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1. INTRODUCTION

The Dirac Hamiltonian with magnetic vector potential a = (a;());=1,.. .
is expressed by the following form

‘H(a) = }:»y,(P +m7c1+1 +V, (1.1)

j=1

where P; = 16,,, V is a multiplication of an Hermitian matrix V(z).
m is the mass of electron. The matrices {v;} satisfy the following
relations

Yive + Y =201 (G,k=1,...,d+1). (1.2)

Here 6;; is Kronecker’s delta and 1 is an identity matrix. We assume
that the speed of the light ¢ = 1. When V' = 0, the square of H(a) has

the form
Z(P — a;)? +m? + - Z bie ()Y Yk, (1.3)
1<J<k<d ;
where
bik(z) = Oy, aj(x) — 8%.0.,6(17). | (1.4)

It is called Pauli’s Hamiltonian. The skew symmetric matrix (b;x(z))
is the magnetic field associated with a. We say the magnetic field is
asymptotically constant if it satisfies the following conditions as |z| —
00 :

bir(z) = A (1 <4,k <d), (1.5)

where (Aj);x is a constant matrix.

The aim of this paper is to prove the limiting absorption principle for
H(a) with a constant magnetic field (bjx(z)) and a long-range electric
potential V(z) when d = 3. Let us recall some known facts about
the Dirac Hamiltonian with a constant magnetic field for d = 2,3.
As can be infered from (1.3), the spectrum of H(a) is closely related



with that of magnetic Schrodinger operator appearing in the right hand
side of (1.3), which depends largely on the space dimension. Suppose
d = 2 at first. For simplicity we consider the case that the magnetic
field b(z) = Op,a1(x) — Ogyaz(x) = A > 0. In this case, the Dirac
Hamiltonian h()) is represented by

A A
]1(/\) = 0'1(P1 -4- 51,2) + 0'2(P2 — -2".’1,1) + mog, (16)

- 01 0 —: 1 0
with o = 10/) 2=\ o) =\o _1 )

They are called Pauli’s spin matrices. Obviously {o;} satisfy the rela-
tion (1.2) and by an elementary calculus we have

h(A)? = (P, + —;‘—.1:2)2 + (P, — :2\-;1;1)2 + m? — \os. (1.7)

The right hand side is a de-coupled 2 dimensional magnetic Schédinger
operator. So it suggests that the spectrum of h(A) is discrete and

o(h(X)) C {£V2Ain+m? |n=0,1,2...}.
In fact we have |
o(h(N) = {V2n+m?, —/2X(n+1)+m3n=0,1,2...}

by using Foldy-Wouthuysen transform. (See 7.1.3 in [8].) Therefore
the spectrum of h()) is of pure point with infinite multiplicities.
Next we consider the case of d = 3. We assume

ag(z) = (=Az2/2, Az1/2,0) (A > 0).
Then the associated magnetic field is constant along x3-axis :
B(z) = (bs2(z), bis(x), ba1(2)) = (0,0, ).

We denote the associated Dirac Hamiltonian as Ho()). It is the follow-
ing operator acting on H = L*(R?) @ C* :

- AT Az
Ho(/\) =(1’1(P1+"‘é—2)+a’2(P2‘“"2‘_1')+a'3P3+mﬂ> (18)

where {«;} and 3 are 4 x 4 Hermitian matrices such that

w=(o0 %) o=(2 %) (19

We can easily see that these matrices also satisfy the relation (1.2). It
is known that Hy()) is essentially self-adjoint on Cg°(R?) ®@ C*. (See
Theorem 4.3 in [8].) Now we consider the spectrum of Hyp()). At first
we rewrite Hy()) as follows.

Ho(A) =Qo+mf = ( l())o l())" ) + ( 'g _gn ) : (1.10)

with Dy = o - (P — ay) and 0 = (041, 09, 03).
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By using Foldy-Wouthuysen transform, explained in detail in the
following section, Hy(A) can be diagonalized by a unitary operator

Urw.
_ D2} +m? 0
Upw Hy N UL, = 0 : 1.11
rw Ho(A)Upy ( 0 — D§+m2) ( )

From the commutation relation (1.2) we have

Az Ax
Di=(R+52+ (B - 51 + PI=28. (1L12)

We can easily see that ¢(D?) = [0,00). So we have
o(Ho(N)) = (—o0, —m] U [m, 00).

