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Microlocalization
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Introduction

In microlocal analysis, it is one of the main subjects to give an appropriate formulation
of the boundary value problems for hyperfunction or microfunction solutions to a system
of linear partial differential equations with analytic coefficients (that is, a coherent (left)
D-Module, here in this article, we shall write Module with a capital letter, instead of sheaf
of modules). If the system is regular-specializable, we can define the nearby-cycle of the
system in the theory of D-Modules. The definitions of regular-specializable D-Module and
its nearby-cycle are initiated by Kashiwara [Kas|, Kashiwara and Kawai [K-K 1] and Mal-
grange [Mal] for regular-holonomic cases. These definitions extended to the specializable
D-Module (see Laurent [L], Laurent and Malgrange [L-Ma] and Mebkhout [Me]). After
the results by Kashiwara and Oshima [K-O], Oshima [Os] and Schapira [Sc 3], [Sc 4], for
any hyperfunction solutions to regular-specializable system Monteiro Fernandes [MF 1]
defined a boundary value morphism (called the topological boundary value morphism)
which takes values in hyperfunction solutions to the nearby-cycle of the system instead
of the induced system. This morphism is injective (cf. [MF 2]) and a generalization of the
non-characteristic boundary value morphism (for the non-characteristic case, see Komatsu
and Kawai [Ko-K], Schapira [Sc1] and further Kataoka [Kat]). Moreover recently Lau-
rent and Monteiro Fernandes [L-MF 2] reformulated this boundary value morphism and
discussed the solvability under a kind of hyperbolicity condition (the near-hyperbolicity).
However, since this morphism is defined only for hyperfunction solutions, a microlocal
boundary value problem is not considered. Therefore in this article, we shall state a mi-
crolocalization of their result in the framework of Oaku [Oa 2] and Oaku-Yamazaki [O-Y].

The details of this article will be given in our forthcoming paper [Y].

*Research Fellow of The Japan Society for The Promotion of Science.
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1 Notation

In this section, we shall fix the notation used in later sections.

We denote the set of integers, of real numbers and of complex numbers by Z, R and
C respectively as usual. Moreover we set N:= {n € Z; n > 1} and N, := NU {0}.

In this article, all the manifolds are assumed to be paracompact. Let M be an (n +
1)-dimensional real analytic manifold and N a one-codimensional closed real analytic
submanifold of M. Let X and Y be complexifications of M and N respectively such
that Y is a closed submanifold of X and that Y N M = N. Moreover in this paper,
we assume the existence of a partial complexification of M in X; that is, there exists a
(2n + 1)-dimensional real analytic submanifold L of X containing both M and Y such
that the triplet (N, M, L) is locally isomorphic to (R” x {0}, R**!,C* x R) by a local
coordinate system (z,7) = (z ++/~1y,t ++/—15) of X around each point of N. We say
such a coordinate system admissible. We shall mainly follow the notation in Kashiwara-
Schapira [K-S 2]; we denote the normal deformations of N and Y in M and L by M, n and
LY respectively and regard M, n as a closed submanifold of LY We have the following
commutative diagram:

—~—

Sm
TNMC — My M
"
c y M >y X
N i
i e 7! i 7
S ~ 7 ¢
T, L Ly Ly <~ 2,
Ty Pr 5L
g i ) i
Y ¢ Y —~ Lc = — X,

and by admissible coordinates we have locally the following relation:

N=R} x {0} —— M =R} x R,

| J
Y:CZX{O}&——%L:CQXH&X}X:(CZXCT.

With these coordinates, we often identify T}, X and T} L with X and L respectively.
The projection 7y : Ty, L — Y induces natural mappings:

Ty N tri N
and by 'y, we identify T}N mTyL with Ty M >< TXY. Similarly by natural mappings

Spw N
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we identify Ty M x Ty Ly with T3, Ty L.
M

N
Ty L\ TyY has two components with respect to its fiber. We denote one of them by
Ty L" and represent (at least locally) by fixing an admissible coordinate system

TyLt = {(z,t) € TyL; t > 0}.

