LIMITING ABSORPTION PRINCIPLE FOR DIRAC OPERATOR WITH CONSTANT MAGNETIC FIELD AND LONG-RANGE POTENTIAL

横山 耕一郎 (KOICHIRO YOKOYAMA)
DEPARTMENT OF MATHEMATICS
GRADUATE SCHOOL OF SCIENCE, OSAKA UNIVERSITY

1. INTRODUCTION

The Dirac Hamiltonian with magnetic vector potential $\mathbf{a} = (a_j(x))_{j=1,\dots,d}$ is expressed by the following form

$$H(\mathbf{a}) = \sum_{j=1}^{d} \gamma_j (P_j - a_j) + m\gamma_{d+1} + V, \tag{1.1}$$

where $P_j = \frac{1}{i}\partial_{x_j}$, V is a multiplication of an Hermitian matrix V(x). m is the mass of electron. The matrices $\{\gamma_j\}$ satisfy the following relations

$$\gamma_i \gamma_k + \gamma_k \gamma_i = 2\delta_{ik} \mathbf{1} \quad (j, k = 1, \dots, d+1). \tag{1.2}$$

Here δ_{jk} is Kronecker's delta and 1 is an identity matrix. We assume that the speed of the light c=1. When $V\equiv 0$, the square of $H(\mathbf{a})$ has the form

$$H(\mathbf{a})^2 = \sum_{j=1}^d (P_j - a_j)^2 + m^2 + \frac{1}{i} \sum_{1 < j < k < d} b_{jk}(x) \gamma_j \gamma_k, \tag{1.3}$$

where

$$b_{ik}(x) = \partial_{x_k} a_i(x) - \partial_{x_i} a_k(x). \tag{1.4}$$

It is called Pauli's Hamiltonian. The skew symmetric matrix $(b_{jk}(x))$ is the magnetic field associated with **a**. We say the magnetic field is asymptotically constant if it satisfies the following conditions as $|x| \to \infty$:

$$b_{jk}(x) \to {}^{\exists}\Lambda_{jk} \quad (1 \le j, k \le d),$$
 (1.5)

where $(\Lambda_{jk})_{j,k}$ is a constant matrix.

The aim of this paper is to prove the limiting absorption principle for $H(\mathbf{a})$ with a constant magnetic field $(b_{jk}(x))$ and a long-range electric potential V(x) when d=3. Let us recall some known facts about the Dirac Hamiltonian with a constant magnetic field for d=2,3. As can be inferred from (1.3), the spectrum of $H(\mathbf{a})$ is closely related

with that of magnetic Schrödinger operator appearing in the right hand side of (1.3), which depends largely on the space dimension. Suppose d=2 at first. For simplicity we consider the case that the magnetic field $b(x) = \partial_{x_2} a_1(x) - \partial_{x_1} a_2(x) = \lambda > 0$. In this case, the Dirac Hamiltonian $h(\lambda)$ is represented by

$$h(\lambda) = \sigma_1(P_1 + \frac{\lambda}{2}x_2) + \sigma_2(P_2 - \frac{\lambda}{2}x_1) + m\sigma_3,$$
 (1.6)

with $\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $\sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

They are called Pauli's spin matrices. Obviously $\{\sigma_j\}$ satisfy the relation (1.2) and by an elementary calculus we have

$$h(\lambda)^{2} = (P_{1} + \frac{\lambda}{2}x_{2})^{2} + (P_{2} - \frac{\lambda}{2}x_{1})^{2} + m^{2} - \lambda\sigma_{3}.$$
 (1.7)

The right hand side is a de-coupled 2 dimensional magnetic Schödinger operator. So it suggests that the spectrum of $h(\lambda)$ is discrete and

$$\sigma(h(\lambda)) \subset \{\pm \sqrt{2\lambda n + m^2} \mid n = 0, 1, 2 \dots \}.$$

In fact we have

$$\sigma(h(\lambda)) = \{\sqrt{2\lambda n + m^2}, -\sqrt{2\lambda(n+1) + m^2} | n = 0, 1, 2 \dots \}$$

by using Foldy-Wouthuysen transform. (See 7.1.3 in [8].) Therefore the spectrum of $h(\lambda)$ is of pure point with infinite multiplicities.

Next we consider the case of d=3. We assume

$$\mathbf{a}_0(x) = (-\lambda x_2/2, \lambda x_1/2, 0) \quad (\lambda > 0).$$

Then the associated magnetic field is constant along x_3 -axis:

$$B(x) = (b_{32}(x), b_{13}(x), b_{21}(x)) = (0, 0, \lambda).$$

We denote the associated Dirac Hamiltonian as $H_0(\lambda)$. It is the following operator acting on $\mathbb{H} = L^2(\mathbb{R}^3) \otimes \mathbb{C}^4$:

$$H_0(\lambda) = \alpha_1(P_1 + \frac{\lambda x_2}{2}) + \alpha_2(P_2 - \frac{\lambda x_1}{2}) + \alpha_3 P_3 + m\beta, \tag{1.8}$$

where $\{\alpha_j\}$ and β are 4×4 Hermitian matrices such that

$$\alpha_j = \begin{pmatrix} 0 & \sigma_j \\ \sigma_j & 0 \end{pmatrix}, \quad \beta = \begin{pmatrix} \mathbf{1} & 0 \\ 0 & -\mathbf{1} \end{pmatrix}.$$
(1.9)

We can easily see that these matrices also satisfy the relation (1.2). It is known that $H_0(\lambda)$ is essentially self-adjoint on $C_0^{\infty}(\mathbb{R}^3) \otimes \mathbb{C}^4$. (See Theorem 4.3 in [8].) Now we consider the spectrum of $H_0(\lambda)$. At first we rewrite $H_0(\lambda)$ as follows.

$$H_0(\lambda) = Q_0 + m\beta = \begin{pmatrix} 0 & D_0 \\ D_0 & 0 \end{pmatrix} + \begin{pmatrix} m & 0 \\ 0 & -m \end{pmatrix}, \tag{1.10}$$

with $D_0 = \sigma \cdot (P - \mathbf{a}_0)$ and $\sigma = (\sigma_1, \sigma_2, \sigma_3)$.