Therefore in the 3 dimensional case, the spectrum of Hy() is absolutely
continuous.
Let us consider the perturbation of Hy(A) : We put

H(A) = Ho(A) + V. (1.13)

Our aim is to show the so-called limiting absorption principle, namely
the existence of the boundary value of the resolvent (2 — H(X))™! on
the real axis. As for the Schrodinger operator with constant magnetic
field, Iwashita [4] shows the limiting absorption principle for long-range
potential by using commutator method. In [4] the following self-adjoint
operator is considered.

~ ATy ATy

H=(P+ —2—)2 + (P - —Q—)Q + P} +V(z). (1.14)

The existence of the boundary values

(2a) ™" (H = u F 0) ™ () ™

is proved for s > 1/2 and ¢ € R\ ({A(2n+1)|n = 0,1,2,...}Uo,,(H)).

Commutator method is also used for the free Dirac Hamiltonian and
that with a scalar potential, which is decaying as || = oco. (See [2].)
Hachem [3] showed the limiting absorption principle for the following
electromagnetic Dirac Hamiltonian with a short-range potential V().
Roughly speaking, his assumption means that the absolute value of
each components of V' is dominated from above by C{z')~1=¢(z)~¢ (¢’ =
(22, x3)) for sufficiently large . We remark that ¢ > 0 is used as a
sufficiently small parameter throughout this paper. To be accurate,
(#')1*¢V (2) is required to be a Hy(A)-compact operator.

In this paper we treat directly the following operator

A A
H(\) = ay (P + 511»'2) + ag( Py — 5%) + asPy +mp+V(z), (1.15)

where V(2) is a matrix potential. Our strategy is to apply Mourre’s
commutator method directly to this operator, which enables us to in-
clude the long-range diagonal components for V(z). In this case it
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seems that an appropriate choice of the conjugate operator is

LI . Py

=3 sty —

(Ps) (Ps)’
which is inspired by [9], when we proved the limiting absorption prin-
ciple for time-periodic Schrodinger operator. In fact the method of the
proof shares many ideas in common with [9). Namely we rewrite Ho())
by a direct integral and the conjugate operator A acts on each space
of fiber. Our main results are Theorem 3.4 and Corollary 3.7.

2. CONJUGATE OPERATOR

Let us recall ,
. 0 D
Qo = ( Dy O )’ Dy =0 (P — a9), (2.1)
with

ag(r) = (—Aza/2,Ax1/2,0). (2.2)

The Dirac Hamiltonian Qo + mf3 can be diagonalized by sandwiching
it between a unitary operator U and U* = U~!. In the beginning
of this section we introduce a unitary operator which diagonalizes the
self-adjoint operator Hy(A). Secondly we give a conjugate operator
associated with the diagonalized Dirac Hamiltonian. Finally we show
Mourre’s inequality for original Hamiltonians Ho()) and H(}).

Let QQ be the self-adjoint operator as in (2.1) and |Q| = V@3,
|Ho(A)] = /Ho(X)2. We define a unitary operator Upw , which diago-
nalize Hy()), in the following way.

Definition 2.1.  (i). At first we define a signiture function associated
with Qo by

0 A 1
sgnQ = T%o—l , on (kerQy)
0 , on(kerQy)

We note that sgnQq is isometory on (ker@o) .
(ii). We can easily see that m/|Ho(X\)] < 1. So we denote the square

(2.3)

root of 1(1 % THeGy) 08 0k e
ay = f\}_é-\/lztnz/|H0(/\)|. (2.4)
(iii). Combining these operators we define the operator Upw as
Urw = a4 + B(sgnQo)a—. (2.5)
Lemma 2.2. (i). Upw is a unitary operator on L*(R*) @ C*.
Further,

