab. Th. Rel. Fields vol.100
(1994) 253-268

[5] Cramér, H.. Leadbetter, M.R., Serfling, R.J.: On distribution function-moment re-
Jationships in a stationary point process. Z. Wahrscheinlichkeitstheorie verw. Geb.

vol 18 (1971) 1-8

(6] D.J. Daley, D. Vere-Jones: An Introduction to the Theory of Point processes. Springer
Verlag, New-York, 1988

[7] Major, P.: Poisson law for the number of lattice points in a random strip with finite

area. Probab. Th. Rel. Fields vol.92 (1992) 423-464

[8] Minami, N.: Level clustering in a finite system. Progr. Theor. Phys. Supplement
No.116 (1994) 359-368

[9] Minami, N.: On the Poisson limit theorems of Sinai and Major. preprint



110]

130

Minami, N.: Level statistics for quantum Hamiltonians- Some preliminary ideas
toward mathematical justification of the theory of Berry and Tabor. to appear in the
Proceedings in the Second Congress ISAAC.

J. Neveu: Processus Ponctuels. Lect. Notes in Math. 598, 249-445, 1976
Percival. 1.C.: Regular and irregular spectra. J. Phys. B. vol.6 (1973) L229-1232

Sarnak, P.: Values at integers of binary quadratic forms. Harmonic analysis and

number thory CMS Conf. Proc. vol.21, AMS (1997) 181-203

Ya. G. Sinai: Mathematical problems in the theory of quantum chaos. in: J. Linden-
strauss, V. D. Milman (eds.) Geometric aspects of functional analysis. Lect. Notes in
Math. vol.1469, 41-59 (1991) and in: D. K. Campbell (ed.) Chaos, American Inst.
Phys. (1990)

Sinai, Ya.G.: Poisson distribution in a geometric problem. Adv. Sov. Math. (AMS)
vol.3 (1991) 199-214