By using Foldy-Wouthuysen transform, explained in detail in the following section, $H_0(\lambda)$ can be diagonalized by a unitary operator U_{FW} .

$$U_{FW}H_0(\lambda)U_{FW}^{-1} = \begin{pmatrix} \sqrt{D_0^2 + m^2} & 0\\ 0 & -\sqrt{D_0^2 + m^2} \end{pmatrix}.$$
 (1.11)

From the commutation relation (1.2) we have

$$D_0^2 = (P_1 + \frac{\lambda x_2}{2})^2 + (P_2 - \frac{\lambda x_1}{2})^2 + P_3^2 - \lambda \beta.$$
 (1.12)

We can easily see that $\sigma(D_0^2) = [0, \infty)$. So we have

$$\sigma(H_0(\lambda)) = (-\infty, -m] \cup [m, \infty).$$

Therefore in the 3 dimensional case, the spectrum of $H_0(\lambda)$ is absolutely continuous.

Let us consider the perturbation of $H_0(\lambda)$: We put

$$H(\lambda) = H_0(\lambda) + V. \tag{1.13}$$

Our aim is to show the so-called limiting absorption principle, namely the existence of the boundary value of the resolvent $(z - H(\lambda))^{-1}$ on the real axis. As for the Schrödinger operator with constant magnetic field, Iwashita [4] shows the limiting absorption principle for long-range potential by using commutator method. In [4] the following self-adjoint operator is considered.

$$\tilde{H} = (P_1 + \frac{\lambda x_2}{2})^2 + (P_2 - \frac{\lambda x_1}{2})^2 + P_3^2 + V(x). \tag{1.14}$$

The existence of the boundary values

$$\langle x_3 \rangle^{-s} (\tilde{H} - \mu \mp i0)^{-1} \langle x_3 \rangle^{-s}$$

is proved for s>1/2 and $\mu\in\mathbb{R}\setminus(\{\lambda(2n+1)|n=0,1,2,\dots\}\cup\sigma_{pp}(\tilde{H}))$. Commutator method is also used for the free Dirac Hamiltonian and that with a scalar potential, which is decaying as $|x|\to\infty$. (See [2].) Hachem [3] showed the limiting absorption principle for the following electromagnetic Dirac Hamiltonian with a short-range potential V(x). Roughly speaking, his assumption means that the absolute value of each components of V is dominated from above by $C\langle x'\rangle^{-1-\epsilon}\langle x\rangle^{-\epsilon}$ ($x'=(x_2,x_3)$) for sufficiently large x. We remark that $\epsilon>0$ is used as a sufficiently small parameter throughout this paper. To be accurate, $\langle x'\rangle^{1+\epsilon}V(x)$ is required to be a $H_0(\lambda)$ -compact operator.

In this paper we treat directly the following operator

$$H(\lambda) = \alpha_1(P_1 + \frac{\lambda}{2}x_2) + \alpha_2(P_2 - \frac{\lambda}{2}x_1) + \alpha_3P_3 + m\beta + V(x), \quad (1.15)$$

where V(x) is a matrix potential. Our strategy is to apply Mourre's commutator method directly to this operator, which enables us to include the long-range diagonal components for V(x). In this case it

seems that an appropriate choice of the conjugate operator is

$$\frac{P_3}{\langle P_3 \rangle} \cdot x_3 + x_3 \cdot \frac{P_3}{\langle P_3 \rangle},$$

which is inspired by [9], when we proved the limiting absorption principle for time-periodic Schrödinger operator. In fact the method of the proof shares many ideas in common with [9]. Namely we rewrite $H_0(\lambda)$ by a direct integral and the conjugate operator A acts on each space of fiber. Our main results are Theorem 3.4 and Corollary 3.7.

2. Conjugate operator

Let us recall

$$Q_0 = \begin{pmatrix} 0 & D_0 \\ D_0 & 0 \end{pmatrix}, \quad D_0 = \sigma(P - \mathbf{a}_0), \tag{2.1}$$

with

$$\mathbf{a}_0(x) = (-\lambda x_2/2, \lambda x_1/2, 0). \tag{2.2}$$

The Dirac Hamiltonian $Q_0 + m\beta$ can be diagonalized by sandwiching it between a unitary operator U and $U^* = U^{-1}$. In the beginning of this section we introduce a unitary operator which diagonalizes the self-adjoint operator $H_0(\lambda)$. Secondly we give a conjugate operator associated with the diagonalized Dirac Hamiltonian. Finally we show Mourre's inequality for original Hamiltonians $H_0(\lambda)$ and $H(\lambda)$.