Upw = Upw = a4 — B(sgnQo)a-. (2.6)
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(i1). Ho(A) can be diagonalized by Upw as follows.
_ v D3 + m? 0
Upw Hy(A\Urps, = |Ho(A =( 0 7
i 0( ) FW ! 0( )|/3 0 ‘-\/_5?)_'1-_771—2 . (2-/)
Proof. See 5.6.1 in [8]. O
We denote the diagonalized Dirac Hamiltonian as Hy()). i.e.
Hy(\) = Upw Ho(\ Uz
We rewrite (1.12) as follows.
. (D_ 0
n=(% 5.)
Here D, are the operators acting on L2(R?) such that
A A
Di = (P1+§:172)2+(P2— —2'11)2+P32ﬂ:)\
It is well-known that (P; + 325)2 + (P — 32;)? has eigenvalues
{AM2n+1)|n=0,1,2,... }.

We denote the eigenprojection on each eigenspace as II,. With these
projections, 1/ D3 + m? can be rewritten as follows.

( d, @11, 0
\/ D +m? = E ( 0 dyy @11 ) , (2.8)
n=>0 ) "

with d, = d,,(P;) = \/2/\71 + P? + m2.
Combining (2.7) and (2.8), we have
f(Ho(N) =

_( fd) e,
Z .f(dn+l) ® Hn

f(_dn) ® Hn
f(_dn—{»l) X Hn

n=0(

for any Borel function f.
Now we define the conjugate operator. At first we define

~ 1. P P;

A={-—— a23+x3 - —}. 2.9
We note that A is essentially self-adjoint operator on D(|zs)). (It is
obtained by use of Nelson’s commutator theorem [7].) The conjugate
operator for the Dirac Hamiltonian associated with constant magnetic

field is defined by sandwiching AB between Up, and Upw
A=UzL (AB)Upw. (2.10)

Before we show Mourre’s inequality, we introduce the usual functional
calculus, started by Helffer and Sjostrand.
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Suppose that f € C*(R) satisfies the following condition for some
mpy € R.

IO @) < Ce(1+Jth)™*, Yk e Nu{0}. (2.11)

Then we can construct an almost analytic extension f(z) of f(t) having
the following properties

fty=f(t), teR,
suppf C {z;|Imz] <1+ |Rez|},

10:£(2)] < Cu|Imz|N(z)m~1-N YN eN. (2.12)

Then for all f, satisfying (2.11) for my < 0 and a self-adjoint operator
H, we have

1 [ Of
f(H) =5~ ) a—‘;—(~)(z — H)"'dz A dz. (2.13)

3. LIMITING ABSORPTION PRINCIPLE FOR

LONG-RANGE POTENTIALS

Now we show the Mourre’s inequality for the Dirac Hamiltonian by
choosing A defined in the previous section as the conjugate operator.

Lemma 3.1. Let Ry be the following discrete subset of R
Ry = {£Vv2An+m? |n=0,1,2,...} CR.

We take a compact interval I C R\ Ry arbitrarily. Then there ezists
a > 0 such that the following inequality holds for any real valued f €
Coo (1)

F(Ho(N))ilHo(N), Alf(Ho(N)) > af (Ho(N))". (3.1)

Proof. By the relations (2.7) and (2.10), it is sufficient to show the
inequality

F(HoN)i[Ho(N), ABIf (Ho(N)) > af (Ho(N))2. (3.2)
We rewrite the commutator as follow.

1), dg) = (VP EA (/T ). 63

We proceed the calculus more precisely to see that

. > i1 [ ilda, A]@TI,
i[s/ D3 + m?, A] =Z( [dn, A] ildnss, Al @11, ) (34)

n=0



by (2.8). From (3.3) and (3.4) the left hand side of (3.2) is rewritten
as

I
RN, AR o) = | 3.5)
| .
where.

