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Abstract

In this paper we discuss the direct and the inverse scattering problems for the
nonlinear Schrodinger equation on the line:

(t,z) = —fiu(t, z) + Vo(z)u(t,z) + i V() |u[2Po+Dy(t, z).

1=—u
ot dz o

The basis of our study is an L? — L? estimate for the linear Schrédinger equation
with V; = 0,5 = 1,2,---, that we proved recently. We prove, under appropriate
conditions, that the small-amplitude limit of the scattering operator determines

uniquely Vj,j =0,1,--.. Our proof gives also a method for the reconstruction of
the V;,7=0,1,---.

1 Introduction

Let us consider the following nonlinear Schrédinger equation:

i%u(t,x) = —%u(t,:c) + Vo(z)u(t, z) + F(z,u),u(0,z) = ¢(z), (1.1)

where ¢,z € R, the potential, V;, is a real-valued function and F'(z, u) is a complex-valued
function.

Before we solve the inverse scattering problem we have, of course, to construct the
scattering operator. Let us first first introduce some standard notations and definitions.
We say that F'(z,u) is a C* function of u in the real sense if for each z € R, RF and SF
are C* functions with respect to the real and imaginary parts of u. Below we assume that
F is C? in the real sense and that (E%F) (z,u) is C! in the real sense. If F = F} + iF}
with F}, F; real-valued, and u = r + 13,7, s € R we denote,

2

a2

2 2

Fj(z,u) 352

Fj(xau’) + Fj(xiu)

PO =3 |

i=1

NS
Ords

| o

+

((%F)(u . :2322 [ % (%Fj) (2, u) ] . (13)
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For any v € R, L# denotes the Banach space of all complex-valued measurable func-

tions, ¢, defined on R and such that

19llzy = [ 16(@)| (1 + al)" da < oo. (14

If V, € L} the differential expression 7 := —% + Vo(z) is essentially self-adjoint on the
domain

D(t) = {qb € L% : ¢and Zl%(b are absolutely continuous and 7¢ € L2} , (1.5)

where L% denotes the set of all functions on L? that have compact support. We denote by
H the unique self-adjoint realization of 7. It is known ( see [5], [34]) that H has a finite
number of negative eigenvalues, that it has no positive or zero eigenvalues, that it has no
singular-continuous spectrum and that the absolutely-continuous spectrum is [0, 00). If
moreover, N(V) < oo ( see (1.11) below ) the domain of H is the Sobolev space Wy [1].

2

By Hj, we denote the unique self-adjoint realization of —d‘i—g with domain the Ws5. The

wave operators are given by:

— e _ W itH _—itHp
Wi:=s Jim e e : (1.6)

In [21] it is proven that the limits in (1.6) exit in the strong topology in L? and that
RangeW. = H,, the subspace of continuity of H. The scattering operator for the linear

Schrodinger equation ( equation (1.1) with F' = 0) is given by:
Sp:=WiW_. (1.7)
For any pair u, v of solutions to the stationary Schrédinger equation:

d?
—o U + Vou = k®u, k € C, (1.8)
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let [u, v] denotes the Wronskian of u, v:

[u,v] := <%u) v— u%v. (1.9)
Let fi(z,k),j = 1,2,3k > 0, be the Jost solutions to (1.8) ( see [6], [7], [5], [4] and
[29]). A potential Vj is said to be generic if [fi(z,0), f2(z,0)] # 0 and V; is said to be
exceptional if [fi(z,0), fa(z,0)] = 0. If Vp is exceptional there is a bounded solution to
(1.8) with k2 = 0 (a half-bound state or a zero-energy resonance). For these definitions

and related issues see [15]. Note that the trivial potential, V; = 0, is ezceptional. We

denote: V{,(” = %Vb(m) . Clearly, VO(O) = V,. We define,
M = {u € C(R, Wipt1) : sup(l + [t))¥|ullwy 0r < oo} , with norm :
teR

wllar 2= sup(L + [£])||ullwi s (1.10)
teR

where p > 1, and d := 3 I%jr—i. For functions u(t, ) defined in R? we denote u(t), for

u(t,-). In the following theorem we construct the small-amplitude scattering operator.