Let Q_0 be the self-adjoint operator as in (2.1) and $|Q_0| = \sqrt{Q_0^2}$, $|H_0(\lambda)| = \sqrt{H_0(\lambda)^2}$. We define a unitary operator U_{FW} , which diagonalize $H_0(\lambda)$, in the following way.

Definition 2.1. (i). At first we define a signiture function associated with Q_0 by

$$sgnQ_0 = \begin{cases} \frac{Q_0}{|Q_0|} &, & on \ (kerQ_0)^{\perp} \\ 0 &, & on \ (kerQ_0) \end{cases}$$
 (2.3)

We note that $sgnQ_0$ is isometory on $(kerQ_0)^{\perp}$.

(ii). We can easily see that $m/|H_0(\lambda)| \leq 1$. So we denote the square root of $\frac{1}{2}(1 \pm \frac{m}{|H_0(\lambda)|})$ as a_{\pm} . i.e.

$$a_{\pm} = \frac{1}{\sqrt{2}} \sqrt{1 \pm m/|H_0(\lambda)|}.$$
 (2.4)

(iii). Combining these operators we define the operator U_{FW} as

$$U_{FW} = a_{+} + \beta(sgnQ_{0})a_{-}. \tag{2.5}$$

Lemma 2.2. (i). U_{FW} is a unitary operator on $L^2(\mathbb{R}^3) \otimes \mathbb{C}^4$. Further,

$$U_{FW}^* = U_{FW}^{-1} = a_+ - \beta(sgnQ_0)a_-. \tag{2.6}$$

(ii). $H_0(\lambda)$ can be diagonalized by U_{FW} as follows.

$$U_{FW}H_0(\lambda)U_{FW}^{-1} = |H_0(\lambda)|\beta = \begin{pmatrix} \sqrt{D_0^2 + m^2} & 0\\ 0 & -\sqrt{D_0^2 + m^2} \end{pmatrix}. (2.7)$$

We denote the diagonalized Dirac Hamiltonian as $\hat{H}_0(\lambda)$. i.e.

$$\hat{H}_0(\lambda) = U_{FW} H_0(\lambda) U_{FW}^{-1}.$$

We rewrite (1.12) as follows.

$$D_0^2 = \left(\begin{array}{cc} D_- & 0\\ 0 & D_+ \end{array}\right).$$

Here D_{\pm} are the operators acting on $L^2(\mathbb{R}^3)$ such that

$$D_{\pm} = (P_1 + \frac{\lambda}{2}x_2)^2 + (P_2 - \frac{\lambda}{2}x_1)^2 + P_3^2 \pm \lambda.$$

It is well-known that $(P_1 + \frac{\lambda}{2}x_2)^2 + (P_2 - \frac{\lambda}{2}x_1)^2$ has eigenvalues

$$\{\lambda(2n+1)|n=0,1,2,\dots\}.$$

We denote the eigenprojection on each eigenspace as Π_n . With these projections, $\sqrt{D_0^2 + m^2}$ can be rewritten as follows.

$$\sqrt{D_0^2 + m^2} = \sum_{n=0}^{\infty} \begin{pmatrix} d_n \otimes \Pi_n & 0\\ 0 & d_{n+1} \otimes \Pi_n \end{pmatrix}, \tag{2.8}$$

with $d_n = d_n(P_3) = \sqrt{2\lambda n + P_3^2 + m^2}$

Combining (2.7) and (2.8), we have

$$f(\hat{H}_0(\lambda)) =$$

$$\sum_{n=0}^{\infty} \begin{pmatrix} f(d_n) \otimes \Pi_n & & & \\ & f(d_{n+1}) \otimes \Pi_n & & \\ & & f(-d_n) \otimes \Pi_n & \\ & & & f(-d_{n+1}) \otimes \Pi_n \end{pmatrix}$$

for any Borel function f.

Now we define the conjugate operator. At first we define

$$\hat{A} = \frac{1}{2} \left\{ \frac{P_3}{\langle P_3 \rangle} \cdot x_3 + x_3 \cdot \frac{P_3}{\langle P_3 \rangle} \right\}. \tag{2.9}$$

We note that \hat{A} is essentially self-adjoint operator on $D(|x_3|)$. (It is obtained by use of Nelson's commutator theorem [7].) The conjugate operator for the Dirac Hamiltonian associated with constant magnetic field is defined by sandwiching $\hat{A}\beta$ between U_{FW}^{-1} and U_{FW} :

$$A = U_{FW}^{-1}(\hat{A}\beta)U_{FW}. (2.10)$$

Before we show Mourre's inequality, we introduce the usual functional calculus, started by Helffer and Sjöstrand.

Suppose that $f \in C^{\infty}(\mathbb{R})$ satisfies the following condition for some $m_0 \in \mathbb{R}$.

$$|f^{(k)}(t)| \le C_k (1+|t|)^{m_0-k}, \quad \forall k \in \mathbb{N} \cup \{0\}.$$
 (2.11)

Then we can construct an almost analytic extension $\tilde{f}(z)$ of f(t) having the following properties

$$\tilde{f}(t) = f(t), \quad t \in \mathbb{R},$$

$$supp \tilde{f} \subset \{z; |Imz| \le 1 + |Rez|\},$$

$$|\partial_{\bar{z}}\tilde{f}(z)| \le C_N |Imz|^N \langle z \rangle^{m_0 - 1 - N}, \quad \forall N \in \mathbb{N}.$$
 (2.12)

Then for all f, satisfying (2.11) for $m_0 < 0$ and a self-adjoint operator H, we have

$$f(H) = \frac{1}{2\pi i} \int_{\mathbb{C}} \frac{\partial \tilde{f}}{\partial \bar{z}}(z)(z - H)^{-1} dz \wedge d\bar{z}.$$
 (2.13)

3. Limiting absorption principle for Long-range potentials

Now we show the Mourre's inequality for the Dirac Hamiltonian by choosing A defined in the previous section as the conjugate operator.

