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Existence of weakly singular solutions to
linear partial differential equations with holomorphic coefficients

Sunao Oucit (Sophia Univ.)
K ( |- 0 A )

80 Introduction

Let P(z,0) be a linear partial differential operator with holomorphic coef-
ficients in a neighborhood © of z = 0 in C*'. Counsider the equation

),

where f(2) is holomorphic except on the surface IV = {zy = 0}, but f(z)
is weakly singular on 1. Tn the present paper “weakly singular” means that
f(2) has an asymptotic expansion f(z) ~ > 77 [u(2')2) with respeet to 2z
as 2y — 0 in some sectorial domain. We study the existence of a solution
u(z) with an asymptotic expansion such as f(z). Firstly we remark that if
we do not restrict the behaviors of solutions near K, there exists a solution
u(z) with singularitics on I under some conditions on the principal symbol
of P(z,0). But the singularities of u(z) may be much stronger than f(z) (see
(1], [2], [4] and [8]).

The behaviors and growth properties of solutions near singularities are
studied in [5], [6] and [7] and they are characterized by the lower order terms
of operators. The lower order terms of operators are important to know the
behaviors of solutions. However the existence of solutions with asymptotic
expansions is not studied in those papers. So we study it in this paper.

(0.1) P(z,0)u(z) = f(

N

§1 Notations and Results

In order to state the problem we concern and results more precisely we
give simply notations and definitions. The coordinate of C*! is denoted
by z = (20,21, ,240) = (20,2') € Cx C. |z| = max{|z|; 0 < i < d}
and |2/ = max{|z]; 1 < ¢ < d}. Its dual variables are £ = (&,¢') =
(&0, &1, -+, &q). Nis the set of all nonnegative integers, N = {0,1,2,---}. The
partial differentiation is denoted by 9; = 9/0z;, and 0 = (9,01, -+ ,04) =
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(D, ). Tor a multi-index v = (v, ') € Nx N o] = o + o] = }:Z o (Vi
We use the notations 9% = HZ , O and € = 1_[;[:l £

Next let us define spaces of holomorphic functions in some regions. Let
§) = §2yx$Y be a polydisc centered at z = 0, where §2y = {2 € C'; |20] < Ro}
and O = {2 € C4 || < R} for some positive constants Ry and R. Put
Q0(0) = {29 € Qo—{0}; |arg 20| < 8} and Q(#) = Qy(0) x V', (0) is sectorial
with respect to zg. O(Q) (O(Y), O(§1(A))) is the set of all holomorphic
functions on € (resp. V', €(6)).

Definition 1.1. (i) Asypq(Q(0)) (0 < s < +o00) is the set of all u(z) €
O(§20)) such that for any 0" with 0 < 8§ < 0

N—I

(1.1) u(z) = Y un(2)z] < ABY|z

n=0

NF(N +1) z€eQ),

where u, (2) € OKY) (n € N), holds for constants A = A(6') and B = B(0').
(i) Asyoy(SU0)) is the set of all u(z) € O(UH)) such that for any 6" with
0<0 <0

(1.2) |u(z) Z?/,, )2t < AnlzolVY 2 € Q(8),

n=0

where u,(2') € O(Y) (n € N), holds for constants Ay = A(N,0") depending
on N and ¢’

We say that u(z) € Asy;,(€2(f)) has an asymptotic expansion with
Gevrey exponent (or index) k. w(z) € Asyqyoy(§U0)) means that u(z) is
holomorphic at z = 0. u(z) € Asy,(2(F)) means that it has merely an
asymptotic asymptotic expansion. So put Asy(€2(6)) := Asy oy (€2(0)).

Now let P(z,d) be an m-th order linear partial differential operator with
holomorphic coeflicients in a neighborhood of z = 0,

(1.3) P(z,0) = > an(2)0".

Jal<m

We introduce the characteristic polygon of P(z,0) with respect to K,
which is important to study the behaviors of solutions of (0.1) near K. Let
Jox be the valuation of aq(2) with respect to zy. Hence if an(2) #Z 0, an(2) =
20 bo (2) with by (0, 2') # 0 and for a.(z) = 0 put j, = oo. Put

(1.4) Co = Ja — o,
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where e, = 400 if a,(2) = 0. We denote by TI(a, b) the set {(z,y) € R*; 2 <
a,y > b}. The characteristic polygon of ¥ is defined by

Y= the conver hull of UTI(|a|, eq).
(a4

The boundary of ¥ consists of a vertical half line 3(0) and a horizontal
half line X(p*) and p* — 1 segments X(i) (1 <4 < p* — 1) with slope v,
0=rr <Pprot <o <71 < Yo = F00.

Let {(ki,c(i)) € R?:0 <14 < p* — 1} be vertices of 32, where 0 < k.| <
v < Ky < ko < oo+ < kg = m. So the endpoints of L(7) (1 < i < p* —1)
“are (ki e(i — 1)) and (K, e(4)).