THEOREM 1.1. Suppose that Vy € L., where in the generic case v > 3/2 and in the

exceptional case v > 5/2, that H has no negative eigenvalues, and that
z+1 9
N(V) =sup [ [Va(y)[*dy < co. (1.11)
zeRJz

Furthermore, assume that F' is C? in the real sense, that F(z, 0) = 0, and that for each
fized x € R all the first order derivatives, in the real sense, of F vanish at zero. Moreover,

suppose that %F is CD in the real sense. We assume that the following estimates hold:

(1)
FO(z u)=0 (]ul”_Q) , (;_xF) (z,u) =0 (|u|”‘1) , u— 0, uniformly for z € R,

(1.12)
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for some p < p < 00, and where p is the positive root of %f};—i = %. Then, there is a d > 0

such that for all ¢_ € Woa N W1,1+% with ||¢_|lwz + lIé-llw, ., < & there is a unique

1+4
solution, u, to (1.1) such that u € C(R,W12) N M and,
Jim (t) — e 6., = 0. (119
Moreover, there is a unique ¢, € Wyo such that
tll{& Ju(t) — e—itH¢+”W1,2 = 0. (1.14)
Furthermore, e ¢, € M and
__ ,—itH <C —itH 4 1.15
U € ¢:i: M= € ¢i M’ ( ' )
P
160 = 8-l < C [16- s, + -0, | (1.16)
’ P

The scattering operator, Sy : ¢_ <> ¢, is injective on W, 1 N Way.
oy

In Theorem 1.1 we do not need to restrict ' in such a way that energy is conserved.
Moreover, p =~ 3.56. There many results on scattering for the nonlinear Schriédinger
equation in the case where Vo = 0. See [24], [25], [26], [14], [12], [17], [3], [9], [2] and the
references quoted there. In [11] the direct scattering for (1.1) with F' = F'(u) was studied
for n > 3. The corresponding inverse problem was considered in [28).

To reconstruct the potential, Vj, we introduce’below the scattering operator that re-
lates asymptotic states that are solutions to the linear Schrédinger equation with potential
ZEro:

S:=W:S, W_. (1.17)

In the following theorem we reconstruct Sy from S.
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THEOREM 1.2. Suppose that the assumptions of Theorem 1.1 are satisfied. Then for
every ¢_ € Wooa MW, 11

9 S(e) =59, (1.18)

e=0

where the derivative in the left-hand side of (1.18) exists in the strong convergence in

Wia.

H

COROLLARY 1.3. Under the conditions of Theorem 1.1 the scattering operator, S,

determines uniquely the potential Vj.

Proof: Theorem 1.2 implies that Sy, is uniquely determined by S. From S; we get the
reflection coefficients for linear Schrédinger scattering on the line (see Section 9.7 of [16]
and [29]). As H has no bound states we uniquely reconstruct V; from one of the reflection

coefficients by using any method for inverse scattering on the line(see for example [6], [7],

[5], [13], [4], [10]).

=
In the case where F(z,u) = 2, V;(z)|u[?*)y we can also reconstruct the Vj,j =
1,2,---. Let us introduce some notation. For A > 0 and £ € R we denote by H, the

following self-adjoint operator in L?:

1
H, := Hy + V)‘(:L‘), where V)\(I) = '/\‘\EVO(§ + £). (1'19)

Since H has no eigenvalues, we have that H, has no eigenvalues, i.e., Hy > 0.
THEOREM 1.4. Suppose that the conditions of Theorem 1.1 are satisfied, and more-

over, that F(z,u) = ¥, Vj(@)|u*o+Du, where jo is an integer such that, jo > (p—3)/2,

for |u| <, for some n > 0, and where V; € W1 o with ||Vi|lw, ., < C%,j=1,2,---, for
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some constant C. Then, for any ¢ € Woo N W, .1 there is an € > 0 such that for all
o

0<6<60.’