Lemma 3.1. Let $\mathbb{R}_{\mathbb{N}}$ be the following discrete subset of \mathbb{R}

$$\mathbb{R}_{\mathbb{N}} = \{ \pm \sqrt{2\lambda n + m^2} \mid n = 0, 1, 2, \dots \} \subset \mathbb{R}.$$

We take a compact interval $I \subset \mathbb{R} \setminus \mathbb{R}_{\mathbb{N}}$ arbitrarily. Then there exists $\alpha > 0$ such that the following inequality holds for any real valued $f \in C_0^{\infty}(I)$

$$f(H_0(\lambda))i[H_0(\lambda), A]f(H_0(\lambda)) \ge \alpha f(H_0(\lambda))^2. \tag{3.1}$$

Proof. By the relations (2.7) and (2.10), it is sufficient to show the inequality

$$f(\hat{H}_0(\lambda))i[\hat{H}_0(\lambda), \hat{A}\beta]f(\hat{H}_0(\lambda)) \ge \alpha f(\hat{H}_0(\lambda))^2.$$
 (3.2)

We rewrite the commutator as follow.

$$i[\hat{H}_0(\lambda), \hat{A}\beta] = \begin{pmatrix} i[\sqrt{D_0^2 + m^2}, \hat{A}] \\ i[\sqrt{D_0^2 + m^2}, \hat{A}] \end{pmatrix}.$$
 (3.3)

We proceed the calculus more precisely to see that

$$i[\sqrt{D_0^2 + m^2}, \hat{A}] = \sum_{n=0}^{\infty} \begin{pmatrix} i[d_n, \hat{A}] \otimes \Pi_n \\ i[d_{n+1}, \hat{A}] \otimes \Pi_n \end{pmatrix}$$
 (3.4)

by (2.8). From (3.3) and (3.4) the left hand side of (3.2) is rewritten as

$$f(\hat{H}_0(\lambda))i[\hat{H}_0(\lambda), \hat{A}\beta]f(\hat{H}_0(\lambda)) = \begin{pmatrix} I_1 & & & \\ & I_2 & & \\ & & & I_3 & \\ & & & & I_4 \end{pmatrix}$$
(3.5)

where

$$I_{1} = \sum_{n=0}^{\infty} f(d_{n})i[d_{n}, \hat{A}]f(d_{n}) \otimes \Pi_{n},$$

$$I_{2} = \sum_{n=0}^{\infty} f(d_{n+1})i[d_{n+1}, \hat{A}]f(d_{n+1}) \otimes \Pi_{n},$$

$$I_{3} = \sum_{n=0}^{\infty} f(-d_{n})i[d_{n}, \hat{A}]f(-d_{n}) \otimes \Pi_{n},$$

$$I_{4} = \sum_{n=0}^{\infty} f(-d_{n+1})i[d_{n+1}, \hat{A}]f(-d_{n+1}) \otimes \Pi_{n}.$$

We note that all the sum in I_1, \dots, I_4 are finite since f is a compactly supported function. By an elementary caluculus, we have

$$i[d_l, \hat{A}] = \frac{P_3^2}{\sqrt{2\lambda l + P_3^2 + m^2} \langle P_3 \rangle} \quad (l \in \mathbb{N} \cup \{0\}).$$
 (3.6)

Since $supp f \subset I \subset \mathbb{R} \backslash \mathbb{R}_{\mathbb{N}}$, P_3 is away from zero when $P_3 \in supp f(d_l(P_3))$ or $P_3 \in supp f(-d_l(P_3))$. So there exist $C_l > 0$ such that

$$f(d_l)i[d_l, \hat{A}]f(d_l) \otimes \Pi_l \geq C_l f(d_l)^2 \otimes \Pi_l,$$

$$f(-d_l)i[d_l, \hat{A}]f(-d_l) \otimes \Pi_l \geq C_l f(-d_l)^2 \otimes \Pi_l.$$

Since only a finite number of $l = l_j$ (j = 1, ..., N) is concerned, we have (3.2) with $\alpha = \inf_{j=1,...,N} C_{l_j}$.

Now we give the assumption for the potential, which is necessary to Mourre's inequality associated to $H(\lambda)$. After that we give an example of V satisfying this assumption. It consists of a sum of long-range part and short-range part. In our case short-range potential means $V(x) = O(\langle x \rangle^{-\epsilon} \langle x_3 \rangle^{-1-\epsilon})$ as $|x| \to \infty$. And long-range part is a multiplication of a real valued function $\varphi(x)$ such that $\varphi(x) = O(\langle x \rangle^{-\epsilon})$ as $|x| \to \infty$. More precisely we assume that V satisfies the following.

Assumption 3.2. V = V(x) is a multiplicative operator of a 4×4 Hermitian matrix satisfying the following properties.

- (i). V is a $H_0(\lambda)$ -compact operator.
- (ii). The form [V, A] can be extended to a $H_0(\lambda)$ -compact operator.