Il = Z f(dn)i[dm A]f(dn) ® Hm

n=0

12 - Z f(dn.+1)i[dn+17A].f(dn-{-l) ® Hn,

n=0

Iy = f(=dn)ildn, Al (=dn) @ L,

I, = Z f(=dng1)ildni1, Alf (—dnt1) @ L.

n=0

We note that all the sum in I;,--- , I are finite since f is a compactly
supported function. By an elementary caluculus, we have

o P}
Z[dl, A] = 23
V2A + P} + m2(Ps)

Since suppf C I C R\Ry, P; is away from zero when P; € suppf(d;(Ps))
or Py € suppf(—d;(P3)). So there exist C; > 0 such that

F(d)ild, Alf(d) @ TL > Cif (di)? @ 1,
F(=dpildy, Alf (=d) @ IL > Cif (—di)* @ L.
Since only a finite number of [ =1; (j=1,...,N) is concerned, we

have (3.2) with a = inf Ci.. O
j=1..,N

(1 € NU{0}). (3.6)

Now we give the assumption for the potential, which is necessary to
Mourre’s inequality associated to H(\). After that we give an example
of V satisfying this assumption. It consists of a sum of long-range part
and short-range part. In our case short-range potential means V(z) =
O({z)~%(x3)~'7¢) as || = oco. And long-range part is a multiplication
of a real valued function (p(z) such that ¢(z) = O({(z)~¢) as |z] = oo.
More precisely we assume that V satisfies the following.

Assumption 3.2. V = V(x) is a multiplicative operator of a 4 x 4
Hermitian matriz satisfying the following properties.

(1). V is a Ho(\)-compact operator.
(ii). The form [V, A] can be extended to a Hy(\)-compact operator.
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For example a 4 x 4 matrix V' (z) satisfying the following inequality

is Hy(\)-compact.
[V(z)] < C{x)™¢ (v € RY). (3.7)

It is owing to the fact that V(z)(—A, + 1)~! is compact. (It is due to
Theorem 2.6 in [1].) Under this assumption we show Mourre’s inequal-
ity for H(A).
Lemma 3.3. Suppose V satisfies Assumption 3.2.

(i). We take u € R\ Ry and 6 > 0 so that the closed interval I =

[u—3, u+38) C R\Ry. There exist o > 0 and a compact operator
I such that the following inequality holds for all f € C3°(I).

FHOIHEN),AFHN) 2 af HO) + K. (38)
(ii). There is no accumulation point of 0,,(H(X)) in R\ Ry. For
it € R\ (RyUa,,(H(X))), there exist 6o > 0 and ag > 0 such that
the following inequality holds for all f € C$° ([ — o, pt + o).
FOHO)HEX), A (HN) > aof (H(A)) 3.9)
With this inequality we have the limiting absorption principle for
the Dirac Hamiltonian.

Theorem 3.4. Suppose V satisfies Assumption 3.2. Then for p €
R\ (Ry U 0,,(H(A))), the following limats

R () =lim(z3) ™" (H(A) = p F i€) ' (wa) ™ (3.10)

exist and RE(p) are continuous with respect to pr € R\ (RyUa,,(H(X))).

Sketch of proof
From (3.9) and Theorem 2.2 in [5], we can see that the boundary value
(A)"5(H(X) — pp F10)71(A)~° exist for p € R\ (Ry U 0,,(H(A))). To
see the existence of (3.10), it is sufficient if we show the boundness
of (A)*(z3)~°. Since (A)*(x3)~* is bounded, it is sufficient to show
(z3)*Upw (x3)~° is bounded. We prove it in the following Lemma. Be-
fore that we introduce smooth functions.

Let x(t) € C*°(R) such that

W={3F o

With this function we define F(t) and F) 1 as follows.

Fo(t) = x(t)/1+ T

F-(1) = x(¥) ( b+ \/tTmQ)— \/tj—m?
For(t) = Fyft) — x(8
F,_(t) = Vt+m?F_(t) — x(t)
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Then we can easily verify that
a4y = F+(Q(2))a
a_sgntly = F—(Q%)Qo = QOF—(Q%)'

As for the proof of [Qo, F_(Q3)] = 0, see 5.2.4 in [8]. By the construc-
tion of these functions, we can also see that F) .(t) satisfy (2.11) with
my < 0. So we apply the functional calculus in section 2 to F) 4 (t) and
see the following properties hold.