((Sy — I)(€d), §)ga = 3 0ot [ [ [ dtdzvia) e g 4 Qj] . (1.20)
Jj=1
where Q1 =0 and Q;,j > 1, depends only on ¢ and on Vi, with k < j. Moreover, for any

£ € R, and any A > 0, we denote, ¢x(z) := ¢(A(z — £)). Then, if ¢ #0:
limso0 X J dt do Vy(a) |et [P

- [ ] dtdg |e=itHogPGoti+D)

COROLLARY 1.5. Under the conditions of Theorem 1.4 the scattering operator, S,

10 (1.21)

determines uniquely the potentials V;,5 =0,1,---

Proof: By Corollary 1.3, S determines uniquely V4. Then the wave operators, Wy, are
uniquely determined, and by (1.17), S determines uniquely Sy. Finally by (1.20) and
(1.21) Sy determines uniquely V;,j =1,2,--- |

The method to reconstruct the potentials V;,7 = 0,1,---, is as follows. First we
obtain Sz from S using (1.18). By any standard method for inverse scatering for the
linear Schrédinger equation on the line we reconstruct V4. We then reconstruct Sy from
S using (1.17). Finally (1.20) and (1.21) give us, recursively, V;,j = 1,2, -

Our formula (1.21) is an extension to our case of the reconstruction algorithm of [23].
In [23] Strauss proved that in the case Vy = 0 and F(z,u) = V(2)|u[~'u, z € R*, p > 4
ifn=1p>3if n=2p>3if n>3, and V(z) a real-valued potential whose
derivatives up to order ! are bounded, with [ > 3n/4, then, the scattering operator
uniquely determines V.

For the proof of Theorems 1.1, 1.2, 1.4. Corollaries 1.3, 1.5 see [32]. The basic imput

of the proofs is the following LP — L? estimate that we proved in [29].
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THEOREM 1.6. (The LP — L? estimate). Suppose that V € L}Y where in the generic

case v > 3/2 and in the exceptional case v > 5/2. Then for 1 <p <2 and % + % =1

<-C 5o (1.22)

”64”{ T_1y)
B(L»,L%) — 4(;—2)

c

By P, we denote the orthogonal projector onto the subspace of continuity of H. We
also use in the proofs in [32] the following theorem on the continuiy of the wave operators

on the Sobolev spaces Wy, that we proved in [30].

THEOREM 1.7. (The Wy, ,-continuity of the wave operators). Suppose thatV € L},,where
in the generic case v > 3/2 and in the exceptional case v > 5/2, and that for some
k=1,2--, VO € L', forl =0,1,2,---,k — 1. Then W, and W} originally defined
on Wi, N L% 1 < p < oo, have eztensions to bounded operators oﬁ Wip, 1 < p < o0.

Moreover, there are constants Cp,1 < p < 00, such that:

W fllep < Collfllkas Wi £, < Coll fllip f € WipN L% 1 <p<oo.  (123)

Furthermore, if V' is exceptional and a := lim,_,_ fi1(z,0) = 1, Wy and W} have ez-
tensions to bounded operators on Wy, and to bounded operators on Wy o, and there are

constants Cy and Cy such that (1.23) holds for p =1 and p = cc.

We also prove in [30] that in the general case the wave operators are bounded from
Wi,1 into the weak Wy, space, and from W; , into the space of functions of bounded
mean oscillation, BMO, that have k derivatives in BMO.

A result in the continuity of the one-dimensional wave operators in L?,1 < p < oo,

was obtained by Galtbayar and Yajima in [8]. Galtbayar and Yajima proved their result
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under conditions on the potential that are more restrictive than ours. They require that
V) e LL and that V € L}ﬂ where in the generic case v = 3 and in the exceptional case
v =4

For the extension of the results in this paper to the multidimensional case see [33].
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