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ON THE CAUCHY PROBLEM FOR SYSTEMS
OF PARTIAL DIFFERENTIAL EQUATIONS

WAICHIRO MATSUMOTO
HAAA—ER

1. INTRODUCTION

The well-posedness of the Cauchy problem in various function spaces for higher order
linear scalar equations is well characterized. On the other hand, the results on the well-
posedness for systems are rather poor. The reason is that the principal part of system
has not been well caught. In this note, the author proposes the definition of the principal
part on the Cauchy problem. In order to understand the structure of an usual matrix, the
Jordan normal form and the determinant are very useful. The former includes almost all
information on a matrix and the latter is very convenient. Our aims are to establish the
corresponding theory for the matrices of differential operators and to give applications
—— the necessary and sufficient conditions for the analytic well-posedness and C* well-
posedness ——.

Let us consider the following Cauchy problem:

Diu = 32 g1<m Aalt, r)D,*u = f(t,z)
(1.1)
ult:to - Uo(.’II) 3

where, A, is a N x N matrix of smooth functions ( |a| < m ), u, u, and f are vectors of
dimension N, D, = ——\/1_=1% and D, = ﬁt’%'

In Section 2, we explain the normal form of systems in the formal symbol class. In
Section 3, we do the theory of the weighted determinant, so called p-determinant and
introduce the notion of p-evolution. In Section 4, we give the necessary and sufficient
condition for the analytic well-posedness ( the Cauchy-Kowalevskaya theorem ). We give
a remark and a conjecture also on the C-K theorem of Nagumo type, relaxation of the
regularity of coefficients. In Section 5, we give the necessary and sufficient condition
for the C*™ well-posedness assuming the constant multiplicity of characteristic roots and
the real analyticity of coefficients ( Levi condition ). We give some remarks when the
coefficients are not real analytic. The situations on the analytic well-posedness and
C> well-posedness in case of the constant multiplicity are very similar if coefficients
are real analytic. However, the phenomena are very different when coefficients are non-
quasianalytic.

Key words and phrases. normal form of systems, p-determinant of matrix of pseudo-differential oper-
ators, p-evolution, the Cauchy-Kowalevskaya theorem for systems, C*> well-posedness for systems.

This note is a short course of W. Matsumoto [22]. When the author writes this note, he has corrected
the errors in the original [22]. The revised version of [22] can be also available claiming it to the author.
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2. NORMAL FORM OF SYSTEMS

We follow the results in W.Matsumoto[20] and [23]. From an arbitrary asymptotic

expansion of a symbol of a pseudo-differential operator in an ultradifferentiable class, a
true symbol of the same class can be constructed and the ambiguity is of class S~.
( See L.Boutet de Monvel and P.Krée[7], L.Boutet de Monvel[6] and W.Matsumoto[19].)
Therefore, in order to consider many problems on partial differential equations in a ul-
tradifferentiable class, it is sufficient to consider asymptotic expansions, which we call
here formal symbols. Let Z, be N U {0}. We use the followings for o and 8 in Z %
la| = ap+- - 4ap, al = aplag! - ap! , a+ 8= (ao+Po, -+ , g+ Be) and we denote 8 < a
when §; < a; for 0 < 4 < £. Let us set a(t,z,g)gg = DD, - -sz"‘”((%)ﬁa(t,a:,é) for
ac€Z " and B eZ,b

We introduce a holomorphic formal symbol and a meromorphic one. We say that a set
O in C; x C,¢ x C¢t is conic when (t,z,£) € O implies (t,z, \¢) € O for arbitrary positive
A and that a subset I' in O is conically compact in O when I' is conic and I' N {||¢|| = 1}

is compact in O N {||¢|| = 1}, where ||{|| = \/Zf:1 |Re&;|? + |Imé;|2. We say that ¥ is a
subvariety of O if it is a zero set of a holomorphic function in O. ‘

Definition 1. ( Meromorphic and holomorphic formal symbol, [20] )

I. We say that the formal sum a(t,2,£) = Y oogai(t,z,€) is a meromorphic formal

symbol ( = m.f.s. ) on O when there exist a conic subvariety ¥ in O and a real number

K such that

1) a;(t,z,€) is meromorphic in O, holomorphic in O \ ¥ and positively homogeneous of
degree k —ion &, (i1 €Z, ).

2) For an arbitrary conically compact set " in O \ %, there are positive constants C, R
and R’ and we have

) (¢, 2,6)| < C R REHIA tfa]l|g]lleu*~  on T,
(’L (= Z+, Q€ Z_f—HJ) ;B S Z+£)'

I1. The formal sum Y .o, a; is called a holomorphic formal symbol ( = h.f.s. ) when it is
a meromorphic formal symbol with ¥ = §.

(2.1)

Remark 2.1. We use & as a holomorphic scale of order in case of a complex domain and
Y includes {&; = 0}. Of course, & can be replaced by another &; and ¥ includes {&; = 0}.

