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1. Introduction
Let © be a bounded domain in R2 with connected smooth boundary Q2. We consider
a Dirac operator

o= (o 1 7007 ()
_ ( g+ ()12 Z;Ll o;(D; +aj(x))) (u_,.) |
> 5=103(D; + a;()) g-(z)I u-

where x = (.131,.’172,:173) e Q, D= (Dl,Dz,Dg) with Dj = —ia/aa:j, 73 =1,2,3, and
o = (01,02,03) is the vector of Pauli matrices, i.e.,

01:((1) é),agz(g _()i),cfs:((l) _01>. (1.2)

Let the scalar potential ¢(z) = (¢4 (2),¢—(z)) and the vector potential d(z) = (a1(z),
az(z),as(z)) be R2- and R3-valued C*°(Q) functions, respectively. We define a selfad-

joint operator Lf.;’;) on (L%(Q))* by Lé.',"q)u = Lz qu for u € D(L((;,;)) with domain

(1.1)

D) = (4 € @) x LR |ur € HHO), u- € KD}

wrranale DA+
where H(Q2) = (H1(Q))? , with || - || = [ - [[z2 )2

Consider a Dirichlet boundary value problem

( e U-(D-Hi)) <u+> <0) ,

Lgqu = . = , in £,

{ o-(D+a) q-1I U 0 (1.3)
U+|aQ =fe h(OQ), on OS2,

here h(0Q) is the trace space on 99 of H(Q2). If 0 € p(Lé.j;)) (resolvent set of L((;;q) ),
then for any boundary value f € h(09), there exists a unique solution v = (u,u_) €
H(Q) x H(Q) to (1.3). Define a Dirichlet to Dirichlet map Az, on h(882), by

Az f =u_|aq € R(0R), for f € h(0Q),

where u = (u4,u_) is the unique solution of (1.3). See [NT] for details. Note that
the D-D map Az, is invariant under a gauge transformation in the vector potential: if
p e WL(Q) and p|r = 0, then Agivp,q = Az q.
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The principal aim of this paper is to show that Az, determines rot@ and ¢ uniquely.
In the following statements we always assume @;, q; = (¢j,+,9j,—) € C*(Q), 7 =1,2.
Theorem 1. Assume a1 = da to infinite order at I' and 0 € p(Lg’)qj),j =1,2. If
Az, ¢ = A, ,q,, then Totd; = rotds and q; = g2 in Q.

Theorem 2. Assume 0 € p(Lg,)qj), J =12 If Az, q = Mg, ,q., then we can find

p € C*(Q) vanishing to first order at 02 such that d; = da + Vp to infinite order at
0f). As a corollary of Theorem 1 and 2, we have
Corollary 3. If Ag, ¢, = Ag,,q,, then rotd; = rotdy and q1 = g2 in Q.

Next let us give a theorem about an inverse scattering problem. Rewrite (1.1) in the

form:
I o-D U
Lyu= Lzqu= l: (0_ '2D _I, ) + V(m)] (ui‘> , (1.4)

where we have extended @,q to the whole R3 such that @ and ¢ in (1.1) are absorbed
into a compactly supported Hermitian matrix V' whose components are in C§°(R3).
Define an orthonormal system (b7 (€), b3 (€),b7 (€),b5 (£)) in C* by

ar (O  —a_(§)o- ,g—,)

@0 Ok (9

(55 (6), 53 (€),57(6), 55 (6)) = (

with a4 (§) := %(1 + «%), < E>:=4/1+ ]2, £ € R3. For 0 in the unit sphere 52

centered at the origin and +E > 1, consider the unique solution ¥ = ¥(z,0; E) to
(Ly —E)Y=0 in R? (1.6)
such that each component v of
Y* =y — BT (W(E)F), b (v(E)F)) (+E > 1)

is outgoing (i.e. (*) (8/0r Fiv(E))v = o(r7!) (r = |z| — o0) =+ E > 1 with
v(B):=vE2—-1and (**)v=0("1) (r— )).
Note that

(Ly =V - E)(¥ —¢°) =0. (1.7)
Then, by (1.7) and the integral representation of ¢*, 4° = 9°(z, §; E') has the asymptotic
property:

etw(E)r T
o Yp°(=,0;E) +o(r™') (r—oo0) for +E>1.  (1.8)

|z]

¢s($79;E) = -

Define the scattering amplitude Ay (E) : (L?(S?))? — (L%(S?))?, as the operator with
the integral kernel:

av(6',6; E) := (bf (v(E)8'), b5 (v(E)E")"¥>(0',6; E), 0,0' € S +E > 1.
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Then, we have the following uniqueness result for the inverse scattering problem at fixed
energy E.

