Asymptotic expansion of singular solutions and characteristic polygon of linear partial differential equations with holomorphic coefficients

大内 忠 (上智大学)

By Sunao Ōuchi * (Sophia Univ. Tokyo)

Abstract

Consider the equation $P(z,\partial)u(z)=f(z)$ in a neighbourhood of z=0, where u(z) admits singularities on the surface $K=\{z_0=0\}$ and f(z) has the asymptotic expansion of Gevrey type with respect to z_0 as $z_0 \to 0$. We study the possibility of asymptotic expansion of u(z). We define the characteristic polygon of $P(z,\partial)$ with respect to K and characteristic indices γ_i $(0 \le i \le p)$. We discuss the behaviour of u(z) in a neighbourhood of K, by using these notions. The main result is a generalization of that in [2]. The details of this paper is in [4] and will be appeared elsewhere.

KEY WORDS: complex partial differential equations, solutions with asymptotic expansion

§1 Notations and Characteristic Polygon.

The coordinate of \mathbb{C}^{d+1} is denoted by $z=(z_0,z')=(z_0,z_1,\cdots,z_d)\in\mathbb{C}\times\mathbb{C}^d$. $|z|=\max\{|z_i|;\ 0\leq i\leq d\}$. Its dual variables are $\xi=(\xi_0,\xi')=(\xi_0,\xi_1,\cdots,\xi_d)$. The differentiation is denoted by $\partial_i=\partial/\partial z_i$, and $\partial=(\partial_0,\partial')=(\partial_0,\partial_1,\cdots,\partial_d)$. $\alpha=(\alpha_0,\alpha')=(\alpha_0,\alpha_1,\cdots,\alpha_d)\in\mathbb{N}\times\mathbb{N}^d$ is a multi-index and $|\alpha|=\alpha_0+|\alpha'|=\sum_{i=0}^n\alpha_i$.

Let $P(z,\partial)=\sum_{|\alpha|\leq m}a_{\alpha}(z)\partial^{\alpha}$ be a linear partial differental operator with holomophic coefficients in a neighbourhood Ω of z=0 in \mathbb{C}^{d+1} and $K=\{z_0=0\}$. Let us define the characteristic polygon Σ of $P(z,\partial)$ with respect to the surface K. Let j_{α} be the valuation of $a_{\alpha}(z)$ with respect to z_0 . Hence if $a_{\alpha}(z)\not\equiv 0$, $a_{\alpha}(z)=z_0^{j_{\alpha}}b_{\alpha}(z)$ with $b_{\alpha}(0,z')\not\equiv 0$. Put $e_{\alpha}=j_{\alpha}-\alpha_0$. We denote by $\Pi(a,b)$ the set $\{(x,y)\in\mathbb{R}^2;x\leq a,y\geq b\}$. The characteristic polygon of Σ is defined by $\Sigma=the\ convex\ hull\ of\ \cup_{\alpha}\Pi(|\alpha|,e_{\alpha})$. The boundary of Σ consists of a vertical half line $\Sigma(0)$, a horizontal half line $\Sigma(p)$ and p-1 segments $\Sigma(i)\ (1\leq i\leq p-1)$ with slope $\gamma_i,\ 0=\gamma_p<\gamma_{p-1}<\cdots<\gamma_1<\gamma_0=+\infty$.

Let $\{(k_i, e(i)) \in \mathbb{R}^2; 0 \le i \le p-1\}$ be vertices of Σ , where $0 \le k_{p-1} < \cdots < k_i < k_{i-1} < \cdots < k_0 = m$. So the endpoints of $\Sigma(i)$ $(1 \le i \le p-1)$ are

^{*}Department of Mathematics, Sophia University, Chiyoda-ku, Tokyo 102-8554, Japan e-mail s_ohuti@hoffman.cc.sophia.ac.jp 1991 Mathematical Subject Classification(s): Primary 35A20; Secondary 35B05, 35C20.

 $(k_{i-1}, e(i-1))$ and $(k_i, e(i))$.

Figure 1: Characteristic polygon

Definition 1 The slope γ_i of $\Sigma(i)$ is called the *i*-th characterisitic index of $P(z,\partial)$ with respect to $K = \{z_0 = 0\}$.