Remark 2.2. Tt is important that X is independent of 3.

Now, we define a formal symbol of class {M,,, L,} on a real domain. Let {M,}2, and
{L,}, be sequences of positive numbers. We assume that log M,, = log L, = O(n?)
( Differentiability condition ) and { M, /n!}2, and {L,/n!}3, are logarithmically convex

and non-decreasing. We say that a set O in R; x R,* x R is conic when (¢,2,¢) € O
implies (¢, z, A§) € O for arbitrary positive A and that a subset I" in O is conically compact

in O when I is conic and I'N{|¢| = 1} is compact in ON{|¢| = 1}, where |£]| = \/Zle &:2.

Definition 2. ( Formal symbol of class {M,,, L,}, [20] )
We say that the formal sum a(t,z,8) = > ooy ai(t,z,€) is a formal symbol of class
{M,, L,} (= fs. of class {M, , L,} ) on O when there exists a real number & such that
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1) a;(t,z,€) belongs to C°(0) and positively homogeneous of degree Kk — i on § ,
(1 € Zy).

2) For an arbitrary conically compact subset T in O , there are positive constants C, R
and R’ and we have

a:(a)(t, 3, 6)| < C R RIHP My o) Liyygyit™ [l on T,

2.2
( ) (’L € Z+, a € Z+1+£, /6 € Z+£) .

The number & is called the order of the formal symbol a and denoted by “orda”. When
a;=0for 0<i<i,—1anda;, #0, k— i, is called the true order of a and denoted by
“true ord @”. The order of 0 is posed —co. We set S5,(0) = { the m.f.5.’s on O of order
K}, S5(0) = { the h.f.s.’s on O of order k }, S*{M,, L,}(O) = { the f.s.”s of class
{M,, L,} on O of order x }, and Su(0) = UrerSm(O), etc. We denote one of these
simply by S(O).

Corresponding to the asymptotic expansion of the symbol of the product of pseudo-
differential operators, we introduce the operator product of formal symbols.

Definition 3. ( Operator product )
Let a = o, a; and b= - b; be formal symbols. We set

-\ . , _ o
(2.3) aob=F2c , atnO=> . el (62,8 bee (t:2,9)
and call it the operator product of a and b.

By the operator product, Sy and S{M,, L,} become non-commutative rings and Sy
does a non-commutative field. Sy is a subring of Sy.

Let us consider a matrix P = IyD; — A(t,z,£), A € My(S™), (m € N ). In [20] and
[23], we obtained the following theorem.

Theorem 1. ( Normal form of system (1), [20] )

We assume that every entry of A satisfies (2.2) ( (2.1) in case of m.f.s. ) withx=m
and that the each eigenvalue Me(t,z,€) (1 < k < d) of Ao has the constant multiplicity
my. Then, there exist finite disjoint open conical sets {Oh}h such that UpOy, is dense in

O. On each Oy, there exist natural numbers di and {nk]}] 1 (ZJ | Mkj = My ). For
every point (to, To, &) in Oy, there exist a conically compact neighborhood I', N (t,x,€) =

2, Ni(t,z,€) in GL(N; S(T)), and Dy;(t,x,€) = 3720 Drjalt, 7,€) in Mnk,-(Sm(F));
such that :

N=Yt,z,€) o P(t,z,D¢,€) o N(t,,£) = Si<k<a 1<j<dy Frs
Pij(t, &, Dy, €) = In,; (Dt — Mi(t,2,6)) — 320 Drii(t, @, )
Dyjo = J(niz) €™,

Dyji = 0 homogeneous of degree m —i (i>1),
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0 1

- 0
where J(n) = 1k nxn . Weset > oo Diji = (dkj(l)--'dkj(nkj))
0

In the case of meromorphic formal symbol, {On}n is composed by only one element and
O, = O\ Y for a subvariety X'. N and Dy; belong to GL(N; Sy (0)) and My, (S7;(0)),
respectively. In (2.4), we replace |€|™ by &

One may think that the assumption of the constant multiplicity is too strong. However,
if we regard P as an operator of order m + 1 on D,, the highest order part is the zero-
matrix and has an unique eigenvalue zero of constant multiplicity N. Thus, under no
condition on the structure, we can reduce P to the normal form.

Corollary 2. ( Normal form of systems (2) )

We assume that every entry of A satisfies (2.2) ( (2.1) in case of m.f.s. ) with k =m.
There exist finite disjoint open conical sets {Op}r such that UpOp is dense in O. On- each
O, there exist natural numbers d and {ni}¢_, ( EZ=1 ny = N ). For every point (to, Zo, &)
in Op, there exist a conically compact neighborhood T, No(t,z,£) = > oop Nit,2,€) in
GL(N; S(I)) and Bi(t,2,6) = > o Bri(t, z,€) in My, (S™(T)) such that

No—l(t)x>§) o P(tax>Dt:§) o No(t7xa€) = Q = ®1§k§koz>
Qk(taxyDta'é-) - I'nth - Zf.io Bk'i(taxag) 5

Bro = J (ni) €]
pi |

Bei=\, .., : homogeneousoforderm+1—1i, (i>1)

- B 0
We set 3 ;7 Bri = (bk(l) e bk(nk)> '

In the case of meromorphic formal symbol, {Op}n is composed by only one element and
0, = O\ Y’ for a subvariety &'. N, and By, belong to GL(N; Sy (0)) and My, (S3;(0)),
respectively. In (2.5), we replace |€|™! by .