Moreover set Ty M* := T, LT NTy\ M. Note that to define T}, L™ (or TyyM*) by means of
admissible coordinates is equivalent to determining a local isomorphism 0Ty =~ Zy (or
equivalently ory ,, ~ Z ~)- Here ory,;, denotes the relative orientation sheaf.

Define open embeddings f and fy by:

f
T Lt~ 7L

U o U
T M* <IN T M.

Thus we regard Ty M+ J>\<{ T}Y as an open set of T}N mIy L. Moreover f induces mappings:

tfl NM f7r
l O l
+ « fxid *
TyM*x TLY TyM x T%Y.
N N

Hence we identify T;NM+TYL+ with TpyM™* X TxY, and f, with fy x id.

2 Several Sheaves Attached to the Boundary

In this section, we recall several sheaves attached to the boundary due to Oaku [Oa2].
These sheaves will play essential roles for our boundary value problem. We remark
that in Oaku [Oa2] these sheaves are defined on cosphere bundles. So we shall present
equivalent but slightly different definitions on cotangent bundles along the line of Oaku-
Yamazaki [O-Y]. We refer to Oaku [Oa2] or Oaku-Yamazaki [O-Y] for the proofs. Note
that although the higher-codimensional case is treated in Oaku-Yamazaki [O-Y], the same
proofs also work as in the one-codimensional case.

As usual, we denote by Oy, B,, and C,, the sheaf of holomorphic functions on X, of
hyperfunctions on M and of microfunctions on Ty, X respectively. Further, we denote by
BO; the sheaf of hyperfunctions with holomorphic parameters on L; that is,

BO, = H}(Ox) @ orp x ~ i) Ox ®ory x[1].

We denote as usual by v and p the Sato specialization and microlocalization functors

respectively.
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2.1 Definition. We set:

eN]M = SL:rl %n(ﬂﬁN(jL*ﬁfl BOL)) ® 0Ty
rBN|M = eN|MITNM'
We denote by 7y, the natural projection from TIr mTyL to TyM. Let my)y be

the restriction of 7y, to Ty mTyL \ T7 mTyM as usual. By virtue of the following
proposition, we can regard Cy,,, as a microlocalization of vy (B,,):

2.2 Proposition. There exists the following exact sequence on TnM:
Moreover, an 1somorphism vy (B ) = By, holds.

2.3 Definition. We set:

Crin = G{n(uTNM(VY(‘BOL))) Q@ oryy
Byim = eN[MITNM = j'Czr"l,\,M(’/y(B(f)L)) ®oryy -
By the following fact, we can regard GNiM as a subsheaf of éN]M:

2.4 Proposition. There ezxists a natural monomorphism eNIM — éMM .

3 Regular-Specializable Systems

In this section, we shall recall the basic results concerning the regular-specializable D-
Module and its nearby-cycle.

As usual, we denote by Dy the sheaf on X of holomorphic differential operators, and
by {D&?‘)}meNo the usual order filtration on Dy . First, let us recall the definition of the
V-filtration:

3.1 Definition. Denote by J, the defining Ideal of Y in O, with a convention that
J) = Oy for j < 0. The V-filtration {V¥(Dx)}iez (along Y) is a filtration on Dy|y
defined by
VE(Dy) == N {P € Dxly; PIE C 3i7F}
jez
It is easy to see that by admissible coordinates, this filtration written as
Vy¥(Dy) = {»Z<kpij(z;az)7'i 87 € Dxly}-
VARES
For the fundamental properties of this filtration, we refer to Bjork [Bj], Sabbah [Sab] and
Schapira [Sc 2]).
Let us denote by ¥ the Euler operator. Note that 9 € V2(Dy) \ V5 }(Dx) and that 9
can be represented by 70, by admissible coordinates. :
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3.2 Definition. A coherent D,-Module M defined on a neighborhood of Y is said to be
reqular-specializable (along Y) if there exist locally a coherent O y-sub-Module M, of M
and a non-zero polynomial b(«) € Cla] such that the following conditions are satisfied:
(1) M, generates M over Dy ; that is, M = Dy My;
(2) () M, C (D N Vy (Dy)) M, , where m is the degree of b(a).