For example a 4×4 matrix V(x) satisfying the following inequality is $H_0(\lambda)$ -compact.

$$|V(x)| \le C\langle x \rangle^{-\epsilon} \quad (x \in \mathbb{R}^3).$$
 (3.7)

It is owing to the fact that $V(x)(-\Delta_x + 1)^{-1}$ is compact. (It is due to Theorem 2.6 in [1].) Under this assumption we show Mourre's inequality for $H(\lambda)$.

Lemma 3.3. Suppose V satisfies Assumption 3.2.

(i). We take $\mu \in \mathbb{R} \setminus \mathbb{R}_{\mathbb{N}}$ and $\delta > 0$ so that the closed interval $I \equiv [\mu - \delta, \mu + \delta] \subset \mathbb{R} \setminus \mathbb{R}_{\mathbb{N}}$. There exist $\alpha > 0$ and a compact operator K such that the following inequality holds for all $f \in C_0^{\infty}(I)$.

$$f(H(\lambda))i[H(\lambda), A]f(H(\lambda)) \ge \alpha f(H(\lambda))^2 + K. \tag{3.8}$$

(ii). There is no accumulation point of $\sigma_{pp}(H(\lambda))$ in $\mathbb{R} \setminus \mathbb{R}_{\mathbb{N}}$. For $\mu \in \mathbb{R} \setminus (\mathbb{R}_{\mathbb{N}} \cup \sigma_{pp}(H(\lambda)))$, there exist $\delta_0 > 0$ and $\alpha_0 > 0$ such that the following inequality holds for all $f \in C_0^{\infty}([\mu - \delta_0, \mu + \delta_0])$.

$$f(H(\lambda))i[H(\lambda), A]f(H(\lambda)) \ge \alpha_0 f(H(\lambda))^2.$$
 (3.9)

With this inequality we have the limiting absorption principle for the Dirac Hamiltonian.

Theorem 3.4. Suppose V satisfies Assumption 3.2. Then for $\mu \in \mathbb{R} \setminus (\mathbb{R}_{\mathbb{N}} \cup \sigma_{pp}(H(\lambda)))$, the following limits

$$R^{\pm}(\mu) = \lim_{\epsilon \downarrow 0} \langle x_3 \rangle^{-s} (H(\lambda) - \mu \mp i\epsilon)^{-1} \langle x_3 \rangle^{-s}$$
 (3.10)

exist and $R^{\pm}(\mu)$ are continuous with respect to $\mu \in \mathbb{R} \setminus (\mathbb{R}_{\mathbb{N}} \cup \sigma_{pp}(H(\lambda)))$.

Sketch of proof

From (3.9) and Theorem 2.2 in [5], we can see that the boundary value $\langle A \rangle^{-s} (H(\lambda) - \mu \mp i0)^{-1} \langle A \rangle^{-s}$ exist for $\mu \in \mathbb{R} \setminus (\mathbb{R}_{\mathbb{N}} \cup \sigma_{pp}(H(\lambda)))$. To see the existence of (3.10), it is sufficient if we show the boundness of $\langle A \rangle^{s} \langle x_{3} \rangle^{-s}$. Since $\langle \hat{A} \rangle^{s} \langle x_{3} \rangle^{-s}$ is bounded, it is sufficient to show $\langle x_{3} \rangle^{s} U_{FW} \langle x_{3} \rangle^{-s}$ is bounded. We prove it in the following Lemma. Before that we introduce smooth functions.

Let $\chi(t) \in C^{\infty}(\mathbb{R})$ such that

$$\chi(t) = \begin{cases} 1/\sqrt{2} & (t > -m^2/3) \\ 0 & (t < -2m^2/3). \end{cases}$$
 (3.11)

With this function we define $F_{\pm}(t)$ and $F_{\chi,\pm}$ as follows.

$$F_{+}(t) = \chi(t)\sqrt{1 + \frac{m}{\sqrt{t + m^2}}}$$

$$F_{-}(t) = \chi(t)\left(\sqrt{1 + \frac{m}{\sqrt{t + m^2}}}\right)^{-1} \frac{1}{\sqrt{t + m^2}}$$

$$F_{\chi,+}(t) = F_{+}(t) - \chi(t)$$

$$F_{\chi,-}(t) = \sqrt{t + m^2}F_{-}(t) - \chi(t)$$

Then we can easily verify that

$$a_{+} = F_{+}(Q_{0}^{2}),$$

 $a_{-}sgnQ_{0} = F_{-}(Q_{0}^{2})Q_{0} = Q_{0}F_{-}(Q_{0}^{2}).$

As for the proof of $[Q_0, F_-(Q_0^2)] \equiv 0$, see 5.2.4 in [8]. By the construction of these functions, we can also see that $F_{\chi,\pm}(t)$ satisfy (2.11) with $m_0 < 0$. So we apply the functional calculus in section 2 to $F_{\chi,\pm}(t)$ and see the following properties hold.