Remark 2.3. {Ox}r and ¥’ in Theorems 1 and Corollary 2 are different. In each case,
{On}n has finite elements but can have countably many connected components in case of
non-quasianalytic classes. This causes a difficulty on the Cauchy problem. ( See Example
1 in Subsection 4.5. )

In case of non-quasianalytic classes, we stand on the following simple property;

For a continuous function f(z) on an open set O, the set {z | f(z) # 0} U{z| f(z) = 0}°
is open and dense in O, where A° is the open kernel of A.

By this property, we can also obtain the normal form in case of non-quasianalytic classes
on an open dense set.
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A higher order scalar equation

@) u+Y " D et ) @) (@)= fT)

is reduced to a first order system on D; for a suitable positive number p:

Do — J(N)DPu — B(t,z, Dy)u = f(t,z)

where the lower order term B has the form (* O *> . Therefore, Corollary 2 say that

a system is reduced to a direct sum of some higher order scalar equations in an open
dense set in Q x C?\ ¥ modulo S~*°. Thus, if we can obtain a result microlocally and
modulo S~ and if such result on a dense open set implies the global one, we can apply
the proof on scalar equations also to systems. In many cases, the necessary condition
of the well-posedness has these properties. On the other hand, for the sufficiency, if we
assume the real analyticity of coefficients, we can apply the maximum principle. ( See,
for example, the results in Sections 4 and 5.

In the normal forms in Theorem 1 and Corollary 2, the invariants are not clear. For
example, dy and {nkj}?f__l in Theorem 1 and d and {n;}¢_, in Corollary 2 are not invari-
ant. Thus, we need the invariant theory and are led to the theory of determinant.

3. p-DETERMINANT OF MATRIX OF DIFFERENTIAL OPERATORS AND p-EVOLUTION

3.1. Definition of p-determinant.

On the matrix of partial differential operators, G.Hufford[10] first introduced the de-
terminant applying the theory of J.Dieudonné[9], which is a determinant theory on a
non-commutative field. M.Sato and M.Kashiwara[39] obtained the regularity property of
the determinant. The algebraic structure of the determinant on the ring with Ore’s prop-
erty is well characterized by K.Adjamagbo[2] and [3]. The determinant by G.Hufford and
M.Sato-M.Kashiwara is homogeneous. However, in order to consider, for example, the
parabolic equations and Schrodinger type equations, we encounter inhomogeneous princi-
pal parts and need an inhomogeneous determinant. In order to describe the Levi condition
for C* well-posedness, we also need an inhomogeneous determinant. Recently, the author
has received a preliminary version of a paper by A.D’Agnolo and G.Taglialatela[8], where
they define independently the same weighted determinant as mine. Their definition and
consideration are more algebraically and systematic than mine.

First we consider Spy/[D¢]. This is a non-commutative integral domain with Ore’s
property: for non-zero elements a and b, we can find non-zero ¢ and d such that ac = bd.
( See, for example, K.Adjamagbo[3]. ) Ore’s property is the necessary and sufficient
condition for the existence of the quotient field. ( See O.Ore[36]. )

We fix a positive rational number p. Let us take a(t,z,§, D) = ZTZO a<>(t,z,6)D™,

a<> = 32, a7 € Sy. We reset the order of a7 to its true order. let us set

porda<’>(t,z,6)D;™ 7 = orda<’” + p(m — j)
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porda = max p-orda~>(t,z,&) D™
0<j<m

and call them the p-order. By p-order, Sy[D;] becomes a filtered ring. We set further
R®(a) = {j : porda<’ D, = porda}

a’P-:D'r'(t7 33,5, T) - ZjER(P)(a,) (Z;J>(t, Z, g)Tm—J
and call the latter the p-principal symbol of a. The set Upso{ag’” (t,z, £)7™ }ier® (@)
has finite elements and composes the Newton polygon of a.

Let us take c(t,z,£,7) = Y70 c~/> (¢, 2,€)7™ 7 a polynomial of  whose coefficients are
homogeneous on & respectively. We say that c(t,z,£,7) is a p-homogeneous polynomial
of 7 when all deg c<?> + p(m — j) coincide each other for 0 < j < m. For p-homogeneous
¢, we call common deg c<’> + p(m — j) the p-degree of c and denote it by p-degc. Let us
set

Y = {p-homogeneous polynomials on 7} .