Theorem 4. Let Q C R3 be a bounded smooth domain with connected exterior 2° =
R3\ Q. Let V; (j = 1,2) be Hermitian matrices associated with d;,q; (j = 1,2) whose
components are in C°(R3) and assume that Vi = Vo in R*\ Q and E € p(L&,‘:)) (=
1,2). Then Av,(E) = Ay,(E) is equivarent to Ay,—g = Ay,_g. Hence Ay, (E) =
Ay, (E) implies rotdy = rotds, g1 = g2 n §1.

For Schrédinger operators with magnetic potential @ and electrical potential ¢ on
Q c R", n > 3, the Dirichlet-Neumann map determines rotd and ¢ uniquely ([Sul,
[NSUJ). For Dirac operators, the cases where potentials are small were treated in [T1].
The reconstruction of the scalar potential and magnetic fields of Dirac operator from
the scattering amplitude is given in [I],[G]. ;

Here we will sketch the proofs of Theorem 1 and 2. For the details, see [NT] and
[T2].

2. Proof of Theorem 1
Let o = (a1, a0, a3) and a4 be 4 x 4 Hermitian matrices:

. 0 O'j . _ I2 0
a]—<gj 0), j=1,2,3, a4—-(0 —Iz).

Then we can see the anti-commutation relations
a0 + opa; = 26jkI4, 5, k=1,2,3,4. (2.1)

Let
Pi = (I4 + C¥4)/2 (22)

be orthogonal projections on C* and write

i@ = (G 0L —n@P @

and then Dirac operator can be written as
Lig=o0-(D+ad)+q.

In this paper we use the following relations by (2.1): for any a,b € C3,

o-ao-b+a-ba-a=2a-bls, in particular (- a)? = a®ly, (2.3)
a-aPy = Pra-a, | (2.4)
a-ag=¢a-a with ¢’ =g (z)P_ + q_(x)Py. (2.5)

We omit “—” of the vector potential @(z) in §2.
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Lemma 2.1. For any solution u®) = (uf),ul?) € H(Q) x H(Q) of Lo, q,u? =0,
Jj=1,2, it follows that

wry < 060 N(Aay g = Ao ga)ul) >nry-= /th' (Vi = Vo)ul da,

where V; = a-aj+q;, j = 1,2, and N is the unit outer normal vector onT'. In particular
if Aah(h = Mo, g, then

/ D@ - (V- Vy)u® dg = 0. (2.6)
Q

Proof is omitted.

In what follows we assume a,q € C§°(R?). (a, ¢ are regarded as extensions of a;, g; €
C™(Q)). Let Z={¢ € C*(>=(-(=0,|¢| > 1}. We look for a solution of L, ju = 0
of the form: with 4 x 4-matrix-valued functions u, ve,

uc(z) = e %ve(z), zcR3 (eZ. (2.7)

Hence v, satisfies ,
(a-(D+¢)+a-a+q)u =0. (2.8)

Step 1. Intertwining property.
We consider operators M, and A¢:

M¢:=(a-D+{) +a-a+q)a-(D+¢)+a-a—g'), (2.9)
A¢:=(D+¢)*=-A+2(-D. (2.10)

Then using (2.3,5), we have

M= D+ 4+ 2a-(D+ )y
+lo D(e-a—q') + (a-a+g)a-a—q)
= Acdy+2a- (D+ )Ly + W, (2.11)
where W =a-D(a-a—q")+ (a-a+q)(a-a—gb).

We use pseudodifferential operators depending on a parameter ¢ € Z. We denote
by S™(Z) = S™(R3,Z) the space of symbols of order m in the Shubin class and by
L™(Z) = L™(R?3, Z) the space of Ps.D.O. of order m (see [NU)). If a¢(z, &) € S™(Z) is
positive homogeneous of degree m in ((,§), i.e. asc(z,t€) = t™a¢(z,§) for t > 0, (,t¢ €
Z, £ € R?, we write a¢(z,&) € HS™(Z).

Put Ac(€) == (J€? + [¢[%)Y/2 and let A € L*(Z),s € R be a properly supported
Ps.D.O. with principal symbol a(Ag) = A (€). For the definition of properly supported,
see [NU]. Put M¢ := McA;" and Ag := AcAZY

Lemma 2.2.  For any positive integer N, there exist elliptic properly supported
A¢, B; € LY(Z) such that

McA; = B(Ac+ RSN, REM e LN (2). (2.12)
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Proof. This lemma is essentially the same as Theorem 1.23 in [NU] or Lemma 3.16
in [NSU]J. Let g¢(§) be the principal symbol of A¢:

qc(§) = 0(Ag) = (€ +¢)PA7HE)
and put M = {£ € R®| g¢(£) = 0}. Then
M ={€ € R*|Im( - £ = 0,|€ + Re¢| = [Re]}
and there exists € > 0 such that
Redeqc (€) and Imdeqc (€) are linearly independent on Ny.ie|(M),

where Nr(M) is an R-tubular neighborhood of M.
Set U¢,2 = Nacie|(M) and Ug1 = R? \ Nogic|(M). We construct A¢, B¢ as

G(Ag)(z,€) = ZAc,a(x Oxc.i(§), (B¢ (z,€) = ZBC,J z,£)x¢,i(€)

j=1

with AC i, Be.j € S°(Z). Here x¢,j(€) € HS®(Z) is a partition of unity subordinate to
UC ],_7 = 1 2.