Lemma 3.5. Suppose $0 \le s \le 2$ and $z \in \mathbb{C} \setminus \mathbb{R}$. Then

(i). For $0 < s \le 1$, there exists $C_s > 0$ such that $\|\langle x \rangle^s (z - Q_0^2)^{-1} \langle x \rangle^{-s} \|_{\mathbb{H}} \le C_s (|Imz|^{-1} + |Imz|^{-2} \langle z \rangle). \tag{3.12}$

(ii). For $1 < s \le 2$, there exists $C'_s > 0$ such that

$$\|\langle x \rangle^{s} (z - Q_{0}^{2})^{-1} \langle x \rangle^{-s} \|_{\mathbb{H}} \le C'_{s} (|Imz|^{-1} + |Imz|^{-2} \langle z \rangle + |Imz|^{-3} \langle z \rangle^{2}).$$
(3.13)

(iii). $\langle x \rangle^s F_+(Q_0^2) \langle x \rangle^{-s}$ and $\langle x \rangle^s F_-(Q_0^2) Q_0 \langle x \rangle^{-s}$ are bounded operators.

Proof. For the proof of (i) and (ii), we use the resolvent equation. Suppose $0 < s \le 1$. Then

$$\langle x \rangle^{s} (z - Q_{0}^{2})^{-1} \langle x \rangle^{-s} = (z - Q_{0}^{2})^{-1} + (z - Q_{0}^{2})^{-1} (Q_{0}^{2} + 1)$$

$$\times (Q_{0}^{2} + 1)^{-1} [\langle x \rangle^{s}, Q_{0}^{2}] (z - Q_{0}^{2})^{-1} \langle x \rangle^{-s}.$$
 (3.15)

From the boundness of $(Q_0^2+1)^{-1}[\langle x\rangle^s,Q_0^2]$ and the following estimate

$$\|(z-Q_0^2)^{-1}(Q_0^2+1)\|_{\mathbb{H}} \le C(|Imz|^{-1}\langle z\rangle+1),$$
 (3.16)

we obtain (i). As for the case $1 < s \le 2$, we rewrite the last term $(z - Q_0^2)^{-1} [\langle x \rangle^s, Q_0^2] (z - Q_0^2)^{-1} \langle x \rangle^{-s}$ as

$$(z - Q_0^2)^{-1}(Q_0^2 + 1)(Q_0^2 + 1)^{-1}[\langle x \rangle^s, Q_0^2]\langle x \rangle^{-s+1}$$
(3.17)

$$\times \langle x \rangle^{s-1} (z - Q_0^2)^{-1} \langle x \rangle^{-s+1} \langle x \rangle^{-1}. \tag{3.18}$$

By using the result for $0 < s \le 1$, we have the inequality for $1 < s \le 2$. With these estimates, we prove (iii). Since $\chi(Q_0^2) \equiv 1$, we can easily see that

$$\langle x \rangle^s F_+(Q_0^2) \langle x \rangle^{-s} = \langle x \rangle^s F_{\chi,+}(Q_0^2) \langle x \rangle^{-s} + I. \tag{3.19}$$

Since $F_{\chi,+}(t)$ satisfies (2.12) for $m_0 = -1/2$, $F_{\chi,+}(Q_0^2)$ can be rewritten as follows.

$$\frac{1}{2\pi i} \int_{\mathbb{C}} \partial_{\bar{z}} \tilde{F}_{\chi,+}(z) \langle x \rangle^{s} (z - Q_0^2)^{-1} \langle x \rangle^{-s} dz \wedge d\bar{z}. \tag{3.20}$$

From this formula and (i) (ii) we have

$$\begin{split} \|\partial_{\bar{z}}\tilde{F}_{\chi,+}(z)\langle x\rangle^{s}(z-Q_{0}^{2})^{-1}\langle x\rangle^{-s}\|_{\mathbb{H}} \\ &\leq C|\partial_{\bar{z}}\tilde{F}_{\chi,+}(z)|(|Imz|^{-1}+|Imz|^{-2}\langle z\rangle+|Imz|^{-3}\langle z\rangle^{2}). \end{split}$$

From (2.12) we have

$$\|\partial_{\bar{z}}\tilde{F}_{\chi,+}(z)\langle x\rangle^{s}(z-Q_{0}^{2})^{-1}\langle x\rangle^{-s}\|_{\mathbb{H}} \leq C\langle z\rangle^{-5/2}.$$

This implies the boundness of $\langle x \rangle^s F_+(Q_0^2) \langle x \rangle^{-s}$.

In a similar way, we rewrite $\langle x \rangle^s F_-(Q_0^2) Q_0 \langle x \rangle^{-s}$ as

$$\langle x \rangle^{s} F_{\chi,-}(Q_0^2) \langle x \rangle^{-s} \langle x \rangle^{s} \frac{Q_0}{\sqrt{Q_0^2 + m^2}} \langle x \rangle^{-s} + \langle x \rangle^{s} \frac{Q_0}{\sqrt{Q_0^2 + m^2}} \langle x \rangle^{-s}.$$
(3.21)

It is sufficient to show the boundness of $\langle x \rangle^s Q_0 / \sqrt{Q_0^2 + m^2} \langle x \rangle^{-s}$. To see this, we denote $\chi(t) / \sqrt{t + m^2} \in C^{\infty}(\mathbb{R}^3)$ as S(t) and its almost analytic extension as $\tilde{S}(z)$. We can easily see that $S(Q_0^2) \langle x \rangle^s Q_0 \langle x \rangle^{-s}$ is bounded. So we obtain the boundness of $\langle x \rangle^s F_-(Q_0^2) Q_0 \langle x \rangle^{-s}$ if we show that $[\langle x \rangle^s, S(Q_0^2)] Q_0 \langle x \rangle^{-s}$ is bounded. We rewrite it as follows.