Y\ {0} is a commutative productive semigroup. The map o? from Sy [D;]\ {0} to Y\ {0}
defined by o?(a) = app, is a homomorphism of the productive semigroup. This is natu-
rally extended to the map from Sy [D;]? \ {0} to (Y \ {0})? by 0?(ab™!) = appr/bppr a8
a homomorphism of the productive group, where Sy[D;]¥ is the quotient field of Sas[Dy]
and (Y'\ {0})? is the quotient productive group of Y\ {0}. ( By virtue of Ore’s property,
if ab™! = a't/~!, it holds that appr/bppr = aj,,, /b, ,, and the map o® is well defined on
Su[Ds]° \ {0}. ) We put 0?(0) = 0. Thus, we can obtain the weighted determinant
theory by o? following J.Dieudonné[9]. ( See also E.Artin[5] and K.Adjamagbo|2], [3].)

In the case of non-quasianalytic classes, we stand on the following simple property
mentioned in Section 2;

For a continuous function f(x) on an open set O, the set {x| f(x) # 0}U{z]| f(z) = 0}°
s open and dense in O, where A° is the open kernel of A.

By this property, for continuous { f;(«) }1<j<d4, we can find finite disjoint open sets {On}n
such that the union is dense in O and that f;(z) # 0 or else = 0 on each Op. Using this
property, we can define p-determinant for matrices with entries in S{M,, , L, }[D;] on an
open dense set. Of course, we can also take the space of the formal symbols of C*°-class
instead of S{M,,, L,}. The existence of the limit of p-determinant at the boundary of
the open dense set is not clear.

Definition 4. ( p-determinant )
We call the determinant by o? of a matrix A with entries in S[Dy] p-determinant of A
and denote it by p-det A.

Remark 3.1. 1-determinant is just Hufford and Sato-Kashiwara’s determinant.
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3.2. properties of p-determinant.
Following J.Dieudonné[9], we have obtained the elementary properties of p-determinant.

Theorem 3. ( Elementary property of p-determinant )
We take A= (a"")lsi,jg and B in Mn(S[Dt])

(1) p-det AB = p-det A - p-det B.

(2) p-det A® p-det B = p-det A - p-det B. ( In this case, the sizes of A and B can be
different. )

(3) p-determinant is invariant under the similar transformation.

(4)If there are real numbers m; and n; such that p-orda? < m; + n; and the ordinary .

determinant det(oh, n;(a7))1<i,jan does not vanish, then p-det A = det (07, 1, (a7)),

where op, n,(a¥) is agl,, if porda”? =m; +n;, and is 0 if p-ord a¥ < m;+n;j.

Here, on the matrix of the form P = IyD;— A, A € My(S™), we give the representation
of p-determinant using the element of the normal form in Corollary 2.
Let us set

true ord b (h) =¥,
(3.1) M = mayngm, {7k + (m+ 1)(me — ) + p(h — D)},

Ry ={h:rf+ (m+1)(nk — h) + p(h — 1) = M}

Applying the property (4) in Theorem 3, we have the following.
Proposition 3.1. ( Relation between the normal form and p-determinant )
p-det P = HZ=1P' det Q.

(Tnk (pnk>Mk),

Y

(32) pdetQc =47 — Yher be(Rolt, 7, E) €[ DM (pry = My),

[~ ZheRg be(h)o(t, z, £)[€|mID (=R ph=1 (pne < My),

= the highest p-degree part of the ordinary determinant of Qg
In case of m.f.s., |£l(m+1)(nk—h) is replaced by 51(m+1)(nk—h)'

Thus, p-det P is a polynomial of 7. On the determinant theory, the regularity property
is important. In case of S = Sy, as the above P is a polynomial of 7, the meromorphy
can occur in (t,z,£) space and the proof of Sato-Kashiwara is directly applicable. ( We
need not transform the pole set to £ = 0. )

Theorem 4. ( Regularity of p-determinant )

(1) For P = IyD; — A, A € My(Sy), p-det P is a polynomial of T with holomorphic
coefficients on (t,x,&).

(2) For a matriz of partial differential operators with holomorphic coefficients on t and
z, p-det P is a polynomial of T and & with holomorphic coefficients on t and x.
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A.D’Agnolo and G.Taglialatela[8] algebraically showed the regularity of p-determinant
without using the normal form.

3.3. p-evolutive system and Kowalevskian system.

By Proposition 3.1, we have only two cases; 1) there is an unique p, for which p,-det P
has the term 7" and other terms, 2) p-det P’s are always 7" for all p > 0. In the former
case, we say that P is p,-evolutive and define the principal part ( on the Cauchy problem)
of P by p.-det P. In the latter case, we say that P is 0-evolutive and define the principal
part by 7V. O-evolutive operator is essentially an ordinary differential operator. If P is
p-evolutive for p < 1, we say that P is Kowalevskian. Our definition of “Kowalevskian
system” is different from that in S.Mizohata[32] and M.Miyake[29]. On the other hand,
for p-evolutive P ( p > 1), if every root of p-det P = 0 has the positive imaginary part,
we say that P is parabolic and if every root is real, we do that P is of Schrodinger type.