First we construct A¢ 2 and B¢ o as A¢ o = B¢ a. Take 1¢1(€) € C§° (N5E|C,(M))
HS%(Z) such as ¢¢,1 = 1 on Nyeie|(M) and ¢ 2(€) € C§°(Nueie|(M)) N HS®(Z) such

as ¢ 2 = 1 on Nzeje|(M). Let NC(O) (z,&) be the principal symbol of Ag_l2a (D +():
N (,€) = o(Ag 20 (D + () = 22 (€)ale) - (€ + ) € HS(Z).

From the composition formula of Ps.D.O. we seek symbols Aé—k) (z,6),k=0,1,... ,N—
1, satisfying the following differential equations:

Hy A (,6) + 91 (N (2,6) 4 (2,6) = 0
AP (2,6) = L, if € & suppipe 1, (2.13)
Aéo)(m,f) — Iy, as|z| — oo,

and for k=1,2,... ,N — 1,

( Hy AP (2,6) + e 1 (N (2, 6) AT (2, €)
e (€)o (I (2,6 =0,

where
JoIEP = (T 4 i AT (2,D) - AT (2, D)Ae (D), (2.14)

JC(O) =0,
| AP 0, s el
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Here H,. = 0¢q¢ - D;. We can take a solution of (2.13) such as
Aéo)(:v,f) = e %@, (2.15)

¢<; l(é) m—>£’(N( )(.’E 6))]
Ogqc - &'

2 .o
=2 | (w1 +iy2) e 1 (E)NO (z — yra — y2b, ) dyrdys,
R? ¢

with  cc(z,8) = fgi [
T (2.16)

here the last equality holds since a := Redgq; and b := Im0,q, are linearly independent
on suppt¢,1- So we can see Ag))(x,f) € HS°(Z). Tt follows that Jc(—l) € L=1(Z), since,

for the full symbol of Jc(—l),
5 )@, €) = 5(MAL (2, D) — A (3, DYAcKie 2(6),
= (qc() AL (z,€) — AL (2, €)a¢ (€) Ve 2(€)

+ (B¢ ac(€) - DoAY (3,€) + N (2, €) A (2, €))9c 2(6)  mod S7%(Z)
= 0.

We take a solution of (2.14) such as, for k =1,2,... ,N — 1,

g,1(6) Fomgr (e @O (JETM) (g, E))]
O¢qe - & '

We can see that Aé"k)(a:,f) € HS™%(Z),1 <k < N -1, and JF ¢ L7%(2),
1 <k < N, inductively. Moreover the following holds

Aé‘k)(x,g) = _e—cc(m,ﬁ)}'{,i [

JEN = (JEN4D 4 B ATV (2, D) — ATV (2, D)A )i 2(D)
= (JEND 4 B ATV (2, D) — ATV (2, D)A Y2 (D)
+ (M AT (@, D) = ATV (2, D)A e 2(D)

= (JOU + M AT (2, D) — AT (2, DYA )Yy (D)
+ (M AT (2, D) — AT (w, D)Ac)w s (D)

+ }AE“N“)(x D) — AN (¢, D)A¢ )y 2(D)
N-— N-1
= M Z AT (@, DYpN7H(D) - 3 AT (2, DYAYT*(D)
k=0 k=0
N—-1
= M (> ASTH (@, DYywly 2A< (@, D)pNTE(D)A,

x
I
=)
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where we have used Ac’lﬁg’g(D) = wg,z(D)AC in the last equality. Hence putting

. N-1

Aca(w,€) = Bealz,€) = > AT (, )l 5 (e), (2.17)
k=0

we have
MgAg,Q(an)Xg,z(D) - Bc,z(xyD)Xc,z(D)Ac = J(_N)Xc,z(D) € L"N(Z)- (2~18)

Next we construct A¢ 1(z,€) and Be 1(z, &). Take ¢ 3(€) € C°(R3) N HS(Z) such

as ¢,3 = 0 on N.j¢)(M) and th¢ 3 = 1 on R\ Nocje|(M). We define Bé_k)(a:,g), k=
0,1,...,N, by