In what follows, we shall omit the phrase “along Y” since Y is fixed.

3.3 Remark. (1) Let M be a coherent Dy-Module for which Y is non-characteristic.
Then, it is easy to see that M is regular-specializable.

(2) Kashiwara-Kawai [K-K 1] proved that every regular-holonomic D X‘Y-Module is
regular-specializable.

3.4 Proposition. If M is a regular-specializable Dy -Module, then each cohomology of
R}omy, (M, py(0x)) and R¥Homyp (M, vy (Oy)) is a locally C*-conic sheaf. ‘

Let M be a coherent 'DXIY—MOdule. Recall that a V-filtration {F* M}, is said to
be good if there exist locally a system of generators {uj T, and k; € Z such that for any
keZ

FEv=3" 1 Y(Dx)y
j=1
holds. The following theorem is proved by Kashiwara [Kas] (cf. also Bjork [Bj]):

3.5 Theorem. Set G := {a € C,0 < Rea < 1}. Then, for any regular-specializable
Dy -Module M, there exist a unique good V -filtration {VE(M)} o, on M and a non-zero
polynomial bs(a) € Cla] such that b5'(0) C G and that for any k € Z the following holds:

b (9 + k) VEOM) C VEH(M).
3.6 Definition. Under the notation of Theorem 3.5, we set:

Ty (M) := Vg(M)/Vg' (W),
By (M) := Va(M)/Vg(M),

and call ¥, (M) the nearby-cycle of M and &y, (M) the vanishing-cycle of M respectively.

3.7 Remark. Laurent [L] extended the definitions of nearby and vanishing cycles to the
derived category of bounded complexes with (regular) specializable cohomology by using

the theory of second microlocalization.
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Let t: Y — X be the natural inclusion. Then the induced system, or the inverse
image in the sense of D-Modules is defined by

L
DM := 0y ® 17 M.

1m0,
Then we have (cf. Laurent [L], Mebkhout [Me] or Sabbah [Sabl]):

3.8 Proposition. If Dy -Module M is regular-specializable, then ¥y, (M), &4 (M) and
each cohomology of Du* M are coherent Dy -Modules. Moreover, there exists the following

distinguished triangle:
$, (M) 25 @, (M) — DM 5

As usual, we denote by G;qu := py (O x)[1] the sheaf of real holomorphic microfunctions

on Ty X. Set Ty X := Ty X \ TyY as usual (the definition of T2 X is similar). Using an
admissible coordinate system we define a continuous section ¢: Y — TYX by z —
(2,1). Similarly we define o: Y — T3 X by z —> (z,1). Denote by Ny the sheaf of
Nilsson class functions on X along Y and regard as a sheaf on Y. Then the following

theorem is proved by Laurent [L] (cf. also Kashiwara-Kawai [K-K 2]):

3.9 Theorem. Let M be a reqular-specializable Dy -Module. Then, there exists the fol-

lowing isomorphism of distinguished triangles:

RHomyp_ (M, Ox)|y — RYomgp (M, oty (0y)) — RHomyp (M, %ot GH§|X)+—1.>

! i ! .

R¥omy (DM, Oy) —— RHomyp, (¥y (M), Oy) —— RFHomy, (Py (M), 0y) — .
Moreover, a natural morphism Ny, — o vy (Oy) induces an isomorphism:
R}omyp, (¥y (M), Nxpy) = RHomg, (M, oty (04)).
3.10 Remark. (1) The isomorphism (the Cauchy-Kovalevskaja type theorem)
R}omyp (DM, Oy) =~ RHomy, (M, Ox)|y

holds for Fuchsian systems in the sense of Laurent-Monteiro Fernandes [L-MF 1].
(2) Recently Mandai [Man] extended the definition of boundary values to a general

Fuchsian differential equation in the complex domain.
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4 Boundary Value Morphism

In this section, we shall define our injective boundary value morphism. Recall the map-
pings f, and 7, defined in Section 1.