4. CAUCHY-KOWALEVSKAYA THEOREM FOR SYSTEM

4.1. Short history.

In 1979, M.Miyake[29] assumed that the coefficients are real analytic and the dimen-
sion ¢ of z-space is one and gave the necessary and sufficient condition for the analytic
well-posedness on systems introducing the meromorphic formal solutions. H.Yamahara
and the author[27] and [28] obtained the necessary and sufficient condition for systems
in the case of general £. They introduced the formal fundamental solution and esti-
mate it standing on the normal form of systems in the meromorphic formal symbol class.
M.Miyake[30] further showed that, when £ = 1, one can reduce the analytically well-posed
system to a first order one with real analytic coefficients enlarging the size of system.

On the other hand, as the algebraic analysis, M.Kashiwara[11] considered the Cauchy-
Kowalevskaya theorem for systems in 1971. He determined the structure of the solution
space using the determinant of the matrices of pseudo-differential operators introduced
by M.Sato and M.Kashiwara[39)].

4.2. Complexification and a priori estimate.

We set A(t,z,D,) = Zlalsm Au(t,2)D,* and P(t,z,D:,D,) = IyDy — A(t,z, Dy).
The problem (1.1) in the real analytic space is naturally extended to the problem in the
holomorphic space in a complex domain. From now on, we consider the problem (1.1)
in a complex domain Q C C{}’ and assume that all coefficients of P(t,z, Dy, D,) are
holomorphic there and continuous on its closure. Let Q¢, be {z € C* : (t,,z) € Q}.

Definition 5. ( The Cauchy-Kowalevskaya theorem = the C-K theorem )

We say that the Cauchy-Kowalevskaya theorem (= the C-K theorem ) for P(t,z, Dy, D,)
holds in € ( or that the Cauchy problem (1.1) is analytically well-posed in Q2 ) when for
each (to,z,) in Q, every initial data u.(z) holomorphic in Q;, and every right-hand side
f(t,z) holomorphic in €, there exists a neighborhood w of (to, T,) where the Cauchy
problem (1.1) has a unique holomorphic solution u(t, ).
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We denote the e-neighborhood of K by K.. We say that v(¢,z) is holomorphic on a
compact set K when v is holomorphic in K° and continuous on K, where K° is the open
kernel of K. The above proposition implies

Proposition 4.1. ( Common existence domain )

For arbitrary compact set K in Q and arbitrary positive €, there exists a compact
neighborhood K' of K determined by the operator and e, such that the unique holomor-
phic solution exists on K' for arbitrary holomorphic initial data on K., and arbitrary
holomorphic right-hand side on K..

When we prove the necessity for the C-K theorem, we need an a priori estimate. For
a bounded domain w in Q, we set H(w) = { v(t,z) = Y(vi(t,z), - ,w(t,z)) : v; is
holomorphic in w and continuous on @ , (1 < j < N) }. It is a Banach space by the
norm ||v||, = max;<;j<y MaxXmea [V;(t, ).

The following was essentially given in S.Mizohata.

Proposition 4.2. ( A priori estimate, [32] )

If the C-K theorem for P holds in ), for arbitrary compact set K and arbitrary pos-
itive number ¢ there exist a compact neighborhood K' of K and a positive constant C
independent of u, and f such that

(4.1) lullxr < Cllluollk.., + IIf1lx) 5

where u is the solution of (1.1).

4.3. Homogeneous problem and the formal fundamental solution.
Let us consider the homogeneous Cauchy problem:

P(t,z, D¢, Dy)u = Dyu — A(t,z,Dy)u=10
(4.2)
u(ts, ) = uo ()
If we can construct the fundamental solution which has an estimate uniform on ¢, , the
inhomogeneous problem (1.1) is solved by the Duhamel principle. Therefore, from now
on, we consider the problem (4.2).

By the relation Dyu = A(t,z, D;)u, Di*u is represented by a linear combination of the
derivatives on x of u :

(4.3) Dy = Alk](t,z, D)u , (k>0).
{Alk|}%2., satisfies the recurrence formula:

A[O] = IN )
(4.4) {A[k] = Alk—1]c A+ (Ak-1]) , (k>1) ,

where (A); is obtained by operating D; to the coefficients of A.

The formal fundamental solution of the problem (4.2) is given by

(4.5) U(t, z, Da: t) = Zw (V=1(t — t.))*

k=0 k!

Alk|(to, z, Dz)
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As Alk] is differential operator and A[k] = 3, A[kl; is a finite sum, when it satisfies
(4.8) in Proposition 4.3 below, > "> {(v/=1(t — to))*/k' } A[k](to, z, Dz)uo converges in a
neighborhood w of (t,, z,) for arbitrary u, in H(Q,) and U (¢, z) is the true fundamental
solution in w.