( BO(z,6) = AP(z,9),
BT (2,6) = 9§ (©o LT ) (@,6), k=1,....N,

{ where
19 = M A (2, D) — AP (z, D)A,,

— — -k A
(| IEP =17y a(D) - BT (@, D)A, k=1,... N,

It is clear that Iéo) € L%Z) and Bé"l)(a:,g) € HS7Y(Z), since ¢ 3(€) g7 (§) €
HS~Y(Z). Note that

F(I5Y) = 61 3(D)) - 5(B{ (2, D)A¢)

= o (1) (2, )¢ 3(6) — B (2,€)qc(€)  mod §71(2)
-0,

€ HS™2(Z). In this way, we get Iéfk) €

S0 Ié_l) € L~Y(Z) and hence Bé_z)(x,ﬁ)
k=1,...,N, inductively. Moreover the following

L~*(Z) and B{ ¥ (2,€) € HS™*(2),
holds
- - -N A
Ié N = IC( N+1)¢<,3(D) - Bé )(x,D)Ag

= (ITN e 5(D) — BEN Y (2, D) A e (D) — BN (2, D)A,

= 1045(D) ~ BV (, D)Aw(T (D) = B (2, D)Acygs (D)

— =BV (2, D)A,
N
~ —k _ ~
= M AD (2, D)y, (D) = Y B P (2, D)yls H(D)A,.
k=0
Hence putting

N

Aca(@,8) = A9 (@, 6)ps(6) and Bea(z,€) = > B (w0055 (€),  (219)

k=0
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we get
M A¢1(z, D)xc,1(D) = Beu(z, D)xea(D)A¢ = I xc1(D) € L7N(2).  (2.20)

By (2.18,20), we obtain (2.12) with A, = A¢(z, D) and B; = B¢(z, D) given by

2 N-1
Ac(,8) =3 Ac (2, 6x¢,i(6) = AV (,6) + 3 ATP (2, €)x¢ 2(6),
j=1 k=1 (2.21)
2
Be(z,8) = Y Be iz, &)xc,i(6)
j=1
” N-1
= A (z,6) + ZB‘ (,6)xc1(6) + Y AT (x,€)x¢,2(6),
k=1 (2.22)

which are elliptic by the expression of A'éo) (z,€). There exist properly supported A%, B,
such that A, = A¢, B; = B¢ mod L~*°(Z), so we have proved Lemma 2.2. [

Step 2. Construction of v¢.

Fix a C§°(R3)-function ¢1(x) such as ¢; = 1 on a neighborhood of  and choose
¥ € C$(R3) such as 9 = 1 on a neighborhood of 2 and ¢1BCAC¢I4 = 0. We take a
solution v¢ to (2.8) of the form

ve = (- (D+¢) +a-a—qI)Ag_1A((¢I4+wg), (2.23)
here w; satisfies ¢1(BcA; + Rg_N))(¢I4 +we) =0, ie.
$1(BcA¢ + R ywe = 1 Ryl (2.24)

Let us solve (2.24). Put C¢ := BcAc_l. There exist C§°-functions ¢a(z), ¢3(x) such
that ¢1Cc¢s = ¢1C¢ and qblRé."N)ng = ¢1Ré“N), since C¢ and Ré—N) are properly
supported. Moreover, for || large enough, there exists a linear map C’E ! from H* to
HOC , § € R such that

¢lCCé< - ¢1 and ”¢2 1”3 s—1 < CSICI
Here || - ||s,s—1 is the operator norm from H* to H*~1. So we solve
(A + G RE N ga)we = 6207 (— 1 RSV Y1),

We define a linear map Agl from HyY, to Hg", for any integer m > 0 and —1 < § <0,

» G
A7tg= 1(€2+2C §)
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Then u = Aglg € H}" is a unique solution of A¢u = g € Hg, and we have

1A By < CsmlC|7H,

6+1’

(see Proposition 2.1 and Corollary 2.2 in [SU]). Here Hy* = H{*(R3) is the weighted
Sobolev space with norm || fllzp = 224 <m | < @ >% D f||p2(rs). Hence (2.24) has a
solution of the form ‘

we = (I+ R) 7' AT $2C (1 RE VY1)
with R = _1¢2 IR( N)¢>3,
if |¢| large enough and N > 2, since

IR |3z o1y |
N— -N
< 187 g, ) 16207 B a1 BE ™ 83l e i

<cl~t-olgl - et = g

6+17

And similarly we have
lwellap < Coml¢I~VHE. (2.25)
Step 3. Asymptotics of v¢.
Lemma 2.3. Let A, € L™(Z) and 6(A¢) = o™ (z,€) + a{™ ™ (,€) mod S™~%(Z)

with aém) € HS™(Z) and aém_l) € HS™ Y(Z). Let ¢1(z), ¢2(w) € C°(R3). Then we
have for s,l e R, m -1 <1,

m Cs lqm—IHfHS+l+1, (l S O)
Ar —a™(z,0 L, < { * 2
and for s,l e R, m—2 <1,
I1[Ac — ™ (x,0) — o™V (z,0) — (Bea™)(x, 0) - Dolgaflls
Co 1|21 f s 41425 (1<0)
< 2.27
B { CoalCI™ 27 fllsi42- (1>0) (2:27)