$$\frac{1}{2\pi i} \int_{\mathbb{C}} \partial_{\bar{z}} \tilde{S}(z) \frac{Q_0^2 + 1}{z - Q_0^2} (Q_0^2 + 1)^{-1} [\langle x \rangle^s, Q_0^2] Q_0 \langle x \rangle^{-s} \langle x \rangle^s (z - Q_0^2)^{-1} \langle x \rangle^{-s} dz \wedge d\bar{z}.$$

By an elementary calculus, we have $(Q_0^2+1)^{-1}[\langle x\rangle^s,Q_0^2]Q_0\langle x\rangle^{-s}$ bounded. Combining (i) and (ii), we have

$$\begin{aligned} & \| [\langle x \rangle^s, S(Q_0^2)] Q_0 \langle x \rangle^{-s} \|_{\mathbb{H}} \le C \int_{\mathbb{C}} |\partial_{\bar{z}} \tilde{S}(z)| \{ 1 + |Imz|^{-1} \} \\ & \times \{ |Imz|^{-1} + |Imz|^{-2} \langle z \rangle + |Imz|^{-3} \langle z \rangle^2 \} dz \wedge d\bar{z} < \infty. \end{aligned}$$

This implies the boundness of $\langle x \rangle^s F_-(Q_0^2) Q_0 \langle x \rangle^{-s}$.

Next we give an example of V. It requires smoothness, but allows long-range part in its diagonal components.

Lemma 3.6. Let V be a 4×4 Hermitian matrix of the form

$$V(x) = (v_{ij}(x)) + \varphi(x)I_4 \equiv V_s(x) + V_l(x)$$
 (3.22)

where $V_s(x) = (v_{ij}(x))$ is an Hermitian matrix and I_4 is an identity matrix. Suppose the following conditions hold. Then V(x) satisfies Assumption 3.2.

There exist $\delta > 0$ such that the following inequalities hold for all multi-index α .

$$|\partial_x^{\alpha} v_{ij}(x)| < C_{\alpha} \langle x \rangle^{-\delta - |\alpha|} \langle x_3 \rangle^{-1} \quad (1 < i, j < 4). \tag{3.23}$$

 $\varphi(x) \in C^{\infty}(\mathbb{R}^3)$ is real valued and satisfies

$$|\partial_x^{\alpha} \varphi(x)| \le C_{\alpha}' \langle x \rangle^{-\delta - |\alpha|}. \tag{3.24}$$

The relatively compactness of V(x) itself is clear since V satisfies (3.7). So we only have to show the relatively compactness of [V, A]. We prove the relatively compactness of $[V_s, A] = [V_s, U_{FW}^{-1} \hat{A}\beta U_{FW}]$ at first. From the boundness of $\langle x_3 \rangle^{-1} \hat{A}\beta$ and the relatively compactness of $V_s \langle x_3 \rangle$, it is sufficient to show that $\langle x_3 \rangle U_{FW} \langle x_3 \rangle^{-1}$ and $\langle x_3 \rangle U_{FW}^{-1} \langle x_3 \rangle^{-1}$ are bounded operators in \mathbb{H} . We have already proved it in Lemma 3.5.

Next we treat the long-range term. The conjugate operator A can be decomosed into the sum of J_1, \dots, J_4 where

$$J_{1} = F_{+}(Q_{0}^{2})\hat{A}\beta F_{+}(Q_{0}^{2}),$$

$$J_{2} = F_{+}(Q_{0}^{2})\hat{A}\beta^{2}F_{-}(Q_{0}^{2})Q_{0},$$

$$J_{3} = \beta F_{-}(Q_{0}^{2})Q_{0}\hat{A}\beta F_{+}(Q_{0}^{2}),$$

$$J_{4} = \beta F_{-}(Q_{0}^{2})Q_{0}\hat{A}\beta^{2}F_{-}(Q_{0}^{2})Q_{0}.$$

We prove that the $H_0(\lambda)$ - compactness holds for each of $[V_l, J_1], \dots, [V_l, J_4]$. To see this we use the functional calculus again and rewrite J_1 as follows.

$$F_{+}(Q_{0}^{2})\hat{A}\beta F_{+}(Q_{0}^{2}) = \hat{A}\beta F_{+}(Q_{0}^{2})^{2} + [F_{\chi,+}(Q_{0}^{2}), \hat{A}\beta]F_{+}(Q_{0}^{2})$$

$$\equiv J_{1}' + J_{1}''$$

At first we prove the boundness of J_1'' and consequently the relatively compactness of $[V_l, J_1'']$. By using (2.13), we rewrite $[F_{\chi,+}(Q_0^2), \hat{A}\beta]$ as follows.

$$\frac{1}{2\pi i} \int_{\mathbb{C}} \partial_{\bar{z}} \tilde{F}_{\chi,+}(z) (z - Q_0^2)^{-1} [Q_0^2, \hat{A}\beta] (z - Q_0^2)^{-1} dz \wedge d\bar{z}.$$
 (3.25)

From (3.16) we have $[Q_0^2, \hat{A}\beta](z - Q_0^2)^{-1}$ is dominated from above by $C\{1 + |Imz|\}$. So we have

$$||[F_{\chi,+}(Q_0^2), \hat{A}\beta]|| \le C \int_{\mathbb{C}} |\partial_{\bar{z}} \tilde{F}_{\chi,+}(z)| \{ |Imz|^{-1} + |Imz|^{-2} \langle z \rangle \} dz \wedge d\bar{z}.$$
(3.26)