4.4. Cauchy-Kowalevskaya theorem.
Now we announce our theorem on the Cauchy-Kowalevskaya theorem for systems.

Theorem 5. ( Cauchy-Kowalevskaya theorem for systems, [27] and [28] )
The following conditions are equivalent.

1) The Cauchy-Kowalevskaya theorem for P(t,x, Dy, D) holds in €.

2) The lower order terms in the normal form (2.5) satisfy
(4.6) ordbg(h) <1—m(nk—h), (1<h<m,1<k<d).

3) P(t,x, Dy, D,) is reduced to a first order system through a similar transformation by
an element in GL(N; Syy).

4) 1-det P is of degree N : the size of P .
5) P is Kowalevskian in our sense, that is, p-evolutive for 0 < p < 1.

6) There exists a natural number k, such that

(4.7) ord Alk](t,z,D,) < k+k,, (keZ,).

The equivalences between 2), 4) and 5) are obvious by virtue of Proposition 3.1. The
proof from 1) to 2)is the main part of the proof of the necessity for the C-K theorem. The
system is microlocally reduced to a backward heat equation of order greater than 1 for a
new unknown. We obtain a microlocal energy estimate of this equation in a real domain,
which contradicts the a priori estimate (4.1). From 2) to &) is almost trivial. The proof
from &) to 7) below: more detailed version of 6) is the essential part of the proof of the
sufficiency. By the estimate (4.8), the formal fundamental solution (4.5) converges and
operates on the holomorphic functions. Thus, there exist p, and § ( po >0,0<d < 1)
determined by the operator such that, for an arbitrary p < po, uo in H(B,(x,)) and f
in H(B,((to, o)), the unique holomorphic solution u exists in Bjs,((to,Z,)). This means
that 7) implies 1). The proof from 7) to 6) is trivial and that from 6) to 2) is easy.

Proposition 4.3. ( Estimate of A[k|(¢,z,£), [27] and [28] )
Condition 8) implies 7):

7) For an arbitrary compact set K in Q, there exist a positive integer ko and positive
constants C, R and R, independent of k, for which the following estimates hold on
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K x C*;
48 A[KLE) (¢, 2,€)| < CRF S5, REMHHI(k — h)lil|o!|B]!] €] ke =1
8 ‘
(GieZy,acZ M BeZt).

This Proposition is shown first in K x C*\ X for a subvariety X.. As A[k] is holomorphic,
The estimate (4.8) holds in K x C* by the maximum principle.

4.5. Cauchy-Kowalevskaya theorem of Nagumo Type.

M.Nagumo[34] showed that one can obtain a unique solution, real analytic on = and of
C'-class on t, if m < 1 in (1.1) and the coefficients are real analytic on z and continuous
on t. When m > 2, does the continuity on t of the coefficients and one of 2) to 6) in
Theorem 5 assure the existence of a solution? The answer is No.

Ezample 1. ( announced at ICM’98, [24} )
0 1

Ps:INat—'

v(t) 0

where p(t) and v(t) are non-negative and have the supports in [0, 00) and u(t)v(¢) = 0.
More precisely, let us set ton—1 = t2n = Y 5o, (log )72 ( {tn} is a monotonically
decreasing sequence with the limit zero ) and take a natural number p ,

u(t) = (tan—1 — t)P( n) € (2 b2 1)
0 otherwise ,

and
(o) = {(tzn — Pt = ta)? 1€ (tanp1, tan)
0 otherwise .
(n € N)
u(t) and v(t) belong to CP~4 }(R), that is, the (p-1)-th derivatives are Lipschitzian. As
u(t)v(t) =0, Ps is O-evolutive at every point.

For arbitrary small positive €, we can find g < €. Let us take to = tony2q- We can
concretely solve the Cauchy problem for Ps with the initial data ue; =0 (0 <t <N = 1),
uoy = p(z) = exp(pz) and the right-hand side f(¢,2) = 0 from ¢, to ¢z, and the solution
u has the estimate

luN(tha0)|

s,(,k) Sgk)

tan429—2k n " 3 . K
>p”mN/ / / Hk_ () u(s®)ds® - - ds?
tont2q—2k+1 Y ton+29—2k+2 ton+2q—2k+2 -

" ntq o
> p™™ K [ dlogs)*}~4.

J=q+



37

On the other hand, if the Cauchy-Kowalevskaya theorem of Nagumo type holds, we
have the same a priori estimate as Proposition 4.2 and the following must hold

[uy(t2q, 0)| < Cexp(K1p).

Here, K, and K, are positive constants. If mN > 4p + N, taking
p = n and making n tend to infinity, the both estimates are not compatible. For the
detail, see W.Matsumoto[24].

Thus, in order to assure the Cauchy-Kowalevskaya theorem of Nagumo type for P, we
need the differentiability on ¢ at least up to (m — 1)N/4.

The author propose a conjecture on the Cauchy-Kowalevskaya theorem of Nagumo
type for systems. Let us take Q = [T, T3] x €. We denote the space of real analytic
functions in ' by A(Q),

Conjecture ( Conjecture on C-K theorem of Nagumo type for systems )
If all coefficients of P belong to C°([Ty, Tz); A(Y)), the assertion in Theorem 5 also
holds.