Here aé )(:c 0), a (m 1)(:1:,0) and (850,27”))(35,0) are multiplication operators and ||-||s =

|- 1] e
Proof. Since

(A (@,€) — al™(2,0) = a{™ (z,€) — o™ (=,0)
1
- / (0ea™)(2,06)d6 - € mod S™(2),
0

1
and bém_l)(a:,ﬁ) :2/0 (8Eaém))($,9§) do € HS™ Y(2),
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it follows that, with some ("~ € L™1(Z),

$1(Ac — al™ (2,0))p2f = $:10{™ (2, D) - D(¢af) + d1r{™ V.
And we apply Theorem 9.1 in [Sh] to get (2.26):
161(Ac — al™ (z,0)p2fls < 610" (@, D) - D(gaf)lls + orr ™ Dol

< { CoalCI™ I f o415 (1<0)
T LGl f i (12>0)

Similarly as above, since we can write

5(A¢)(x,€) — al™(x,0) — a™V(z,0) — (Beal™)(x,0) - ¢
, 3
= bémaz)(a:, £)- &+ Z bgmk Cz)(m,f)fjfk mod S™2(Z)

Jk=1

. |
with 0" ?(z,¢) = /0 (8eal™V)(x,0¢) d € HS™*(Z),

1
b (2, €) = /O (1 - 0)(3c, B, o{™) (z, 0€)d0 € HS™2(Z),

so it suffices to apply Theorem 9.1 in [Sh] to get (2.27). O
We define a function ¢¢ by

oo(o) = -7 1), (2.28)

then {¢¢}cez is bounded in B®(R3) and ¢, satisfies

¢ (a(z) + De¢(z)) =0, - (2.29)

(cf. [Su)).
Lemma 2.4. The solution v in (2.23) has the following asymptotics: for any integer
m > 0,

e‘PC (:B)

v = &8 evct 4 (a (a+D<P<)~qI)—[a— ICI

7] Xc(w)JrO(ICI_ );

(I¢] — 00),
(2.30)

in H™(Q), with some 4 x 4-matriz X¢(z) satisfying || X¢||mm (@) < Cml¢] ™.

Note that the first term in (2.30) is O(1), and the second and the third are O(|¢|™1).
Proof. Let N = 2. By (2.21) we have

F(a (D+Q) +a-a—q)AT A) = e (z,6) + eV (2,6)  mod $7%(2),
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where

eV (2,8) = - (€ + A1) AV (z,6) € HS(Z),
el (@, €) = a- (E+ OATUOATV (z, )x¢,2(€)
+ (o b — gHATHOAL (2, €)
+0¢(a- (€+ OATHE) - DaAD (2,6) € HSTH(2).

Hence applying (2.27) in Lemma 2.3 as | = m = 0, we have

ug = [e¢” (,0) + e (,0) + (e )(2,0) - Da]($Is +we) + O(I¢| )
= e (2,014 + [e{ (2, 0) + (0eel?)(x, 0) - Dyl
+ e (z, 0)we + O(|¢7?)
= e (z,009Is + eV (2, 0091 + e (z, 0w + O(I¢|72).

Moreover (2.15,16) yield

©(p 0) = C (0) 0 a-¢ v¢(z)
o(@,0) = T A (@,0) = Jepe |
(z) :
0,0 = T A, 0)+(-a- 0 + g DeAP) (2,0
(z)
= (a-(a+ Dy¢) — qI)eTCl + —IZTCA(“U(%O)-

Hence putting X¢(z) = e?<@w,(z) + Aé_l)(x,()), by (2.25) we get Lemma 2.4. O
Step 4. Proof of rota; = rotas and ¢q; = ¢s. '
The rest of the proof of Theorem 1 is basically the same as in [T1], but we repeat it

to make the proof self-contained.

Fix k # 0,7,y € R¥suchask-n=k-y=n-7v=0, |n| = |y| = 1, and define

{Cj()\)})\>1 CZ,j=12by

¢ =G(A) = Mwi () + i) w()\)—~(1__’fz_)1/2 _k
Y v, el =0T 5 T T g
G = ) = Men(N) —#1), @) = (1 — o) /o 4 o

Note that (2 = (2 =0, (3 — (1 = k and %\l, % — (o =1+ iy (A — o0). We substitute
the solution u¢, = €% "®v¢; of Lq, g, uc, =0, j = 1,2, for uld) of (2.6) to get

- K(\) = /Qe_’k “vg, (Vi = Va)ug, dz = 0,

here A* denotes the adjoint matrix of A.