4.1 Theorem. For any regular-specializable Dy -Module M, there ezists the following

1somorphism:

fr ' RItomy (M, EEN|M) = fo ! Tyn R¥omy (Fy (M), Cy).

The proof is based on Proposition 3.4 and Theorem 3.9 .

4.2 Definition. For any regular-specializable Dy-Module M, we define by virtue of
Proposition 2.4 and Theorem 4.1:

B: f ' RHomy (M, Cypp) — fr ' R¥Homy, (M, éN|M)
= fi! Ty;lR.’}(omDy(!I/Y(M), Cn)-
By the construction, we can obtain the following Holmgren type theorem:
4.3 Theorem. (1) The morphism [ gives a monomorphism
A Homyp (M, Cyyag) > fat g :}fomDY(!pY(M)’ Cn)-

(2) The restriction of B° to the zero-section TyyM™ coincides with the topological

boundary value morphism in the sense of Monteiro Fernandes [MF 1].

4.4 Remark. (1) For a general Fuchsian system in the sense of Tahara [T], Oaku [Oa 2]
defined an injective boundary value morphism under additional conditions of characteristic
exponents by using a detailed study due to Tahara [T].

~ (2) Let (?Z]M C Cpp be the subsheaf consisting of F-mild microfunctions, and

GQIM = pn(Oxly) ® ory,y[n] (see Oaku [Oal], [Oa2], and Oaku-Yamazaki [O-Y]). Let
M be a regular-specializable D y-Module and set My, := H?(D¢* M) = Oy ®:¢ > M. Since
10y

M is a Fuchsian system, by the argument in Oaku-Yamazaki [O-Y] we have the following

commutative diagram:

£ Homy (M, e§|M) = f Ty Homy, (M, éﬁqM) = fi ' Tya Homg, (My, Cy)

o | ° |
£t ?(omgjx (M, eN]M) — fi ! fHomDX (M, éN|M) —= fi Ty j—fomﬂy (¥y (M), Ey),
that is, the boundary value morphism

S Homyg, (M, e%[M) > fo Tya Homg, My, €y)

for F-mild microfunctions and 3° are compatible.
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5 Solvability

In this section, we shall state the solvability theorem under a kind of hyperbolicity con-
dition. First, let us recall the following (Laurent-Monteiro Fernandes [L-MF 2]):

5.1 Definition. Let M be a coherent D y-Module on a neighborhood of Y. Then we say
M is near-hyperbolic at z, € N (in dt-codirection) if there exist positive constants C and
€; such that

char(M) N {(=, ) € T*X; |z — zy|, |7| <&y, ReT > 0}
c{(z, ) € T*X; |Re7*| < C(|Im2*|(|Im 2| + | ImT|) + | Re 2*|) }

holds by an admissible coordinate system.

5.2 Remark. As is shown by Laurent-Monteiro Fernandes [L-MF 2, Lemma 1.3.2], the
near-hyperbolicity condition is weaker than the hyperbolicity condition (see also Bony-
Schapira [B-S]).

5.3 Theorem. Let M be a regular-specializable Dy -Module. Assume that M is near-
hyperbolic at z, € N. Then, for any p* = (zy, ty; V—1 (&, dz)) € T;*NM+TYL+
,6: Rg’come (M, eNlM)p* — Rf}fomDY (!py( ) GN)

v (P*)
18 an isomorphism.

5.4 Remark. (1) Let M be a coherent Dy-Module for which Y is non-characteristic.
Then, it is known that ¥, (M) — D¢* M ~ M, . Moreover by virtue of the commutative
diagram in Remark 4.4, we see that 3° is equivalent to the non-characteristic boundary
value morphism (see Kataoka [Kat] and Oaku [Oa2]). In particular, the restriction of 5°
to the zero-section Ty M™ is equivalent to Komatsu-Kawai [Ko-K] and Schapira [Sc1].
Moreover, if each +dt € T{M is hyperbolic for M, then the nearly-hyperbolic condition
is satisfied (cf. Kashiwara-Schapira [K-S1]).