¥(0)
(m, c(0))

0 </(1,\;l,(3(1))

o (lalea) / B(2)
(k% 6(2))

A (ki)

Y(p* =1

)
L (Kpe—2,e(p* — 2))
X(p*) _o/(ﬁi, e(p* — 1))

Figure 1: Characteristic polygon

We call the slope v; of () the i-th characterisite indez of P(z,0) with
respect to IS = {zy = 0}. Now we notice the vertices of the polygons X. So
put subsets A(7) of multi-indices and quantities I; € N (0 <4 < p* —1) as
follows:

(1.5)

A1) = {a € N o] = ki, jo — a0 = e(i)}
l; :=max{|c/| 1 « € A(i)}

Define the subset Ag(z) of A(4) and a polynomial xp;(2',€) in & (0 <4<
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A()(’:) = {a € A(); || = I;}
(1.6) Xpa(2, €)=Y ba(0,2)€.

(1€A()(1)
xpi(#,€") is homogencous in & with degree [;.

Let us return to the equation (0.1). Our problem is precisely the following.
Does the equation

P(Z’ 8)11(2) = f(Z) € AS?/{N}(Q(H»

have a solution u(z) € Asygy(U(#')) for a polydisc U C § and a constant
0 (0<0 <0)?

In order to answer it we give conditions (C;). For fixed i (0 <7 < p*—1)

(Ci)  Ja =0 for o € Do(i) and xp;(0,&) # 0.
Firstly we have

Theorem 1.2. Suppose that P(z,0) satisfies (C;) and f(z) € Asy(,y(€(0))
with vie, < v < 7. Let & be a constant such that if 1 # 0, 0 < 0 <
min{@, 7w /2v;} and ifi =0, 0 < & < 6.

Then, there is g(2) € Asyg,y (U(8')) for some polydisc U centered at z = 0
such that (Rf)(z) == P(z,0)g9(z) — f(2) ~ 0 in Asy(,,;(U(8)).

If i = 0, then (Rf)(2) = 0, that is, P(z,0)g(z) = f(2). We show Theorem
1.2 by constructing a paramectrix. As for the existence of a solution wu(2)
whose asymptotic expansion is the same type as f(z), we have

Theorem 1.3. Suppose that P(z,0) satisfies (C;) for i = 0,1,---3, and
let f(z) € Asypyy(SU0)) with vsp0 < v < 5. Then for any 0 < # <
win{ @, /2y, } there is u(z) € Asy,y (U(0')) satisfying P(z, 0)u(z) = f(z)
in U(0") for some polydisc U centered at z = 0.

The problem of the existence of solutions with asymptotic expansion was
studied in [3], where the characteristic Cauchy problem was treated. The
characteristic Cauchy problem has a formal power series solution. The pur-
pose of [3] was to study the relation between genuine solutions and formal
power series solutions. We studied in [3] the existence of a genuine solution
with the same asymptotic expansion as the formal power series solution. The
main result in [3] follows from Theoremn 1.3.
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We give an example. Let us consider
. Y 33« )2 : 2
(L.7) P(z,0) =8+ 800+, z=(20,21) € C.
We have

Yo =400, =1, y=1/2, v3=0,
o2, &) =&, xpi( &) =&, xro(?,&) =1

Obviously P(z, ) satisfies (C;) and xp;(2',1) # 0 for i =0, 1, 2.
Suppose f(z) € Asy(2(0)), that is, it has merely an asymptotic expan-
sion, and consider

(1.8) (OF + 900 + O)u(z) = f(2).

Lot 0 < @ < min{0,7/2}. Then we have a solution u(z) € Asy(U(0')) for
some polydisc U centered at 2z = 0 by Theorem 1.3.

§2 Construction of Parametrix

In order to find g(z) in Theorem 1.2 we construct a parametrix of P(z,0;).
For this purpose we use some auxiliary functions. Let 0 < § <1 and put

b d
F(%H;/ exp(—N¢)¢Fd¢ for p>0
(21) (}7)()\) = 8 0

AP for p <0,

where d > 0 is a small constant. If p > 0, g,(\) depends on § and d but if
p <0, §,(N) does not. Define

(2.2) IG,(0;t) = 5 /| exp(—At)g,(A)dA

and

(2.3) I$,, o(8; w0 — 20, wo) = w(—=—)TK,(6;wo — 20).
(9'11)0

If 0 < § <1, K,(6;t) is multi-valued holomorphic on ¢ # 0.
We construct the paremetrix G as follows: Let w = (wp, w’) € C x C.
Let Cy be a path in wy-space which starts at wo = 0, encloses wy = 2y once
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anticlockwise and ends at wy = (0 and C' be the d-dimensional product of
circles defined by H;f:l{lw,- = 7} in €. Suppose f(w) € Asy,y(02(6)).

Then the parametix is of the form

(Gf)(= / dw' [ G(z,w)f(w)dw,
! Co

which is an integral operator with kernel

+o00 +o00

(2.4) G(z,w) = Z lepq 2, W) K 4 (055 wo — Zo,wo) 6 = vi/ (v + 1).

p=—0o0 q=0
The cocflicients k, (2, ')’s are determined so as to satisfy

U Ko0(di5w0 — 20, wp)
(27mi) ;f:] (wp, — zn)

P(z,0.)G(z,w) = + R(z,w),

where R(z,w) satisties (Rf)(2) = / R(z,w) f(w)dw ~ 0in Asyg,,, (U(0')).
CoxC’
So put g(2) = (Gf)(2).

The details, that is, the existence of &, ,(z, w’), its estimate and the prop-
erties of G(z,w) and R(z,w) etc. will be published elsewhere.
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