Since the almost analytic extension $\tilde{F}_{\chi,+}(z)$ satisfies

$$|\partial_{\bar{z}}\tilde{F}_{+}(z)| \le C_N |Imz|^N \langle z \rangle^{-3/2-N} \quad (\forall N \in \mathbb{N}), \tag{3.27}$$

we have $[F_{\chi,+}(Q_0^2), \hat{A}\beta]$ is bounded and inductively $[V_l, J_1'']$ is $H_0(\lambda)$ -compact. So we only have to show the relatively compactness of $[V_l, J_1']$.

$$[V_l, J_1'] = [V_l, \hat{A}\beta] F_+(Q_0^2)^2 + \hat{A}\beta [V_l, F_+(Q_0^2)^2]. \tag{3.28}$$

Clearly $[V_l, \hat{A}\beta]F_+(Q_0^2)$ is $H_0(\lambda)$ -compact. Again we rewrite the commutator in the second term, by use of (2.13). Then we have $\langle x \rangle^{1+\delta}[V_l, F_+(Q_0^2)^2]$ is bounded. Combing these facts, we have the relatively compactness of $[V_l, J_1]$.

As for the commutator $[V_l, J_2], \dots, [V_l, J_4]$ we also replace F_{\pm} by $F_{\chi,\pm}$ and use the functional calculus. The proof of relatively compactness of $[V_l, J_2]$ and $[V_l, J_3]$ are almost the same. We only give the proof for J_2 . We also estimate the 'principle' part before we compute the commutator with V_l .

$$J_2 = \hat{A}F_+(Q_0^2)F_-(Q_0^2)Q_0 + [F_+(Q_0^2), \hat{A}]F_-(Q_0^2)Q_0$$
 (3.29)

It is sufficient to show that $[V_l, \hat{A}F_+(Q_0^2)F_-(Q_0^2)Q_0]$ is a $H_0(\lambda)$ -compact operator. We decompose it into the following sum.

$$\begin{split} [V_l, \hat{A}] F_+(Q_0^2) F_-(Q_0^2) Q_0 \\ + \hat{A} [V_l, F_+(Q_0^2) F_-(Q_0^2)] Q_0 \\ + \hat{A} F_+(Q_0^2) F_-(Q_0^2) [V_l, Q_0]. \end{split}$$

We can easily see that the first and the third term is relatively compact since $\langle x \rangle^{1+\delta}[V_l, Q_0]$ is bounded. As for the second term, we can also see the relatively compactness in the same argument as we have done in the proof of Lemma 3.5 (iii).

As for J_4 , the proof is similar. We rewrite it as

$$\hat{A}F_{-}(Q_0^2)^2Q_0^2 + [F_{-}(Q_0^2)Q_0, \hat{A}]F_{-}(Q_0^2)Q_0$$
(3.30)

We can also obtain the relatively compactness by estimating the term $[V, \hat{A}F_{-}(Q_0^2)^2Q_0^2]$.

Corollary 3.7. Let V be a 4×4 Hermitian matrix. Suppose V satisfies the condition in Lemma 3.6. Then the following limits

$$R^{\pm}(\mu) = \lim_{\epsilon \downarrow 0} \langle x_3 \rangle^{-s} (H(\lambda) - \mu \mp i\epsilon)^{-1} \langle x_3 \rangle^{-s}$$
 (3.31)

exist for $\mu \in \mathbb{R} \setminus (\mathbb{R}_{\mathbb{N}} \cup \sigma_{pp}(H(\lambda)))$ and $R^{\pm}(\mu)$ are continuous with respect to μ .

REFERENCES

- [1] Avron, J., Herbst, I., Simon, B.: Schrödinger operators with magnetic fields. 1. General interactions, *Duke Math. J.*, vol **45** (4) (1978), p.847-883.
- [2] Boutet de Monvel-Berthier, A., Manda, D., Purice, R.: Limiting absorption principle for the Dirac operator, *Ann. Inst. Henri Poincaré*, vol **58** (4), (1993), p.413-431.
- [3] Hachem, G.: Effet Zeeman pour un électron de Dirac, Ann. Inst. Henri Poincaré, vol 58 (1), (1993), p.105-123.
- [4] Iwashita, H., : On the long-range scattering for one- and two- particle Schrödinger operators with constant magnetic fields, *Tsukuba J. Math.*, vol 19 (2) (1995) p.369-376.
- [5] Jensen, A., Mourre, E., Perry, P.: Multiple commutator estimates and resolvent smoothness in quantum scattering theory, Ann. Inst. Henri Poincaré, vol 41 (2), (1984), p.207-225.
- [6] Mourre, E.: Absence of singular continuous spectrum for certain self-adjoint operators, *Commun. Math. Phys.*, 78 (1981), 391-408.
- [7] Reed, M., Simon, B.: Methods of Modern Mathematical Physics 2, Academic Press, New York San Francisco London.
- [8] Thaller, B.: The Dirac Equation, Texts Monographs Phys. Springer-Verlag, (1992).
- [9] Yokoyama, K.: Mourre theory for time-periodic systems, Nagoya Math. J., vol 149, (1998), p.193-210.

DEPARTMENT OF MATHEMATICS, GRADUATE SCHOOL OF SCIENCE, OSAKA UNIVERSITY TOYONAKA, 560-0043, JAPAN

 $E ext{-}mail\ address: yokoyama@math.sci.osaka-u.ac.jp}$