Lemma 3.5. Suppose 0 < s <2 and 2 € C\R. Then
(). For 0 < s < 1, there exists Cs > 0 such that
)" (z = Q6) (@)l < CollImz|™" + |Imz|7*(z)).  (3.12)
(). For 1 < s < 2, there exists C, > 0 such that
) (= — @) (@)l < C(Mma | + [Tmal2(z) + [Tmal (),
(3.13)
(iii). (2)*Fy(Q2)(z)~* and (z)°*F_(Q2)Qo{x)™* are bounded operators.

Proof. For the proof of (i) and (ii), we use the resolvent equation. Sup-
pose 0 < s < 1. Then

(@) (z = Q) Ha) ™ =(z = Q) ' + ( — Q) (@ + 1) (3.14)
x (@5 +1)7 ()", Ql(z — Q)™ (=) ~*. (3.15)

From the boundness of (Q2 + 1)~[(z)*, Q2] and the following estimate
(2~ Q)™ (Qo + Dl < C([Imz|” 1( )+ 1), (3.16)

(
we obtain (i). As for the case 1 < s < 2, we rewrite the last term
(2 = Q) '[(=)*, QF)(z — QF)~w)™" as
(z - Q) 7H(QF + (@) + 1) [{=)*, Qol(z) ™" (3.17)
x (2)* "Mz = Q) Ha) T (2) 7 (3.18)
By using the result for 0 < s < 1, we have the inequality for 1 < s < 2.

With these estimates, we prove (iii). Since x(Q3) = 1, we can easily
see that

(@)° F(Q5)(2)™ = (&) Fy (@) () " + 1. (3.19)

Since F, 4 (t) satisfies (2.12) for mg = —1/2, F, 4(Q}§) can be rewritten
as follows.

omi / 0:Fy 4 (2)(@)* (2 — @)™ (2) *dz A dz. (3.20)

From this formula and (i) (ii) we have

10: 1 (2)(2)* (2 = Q)™M a) |l
< Cl0: Py s (2)|([mz] ™ + [Tmz|~(z) + [Tme|(2)?).
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From (2.12) we have

2By (2)(0) (2 = QF) ()~ llw < C ()2
This implies the boundness of (z)*Fy (Q3){x)~*.
In a similar way, we rewrite (T)sF_.(Q%)QO(m)“S as

T 2 ) == (z)"* X s————-—————QU )~ *

(3.21)

It is sufficient to show the boundness of (2)°Qo// Q3 + m2(z)~*. To
see this, we denote x(t)/vt+m? € C* R3) as S(t) and its almost
analytic extension as S(z). We can easily see that S(Q2)(z)* Q (x)~*
is bounded. So we obtain the boundness of (x)*F_(Q2)Qo(x)~* if we
show that [(z)*, S(Q3)]Qo(z)~° is bounded. We rewrite it as follows.

27r1/ 0:5(z Q"“(%H) '[(2)", QB1Qo(x) (@) (= — @F) @) " dz A,

By an elementary calculus we have (@2+1)"![(z)* QO]QO( 2} ™% bounded.
Combining (i) and (ii), we have

I{z)*, S(Q8)]Qo(x) llu < C /C 10:5 () {1 + [Tme| ™}
x{|{Imz|™" + |Imz|"%(z) + |Imz]73(2)?}dz A dz < oo.
This implies the boundness of (z)*F_(Q3)Qo(z)~". O

Next we give an example of V. It requires smoothness, but allows
long-range part in its diagonal components.

Lemma 3.6. Let V be a 4 x 4 Hermitian matriz of the form
V() = (vi(2)) + p(2) s = Vi(2) + Vi(w) (3.22)

where Vy(z) = (v;;(x)) 4s an Hermitian matriz and I, is an identity
matriz. Suppose the following conditions hold. Then V(z) satisfies
Assumption 3.2. .

There exist § > 0 such that the following inegualities hold for all
multi-index «.