First we show rota; = rotas. By Lemma 2.4, we have

_ | pmibaretrr (0 G)" i@ s
K = [ emerosml By, S iie s 00, (Ao

I “’f)), i=12

Using (@ - ¢2)* = @ G and (1/|¢1], C2/|¢e| — ¢o/V2 and

p1+P2 — = P ((aéo_é%)(g))) (A = o0)

here

we get

K()) -3

= - Co/ e_ik'm‘HpCO . (a1 e ag)d.’ll. ()\ - OO)
Q :
Since a - (o # 0, it follows that

/ e—ik'x“/’(o . (a1 - az)dSL' = 0.
Q

/ e~ thztdyy . Co(Vi = WVo)a - (o dx
Q

This yields rota; = rotas by arguments in [Su,§4].
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Next we show ¢q; = g2. Since rota; = rotay and I' is connected, there exists p €
C*(R3) such that a; — a2 = Vp and p|r = 0. Hence by the gauge invariance, Ay, 4, =

Mg, q, implies Ag, g, = Ag, g.- S0 We may assume a; = a2 =: a t0 prove q; = qa.
Lemma 2.5.

a-k —ik-x
PLAK(A) Py — —— 0 " Pe(q — @)Prdza- G, (A — 00).

Once this is proved, it is easy to see q; = ¢a.
Proof. Put q := ¢q1 — g2 and b¢; := a + Dy, j = 1,2. By Lemma 2.4, we have

_ —ik-z C2 2 . ¢ e_?z a- (o )*
KO = [ (TP + @b~ e + T

1o ST S S P )d —1
Xq( ) ¢ et — )i+ K | de 0T

=) —””’(a C2 902)* a-G 2%
/Q [CT Tars
. P1
o [ (e w) ((“'bﬁ"d)le_cﬂ OKM?X@) &
—ik-x Y | e¥? a- (2 )* a-Q o -1
+)\/S;e ((a bCz q2)[C2| + K2| XC2 q Kl! e d.’12+0(/\ )
/Qe_ik'z[a ~kqo- Co+ o~ Cogla - be, — i) + (@~ bey — g3)ge - o] d
+0(x™h),

1
2
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where we have used (3 = (1 + k and ¢1 + $3 — 0 and b¢,, be, — bey (A — 00) in the
last step. Together with a - (oga - b, + a - beyqar - (o = 0 (by (2.5,29)), we get

1

AK()) — 5/ e~ * (- kqo- (o —a-(ogqi — gaqa - (o)dz.
Q .

This and (2.4) yield
1 ,
PLAK(MN)Py — 3 / e *%q . k PzqPza - (odz.
Q

g

3. Proof of Theorem 2

Under a condition such as scalar potential ¢ does not vanish at the boundary, we can
prove the uniqueness at the boundary (Theorem 2 in [NT]), by expressing the D-D map
Az 4 by the asymptotic expansion of the pseudodifferential operator. Here the constraint
on scalar potential can be removed by applying the method of [A], in which uniqueness
and stability of inverse problems for conductivity at the boundary was obtained. We
will construct singular solutions of Dirac equation, and approach the singularity to the
boundary to get informations of potentials. However we need a different choice of the
leading term of singular solution from [A]: in which, harmonic spherical functions S,, are
chosen through the Gegenbauer polynomials, while ours come from associated Legendre
functions Y,7*. On the other hand, uniqueness of scalar potential ¢ at the boundary can
be seen by the same choice of S, and arguments as in [A], moreover uniqueness of ¢
on 2 is known in Theorem 1, so we will not discuss about it here.

Let Br(zo) = {z € R3; |z — 2| < R} be a ball of radius R and center zo. In this
section, write Br = Br(0) and assume @, ¢ € C°(BRg).

Proposition 3.1.(singular solutions)
For any spherical harmonic S, of degreem = 0,1,2,-- -, there exists 4 x4 matriz valued
u(z) € L (Bgr \ {0}) such that Lz qu = 0 in B \ {0}, and u is of the form

loc

i T
ue) = a- D, (Ja "S5, + o)
and v(z) satisfies |v(z)] < Clz|2=™*¢, for any 0 < € < 1. Here, C depends only on
va C_L’, q, Ra €. .
Proof is omitted. _ :
We define a phase function p;(z) € C*(Q2), j = 1,2, near 01, by

I(z)
pi(z) = i N(r(z)) - @j(n(z) — sN(n(z)))ds, j=1,2,
where N(z) is outer unit normal at z € 9, and the projection m(z) € 0Q and the
distance I(z) > 0 are uniquely taken such as z — w(z) = —l(z)N(n(x)). Note p;|aq = 0.
Set b(z) = @1(x)—da(z)— V(p1—p2)(z). We will show that 82b|gq = 0 for any multi-
index «, by induction on |a| =k > 0. If Az, ¢, = Ag,,q.» then Az, _vp, ¢, = Ago—Vps e
by the gauge invariance. So by Lemma 2.1, we have the key identity:

0= /QuZ(m)(a . 5(3:) + q1(z) — g2(z))u1(z)dz, (3.1")
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with a solution u; to Lg, —vp, q;uj =0, 7 = 1,2.