The equivalences between 2), --- | 6) are rather easily seen. The assertion from 1) to
2) is also shown by the same way as the proof in Subsection 4.4, because the analyticity
on z is essential but that on ¢ is not required in the proof. Therefore, the sufficiency of
2)or 3)or --- or 6)is open. Recently, M.Murai, T.Nagase and the author|[26] obtained
an affirmative result for the most simple system but non-trivial case: m = 2 and N = 2.
( The dimension of z space £ is free. ).

5. LEVI CONDITION FOR THE C*® WELL-POSEDNESS

We consider the Cauchy problem of a first order system of partial differential equations
( (1.1) with m = 1 ) with constantly multiple characteristic roots. If the first order part
has only the zero characteristic root, the Levi condition is equivalent to 0-evolution,
that is, essentially it is an ordinary differential operator of D;. When coefficients are real
analytic, this is necessary and sufficient for the C* well-posedness. On the other hand, in
case of non-quasianalytic coefficients, even if the first order part has constant coefficients,
this condition does not rest sufficient. ( See W. Matsumoto [20], Remark 4.1. See also
W. Matsumoto[16] and [18]. )

Through this section, we assume the analyticity of all coefficients.

5.1. p-determinant associated with a characteristic root. f'

Let A\i(t,z,€) be the characteristic roots of constant multiplicity my (1 < k < d ) of
the first order part of P. By virtue of the assumption of the constant multiplicity, every
characteristic roots is smooth. In order to describe the Levi condition in an invariant
form, we introduce p-determinant associated with Ax(t, z,&).

Let p be a rational number such that 0 < p < 1. As Sy[D:] = Su[D: — M(t, z,§)],
every a(t, z,§, Dy) is represented as a(t, x,&, Dy) = > 7" a7 (t,2,£) (Di— M) ™7, a9~ =
32,077 € Sy. We reset the order of a</> to its true order. Let us set

i=0 &
p-ord s, a7 (t,2,&)(Ds — )™ = ord a<*> + p(m — j)

p-ord y,a = max p-ord,a<”(t,z,&)(Dy — A\e)™ 7
0<ji<m
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and call them the p-order associated with M. By p-order associated with A, Sp[D:— Ax]
becomes a filtered ring. We set further

Rg\i) (a) - {.7 : p—ord /\ka’<j>(Dt - )\k)m_j - p-ord )\ka}

aP-Z"‘)\k(taxaga T) = Z a0<j>(t,x,§)(7- — )‘k)m—j

j€RP (a)

and call the latter the p-principal symbol of a(t, z,&) associated with Ax. The set
Upsofag”” (t, 2, &) (T — Xe)™ 7 }ier® (o) Das finite elements and composes the Newton poly-
A
gon of a associated with ;. *
We define the p-homogeneous polynomial on 7 — A\ by the same way in Subsection 3.1.

Let us set

Yy, = {p-homogeneous polynomials on T — A} .

Y), is a commutative productive semigroup. The map o}, from Sy[D; — Aef \ {0} to
Y3, \{0} defined by o} (a) = appr x, is a homomorphism of the productive semigroup. This
is naturally extended to the map from Sy [D; — A9\ {0} to (Y, \ {0})€ by 0% (ab™!) =
ppr \/Uppr n, @S & homomorphism of the productive group. We put o} (0) = 0. Thus,
we can obtain the weighted determinant theory by o3 following J.Dieudonné[9]. In case
of non-quasianalytic classes, by the same reason as in Subsection 3.1, we can also obtain
it on an open dense set.

Definition 6. ( p-determinant associated with i )
We call the determinant of a matrix A with entries in S[D;— Ag], by aﬁk p-determinant
of A associated with A\x and denote it by p-dety, A.

We can obtain the corresponding properties in Theorem 3.

On the matrix of the form P = IyD; — A, A € My(S') ( m = 1), we give the
representation of p-determinant using the element of the normal form in Theorem 1.

Let us set

true order di;(h) = r
(5.1) M; = maXingny, {ry + (ne; — B) +p(h — 1)},

Ry = {h: ) + (g — h) + p(h— 1) = MP;}

We have the following.



Proposition 5.1. ( Relation between the normal form and p-determinant a.w. Ay )
(5.2)
p- det)\k P = H?:l sz:l p- det)\k -PU )

p- det,\k ij
( (T - Ak)nkj ’ (pnk] > sz ) )

= { (7= W)™ = Fepp dig(Po(t, 2, IE™ (= M), (g = M),

L~ ZheR{j dkj(h)o(t’ z, §)|§‘nkj_h(7 - Ak)h_l ) (Pnkj < ng ) ,
= the highest p-degree part a.w. A of the ordinary determinant of P;

(1<j<dyg)
p-dety, Pj= M —N)™ (1<i#k<d 1<5<ny)

In the case of m.f.s., |€|™5" is replaced. by &™ ",

In case of S = Sy, we can obtain the regularity of p-determinant associated with A
corresponding to (1) in Theorem 4.