(2) Assume that X = C"! an so on by taking an admissible coordinate system.
Let b(a) be a non-zero polynomial with degree m, and Q € D&}”) N Vy'(Dy) and set
M =Dy /Dy (b(¥) + Q). Then M is regular-specializable. For simplicity, assume that

bla) = ﬁ(a—a) (ozi——ajq_foorlgi#jgu)

j=1

"

(note that )~ v; = m). Then a direct calculation shows that ¥, (M) ~ DP™, and 3° is
j=1

equivalent to v in Oaku [Oa2]: Let p* = (zy, ty; vV —1 (&, dz)) be a point of T}NM+TYL+,

and f(z,t) a germ of }Come(M, GNlM) at p*. Then, since Rﬂ{ome(M,NX|Y) ~
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RYomy (M, 0711y (O)) by virtue of Theorem 3.9, we can see that f(z,¢) has a defining

function

F(z,7) = Z F(z,7) 7% (log 7)™

as a germ of Homy, (M, ¢ viar) at p*. Here each Fj(z, 7) is holomorphic on a neighbor-
hood of {(z,0) € X; |z, — 2| < ¢, Imz € I'} with a positive constant ¢ and an open
convex cone T' such that & € Int(I') (the interior of the dual cone I of I'). Then, 3°()
is equivalent to {spN( ]k( z ++/—1T0, 0)) Ck<y,1 <7< ,u}. Moreover, if the
principal symbol of b(19) + Q written as 7™P(z, T; z*, 7*) for a hyperbolic polynomial P at
dt-codirection, then the nearly-hyperbolic condition is satisfied. Note that this operator
is a special case of Fuchsian hyperbolic operators due to Tahara [T].

5.5 Example. Assume that X Cntl. Take an operator A(z;0,) € ‘DY at the origin
and set A% := id and AY) := ,—'A o AU=D € DY for j > 1. Let p* = (0,1;/—1 (£, dx))
J

be a point of T;‘NM+TYL+ and set p, := (0;4/—1(¢,dz)) € TxY. Consider the following
differential equations:

M, := Dy / Dx (9 (9 — 1) — TA(2;8,)9),
M, := Dy/ Dx((9 — 1)* — 7A(2;0,)9),
M, :=Dy/Dx((9 —1)(I —2) - TA(z;0,)9).

Let f,(z,t) be a germ of Homy, (M, G’N[M) at p*. Then:
(1) f,(z,t) has the following defining function as a germ of Homp (M, Ciar) at P

o0

F AR
(2,7 Zo [ 1
In this case, f,(z,t) is always F-mild. Hence 8°(f,(z,t)) is given by v¥(fi(z,t)) =
{3 f)(z,+0) }i—g 1 = {sPn(U))(2) }1,1 at Py- Indeed if 7 # 0, M, is isomorphic to
Dyx/ Dx (82 — 0,A(z; 8,)) for which Y is non-characteristic.
(2) f,(z,t) has the following defining function as a germ of %omDX(M, §N|M) at p*:

Fy(z,7) :iA( U, (z) 77t — izjz AY J+1+ZA z)Ttog T,
7=0 j=1 k=1

and B°(f,(z,t)) is given by {spn(U))(%)}1=0,1 3t py. Further if f,(z,t) is F-mild, then
Up(2z) = 0 and ¥ (fy(z, 1)) = {(8}f,)(2,+0) }1z0,1 = {sPw(U1)(2) } at py .-
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(3) f3(z,t) has the following defining function as a germ of fHomDX(JV[, GN|M) at p*:

o0 oo j—1 . .
: j AWy ,
Fy(z,7) = E AU, (2) 72+ U (2) T — E ‘7___]_6_&7-.74—1
j=0 =2 k=1

and B°(fy(z,t)) is given by {spy(U))(z)},—y > at pp. In the case where fy(z,t) is F-
mild, we must impose the condition AU,(z) = 0. Under this condition, v (f3(z,t)) is
given by ’YF(fa(l'»t)) = {(8/f;)(=, +0)}0<1<2 = {O’SpN(Ul)($)72SpN(U2)(x)} at py with
A(0, f;)(z,+0) = Aspy(U,)(2) = 0.
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