10%v;; ()] < Cofz)571N25) ™t (1< 4,5 < 4). (3.23)
o(x) € C*°(R?) s real valued and satisfies
1020 (x)] < Chfx)shl. (3.24)

The relatively compactness of V(x) itself is clear since V satisfies
(3.7). So we only have to show the relatively compactness of [V, A]. We
prove the relatively compactness of [V,, A] = [V,, Uny ABUrpw] at first.
From the boundness of (23)"'AS and the 1elat1vely compactness of
Vi(z3), it is sufficient to show that (z3)Upw (23)~"! and (:1 ) Uiy (23) ™
are bounded operators in H. We have already proved it in Lemma 3.5.
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Next we treat the long-range term. The conjugate operator A can
be decomosed into the sum of Jy,-- -, J; where :

= F,.(Q3)ABF.(Q}),
= F,(Q})AB*F_(Q3)Qu,
= BF_(Q))QuABFL(Q}),
Ji = BF_(Q)QuABF-(Q3)Qo.

We prove that the Hy () - compactness holds for each of [V}, Ji],- -+ , [V, J4]-
To see this we use the functional calculus again and rewrite J; as fol-
lows.

Fo(Q3)ABFL(Q2) = ABFL(Q2)? + [F+(Q3), ABIF, (Q2)
=J +J)

At first we prove the boundness of J; and conseqently the relatively
compactness of [V, J}]. By using (2.13), we rewrite [F, 4 (Q3), Af] as
follows

i / 0: P4 (2)(= — QF)'1Q5, ABl(= — @) 'dz Adz. (3.25)

From (3.16) we have [Q2, Af](z — @2)~! is dominated from above by
C{1 + |Imz|}. So we have

IF, +(Q2), AB]|| < C'/ 10:Fy 4 (2)[{[Imz|™ + [Imz|%(z)}dz A dz.
©(3.26)

IS4

Since the almost analytic extension FA +(2) satisfies
0; F, ()] < Cn|Imz|N(z)~3?N (YN € N), (3.27)
we have [F, 4(Q2), AB] is bounded and indﬁctively V1, J7] is Hy(M)-

compact. So we only have to show the relatively compactness of [V}, Ji].
Vi, 31 = [Vi, ABIFL (@) + AB[V:, Fu(@D)°). (3.28)

Clearly [Vi, AB]F,(Q3?) is Ho(\)-compact. Again we rewrite the com-
mutator in the second term, by use of (2.13). Then we have (x)! [V}, F (Q2)?%]
is bounded. Combing these facts, we have the relatively compactness
of [V}, J4].

As for the commutator [V}, Jo], - -+ , [V, J4] we also replace Fy by F, 4
and use the functional calculus. The proof of relatively compactness
of [V}, Jy] and [V}, J3] are almost the same. We only give the proof
for J,. We also estimate the ’principle’ part before we compute the
commutator with V.

J» = AF(Q3)F-(Q})Qo + [F+(Q5), AIF_(QF) Qo (3.29)
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It is sufficient to show that [V;, AF, (Q2) F_(Q2)Qo] is a He())-compact
operator. We decompose it into the following sum.

Vi, A)F4 (Q3) F-(Q5)Qo
+A[VL,F4 (Q0) F-(Q0)]Qo
+ AFL(Q3)F-(@2)Vi, Qo).
We can easily see that the first and the third term is relatively compact
since (z)!T4[V}, Qo] is bounded. As for the second term, we can also
see the relatively compactness in the same argument as we have done

in the proof of Lemma 3.5 (iii).
As for Jy, the proof is similar. We rewrite it as

AF_(Q)°Q% + [F-(Q5)Q, AF-(Q5)Qo (3.30)
We can also obtain the relatively compactness by estimating the term
[V, AF_(Q3)*Q3)-
Corollary 3.7. LetV be a 4x4 Hermitian matriz. Suppose V satisfies

R*(p) = lciﬂ)l(:cg)_s(H()\) — pFie) Hag) ™" (3.31)

exist for p € R\ (Ry U 0,,(H(N))) and R*(p) are continuous with
respect to p.
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