By Proposition 5.1, we have only two cases; 1) There exists a unique p, for which
po-deta, P/ [1i<ica izr(Ax — Ai)™ has the term 7™ and other terms,
2) po-dety, P/ 1:11<i<d,i7ék(>‘k — Xi)™’s are 7™ for all 0 < p < 1. In the former case, we
say that P is po-evolutive with respect to Ay and define the second principal part ( on
the Cauchy problem ) of P by po-detx, P/ [Ti<ica, ize(Me — X)™ = [li<j<a, Po-detr, P
and denote it by po—det',\k P. In the latter case, we say that P is 0-evolutive with respect
to Az and define the second principal part by 7™. 0-evolutive operator with respect to
) is essentially an ordinary differential operator along the bicharacteristic strip of Ay.

5.2. Levi condition.
Let us make clear the definition of C* well-posedness of the Cauchy problem. For the
simplicity, we assume that € is bounded.

Definition 7. ( C* well-posedness )

We say that the Cauchy problem is C* well-posed in © when for each (t.,2.) in ,
there exists a neighborhood w of (t,,7,) where every initial data u.(z) of C*-class in
(. and every right-hand side f(t,z) of C*-class in Q, the Cauchy problem (1.1) has a
unique solution u(t,z) in C*().

We give an a priori estimate. For a bounded domain w in Q, we set F'(w) = { v(t,z) =
Ho(t,z), -, x) s v; € C®@) , (1 <j <N)}. Ttis a Fréchet space by the
semi-norms ||v||n. = Maxi<;<y Zlalsn maX (¢.z)ew | Dia*Vj(t, z)|.

Proposition 5.2. ( A priori estimate of C* well-posedness )
If the Cauchy problem for P is C™ well-posed in Q, for arbitrary q in Z., there exist
rin Zy and a positive constant C independent of u, and f such that

39
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(5.3) lullga < Cl[tollrar, +11£1lrz) ,
where u is the solution of (1.1).
S.Mizohata showed that the following.

Proposition 5.3. ( Hyperbolicity, [31] ) '
In order that the Cauchy problem is C™ well-posed in Q, the characteristic roots
Me(t,z,€) (1< k<d ) must be real.

Now we announce our theorem on the C*° well-posedness for systems.

Theorem 6. ( C*° well-posedness for systems, [20] Section 4 and [25] )
We assume that every characteristic root A\(t,z,£) is real and has the constant multi-
plicity mi (1 < k <d ). The following conditions are equivalent.

i) The Cauchy problem for P is C* well-posed in ).

i) The lower order terms in the normal form (2.4) with m = 1 satisfy
(5.4) orddij(h) < —(nk—h), (1<h<ng,1<j<de,1<k<d).

i) P is reduced to a first order system with a diagonal first order part through a similar
transformation by an element in GL(N; Sy).

w) P is 0-evolutive with respect to A, (1< k<d ).

Remark 5.1. The conditions in Theorems 5 and 6 are similar each other and the proofs
also similar in the case of real analytic coefficients. In the case of non-quasianalytic
coefficients, the proofs on the necessity also hold. However, not only the proofs of the
sufficiency loose the validity but also the phenomena themselves become different.

Remark 5.2. In the case of non-quasianalytic coefficients, under the equivalent condition
it), 11%) or iv), the greatest space for the well-posedness of the Cauchy problem was studied
by W.Matsumoto[18] for 2 x 2 systems. It depends on the regularity of coefficients. For
example, when coefficients belong to a Gevrey class, it is much bigger than the union of
the Gevrey classes.

Remark 5.3. A.D’Agnolo and G.Taglialatela[8] also discussed another representation of
the Levi condition using their determinant theory.

The equivalences between 4i) and iv) is obvious by virtue of Proposition 5.1. The proofs
from 1) to 44i) is evident. The proofs from %) to 4i) is rather easy and we need not as-
sume the real analyticity of the coefficients. From ii7) to 1), we take four steps. First, we
separate each eigenvalue and consider each block independently ( W.Matsumoto[23] and
T.Nishitani[35]). Second, we reduce the eigenvalue in each block to zero by a Fourier inte-
gral operator ( H.Kumano-go[14] ). Thus, each block becomes 0-evolutive, that is, essen-
tially an ordinary differential system and we can obtain a similar estimate as 7) in Propo-
sition 4.3 replacing ||€][*P~=18l by |¢|*—-1Al. Third, we construct a true symbol from
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Alk] ( L.Boutet de Monvel and P.Krée[7], L.Boutet de Monvel[6] and W.Matsumoto[19] ).
This gives a parametrix acting on C*™-functions. Finally, we obtain the fundamental so-
lution from the parametrix. ( See H. Kumano-go[13]. )
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