Fix zo € 0N). By a translation and a rotation, we introduce new coordinates: z’ =
R(z — z¢), where a rotation matrix R = (Ryg;) is chosen such that 0 is tangent to
(z}z5)-plane at ' = 0 and {0 < z% < &, ) = x4 = 0} C Q for small §; > 0. By the
change of variables, (3.1) is rewritten as

0= / up" (@) - ¥(@') + gi(z') — gh(a) iy (') de, (3.1)
where u}(z') satisfies
[o - (Do + @;(z") — Vorp(2')) + g5(2")uj(2') = 0,
where
wi(z") = uj(R™'z' + x),

3 -
@ = (aj1,0j2,a53),  aj(z’) = ZRM%‘Z(R_%I + o),
1=1

g, = ( lla 127b€3)7 I ZRklbl Rz +.’170)

=1

3
a;(; - ZRklal’ k= 1a273)
=1

p;'(xl) = pj(R™'2" + o), q}(x’) = ¢;(R™'z’ + z0).
Note that o}, = Ef’zl Ryio1, k =1,2,3, also satisfy the relations:

0i0L + 0405 = 2651,  j,k=1,2,3,

! ! . / . .
0105 =i0y, 0404 =10y, 0407 = ioh.

First we will show 5’ (0) = 0, which means b(zo) = 0, and then, since zo € 99 is
arbitrary, b|aq = 0 follows. It is clear that b/ 3(0) = 0, by the definition. In the following
arguments we omit the symbol “'” of z',u}, o, a7, v, i G-

Fix R > 2diam() and let § > 0 be small such as Bgr(zs) D 2, here x5 := (0 0,-96).
We can extend @;,p;,q; € C*(Q), j = 1,2, such as @;,p;,q; € C®°(Bg(zs)). By

Proposition 2.3, we can take u; as

r—XIs

ui(z) = a- D, (|x g S >) tv;(z) € L2 (Br(as) \ zs),

|z — xs]

with some v; satisfying |vj(z)| < Clz—zs|~2"™*+¢. Take Sp(z/[z|) = (21 +ize)™/|z|™
= 2™/|z|™, (2 := z1 + izx2), and put d(z) = (di(z),ds(z),ds(z)), with dp(z) =
Oy (|2 71" Sm (2/[2])), b =1,2,3.
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From (3.1), we obtain

—y

/Q(a d(z — z5))* e - b(@)a - d(x — z5)d
= [ s@V@a-da - o) + (- da = 20) V(ahn(e) + 3@V (),
here V(z) = a - b(z) + q1(z) — ga(x), hence it is easy to see

< C/ |£I? . $5|—4—2m+6d$ < C«é‘—-l—Zm—{—e.
Q .

/é(o - d(z — z5))*0 - b(x)o - d(z — zs)dz

Here |A| = Y, ;|ai;| for a matrix A = (a;;). Since [b(z) — b(0)| < [|VB]| oo (o], it
follows that

‘ /Q(or -d(z = 25))*0 - 5(0)o - d(z — z5)da

< C|[Vbllz= () / |||@ — 25|74 2" de + C6IT2me
Q
< 06—1—2m+e'

Changing the domain of integration, we have

| / (o - d(z — z5))*c - b(0)o - d(z — z5)dz
{z320}NBr(zs)

<Clo- 5(0)[ |z — x6l—4—2mdm 4§~ 1-2mte
QA({z3>0}NBr(zs))

—-1-2 .
< g§mimImte,

where we have used Lemma 3.2 below in the last step (we should take m > 1), and put
AAB :=(A\ B)U(B\ A).
By direct caluculation, using the relations of Pauli matrices and b3(0) = 0, we have
(0-d)*o-bo-d=o1[by(Jd1|* — |da|? — |ds|*) + 2b2Re (d1d3)]
+ 0a[ba(—|da|? + |da|? — |da|*) + 2b1Re (d1d>))]
+ o3 [2b1Re (dl(ig,) + 2b2Re (dz(ig)] + [—lelm (ngg) -+ 2b21m (dlcz3)]
and
|d1(2)]? — |da(z)|”
= (23 — 23)[(1 + 2m)[a 774" |2P + 2m (=1 — 2m)|e| 4TIV,
|da(2)[* = (1 + 2m)?z3|w]| 02",
Re (d1ds)(z) = z129[(1 + 2m)?|z| 787%™ |2|*™ + 2m (-1 — om)|z| "4 4™ |z 2m- 1),
(d1ds)(z) = z123(1 + 2m)? || 674 |2|*™ + z3zm (-1 — oam)|z| "4 4m |22 m= D)

(dods)(x) = zoz3(1 + 2m)?|z| =0~ *™|2|*™ + izgzm(-1 - om)|z| 4™ |22 M-,
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Hence
/ (o-d(z—14))*0-5(0)-d(z—5)dz = —-5(0) / ds(—5)[2.
{zs>0}NBr(zs) {z3>0}NBr(zs)
Moreover, since
/ ds(e — z5)? > C5m,

{z3>0}NBr(zs) .

it follows that .
05—1—2mlo. . b(O)l < 05_1_2m+€,
hence |o - 5(0)| = 0, and so by (0) = by(0) = 0.
Next suppose that the induction hypothesis:

8%b(z) =0, on 89, 0<|a|<k-1. (3.2)

Then it is easy to see
8:,025(0)=0, 0<|o/<k-1, 1=1,2. (3.3)

We will show 8% 5(0) = 0, which yields 825(0) = 0, || = k, and hence 92blon =
0, |a| = &, as before. From (3.2) and (3.3), we have

|b(z) — 250k 5(0)/k!| < M|z|*+Y, zeQ, (3.4)

and .
b(z)| < M'|z|F, z€Q. (3.5)

From the key identity (3.1), it follows that, by (3.5)

/ (0 - d(z — z6))*0 - b(z)o - d(z — z6)dz

Q

S CMI/ |m|k|x _ £L'5|_4_2m+€d$ S 06—1—2m+s+k’
Q

and hence, by (3.4)

/ (o-d(z —z5))*zko - (9;“35(0)0 -d(z — zs)dz

Q

< CM/ |z |z — x| 42 dx + CHTI72mEeth
Q

< 05—1—2m+6+k‘

Changing the domain of integration, we have

(o - d(z — z5))* ko - 8E b(0)o - d(z — 6)dz

A$3 >0}NBr(zs)

QA({z3>20}NBr(xs))

—1—2 k
< Cgmimamtetk
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where in the last step we have used |z3| < |z — zs| and Lemma 3.2 below (we should
take m > k/2). The same caluculation as before yields (note 8% b3(0) = 0)

/ (o - d(z — z4))*zko - 8235(0)0 - d(z — z6)d
{z3>0}NBRr(zs)

= —o - 8% b(0) \ds(z — z5) >k dz,
{z3>0}NBRr(zs)

and

/ |ds(z — z6)|?2z5dz
{z32>0}NBR(zs) '

=(1+ 2m)2/{ o1 Baten) |z — 25|84 x5 + 6)2|2*™zkdx
32 R\Zs

> 052+2m+k/ |$ _ SL‘5|—6—4m dz
{z326}NBR(zs)N{|2|>6}

> 06—1—2m+k:.
Consequently we have
05—1—2m+kld . a;:csg(o)l < 06—1—2m+e+k’

hence 8% b1(0) = 0% b2(0) = 0. Therefore we have proved the theorem. [
Lemma 3.2. Let s > 4. We have ,

/ |z — x| "°dx < C65F4, for oK 1.
QA({z3>0}NBr(ws)) ‘

Proof. Near the origin, let 8Q be represented by z3 = ¢(z1,z2) and Q be represented
by z3 > ¢(x1,22). Since 0f) is smooth, there exist constants ¢ > 0 and p > 0, such
that |p(z1,72)| < co(z? + 73) for (2% + z3) < p. Therefore it suffices to show

/ ' |z — x| °dx < Cés+4 f0r>6 < 1. (3.6)
{lza|<co(z}+23)<cop} ~

The left hand side of (3.6) is bounded by

P C()T‘2
L.HS. of (3.6) < C / r dr / (r? 4+ (6 — £)2)~*/2 dt
0 0

p/é 1/r
= C§ot3 / r=t2 gp / (1+t3)~5/2 dt
0 1
p61/(=+3) 1r
1

/r—cobr
_csen [
0 /r—cobr

p/é 1/r .
+ / pst2 dr/ (14 12)7%/2 dt] :
p 1

§1/(—s+3) /r—cobr
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In the first term of the above, it follows that

1/r
/ (14+t2)=%/2dt < Cor(1+r72)7%/2, for § < 1,
1

/r—cobr

and in the second term

Hence

1/r
/ (1+t3)*2dt < C.
1

/r—cobr

oo

LH.S. of (3.6) < C§~*+° [/ rt26r(1 4+ r2) 7 2 dr / r5+2 gy
0

p&1/(—s+3)
< 0§51,

So we have proved the lemma. [
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