Let us notice the vertices of the polygon Σ and define subsets $\Delta(i)$ and $\Delta_0(i)$ of multi-indices and operators $\mathfrak{P}_i(z,\partial)$ $(0 \le i \le p-1)$. Put

$$\begin{cases} \Delta(i) = \{\alpha \in \mathbb{N}^{d+1}; |\alpha| = k_i, \ j_{\alpha} - \alpha_0 = e(i)\}, \\ l_{k_i} = \max\{|\alpha'| : \alpha \in \Delta(i)\} \end{cases}$$

and

(1.1)
$$\begin{cases} \Delta_0(i) = \{\alpha \in \Delta(i); |\alpha'| = l_{k_i}\}, \\ \mathfrak{P}_i(z,\partial) = \sum_{\alpha \in \Delta_0(i)} z_0^{j_\alpha} b_\alpha(0,z') \partial_0^{\alpha_0} \partial^{\alpha'}. \end{cases}$$

 $\mathfrak{P}_{i}(z,\partial)$ is a partial differential operator with total order k_{i} and order $l_{k_{i}}$ with respect to ∂' . We have $e(i) = j_{\alpha} - \alpha_{0} = j_{\alpha} - k_{i} + l_{k_{i}}$ for $\alpha \in \Delta_{0}(i)$. Hence we can write

(1.2)
$$\mathfrak{P}_{i}(z,\partial) = z_0^{e(i)+k_i-l_{k_i}} \left(\sum_{\alpha \in \Delta_0(i)} b_{\alpha}(0,z') \partial_0^{\alpha'} \right) \partial_0^{k_i-l_{k_i}}$$

and define polynomial $\chi_{P,i}(z',\xi')$ in ξ' by

(1.3)
$$\chi_{P,i}(z',\xi') = \sum_{\alpha \in \Delta_0(i)} b_\alpha(0,z') \xi^{\alpha'}.$$

§2 Function spaces.

Let $\Omega = \Omega_0 \times \Omega'$ be a polydisk with $\Omega_0 = \{z_0 \in \mathbb{C}^1; |z_0| < R\}$ and $\Omega' = \{z' \in \mathbb{C}^d; |z'| < R\}$. Put $\Omega_0(\theta) = \{z_0 \in \Omega_0 - \{0\}; |\arg z_0| < \theta\}$ and $\Omega(\theta) = \Omega_0(\theta) \times \Omega'$. $\mathcal{O}(\Omega)$ $(\mathcal{O}(\Omega'), \mathcal{O}(\Omega(\theta)))$ is the set of all holomorphic functions on Ω (resp. Ω' , $\Omega(\theta)$). We introduce subspaces of $\mathcal{O}(\Omega(\theta))$.

Definition 2 $\mathcal{O}_{(\kappa)}(\Omega(\theta))$ $(0 < \kappa < +\infty)$ is the set of all $u(z) \in \mathcal{O}(\Omega(\theta))$ such that for any $\varepsilon > 0$ and any θ' with $0 < \theta' < \theta$

(2.1)
$$|u(z)| \le C \exp(\varepsilon |z_0|^{-\kappa}) \quad \text{for } z \in \Omega(\theta')$$

holds for a constant $C = C(\varepsilon, \theta')$. We put $\mathcal{O}_{(+\infty)}(\Omega(\theta)) = \mathcal{O}(\Omega(\theta))$ for $\kappa = +\infty$.

Definition 3 $Asy_{\{\kappa\}}(\Omega(\theta))$ $(0 < \kappa \le +\infty)$ is the set of all $u(z) \in \mathcal{O}(\Omega(\theta))$ such that for any θ' with $0 < \theta' < \theta$ and any $N \in \mathbb{N}$

(2.2)
$$|u(z) - \sum_{n=0}^{N} u_n(z') z_0^n| \le A B^N |z_0|^N \Gamma(\frac{N}{\kappa} + 1) \quad z \in \Omega(\theta')$$

holds, where $u_n(z') \in \mathcal{O}(\Omega')$, $A = A(\theta')$ and $B = B(\theta')$.

We say that $u(z) \in Asy_{\{\kappa\}}(\Omega(\theta))$ has asymptotic expansion with Gevrey exponent κ in $\Omega(\theta)$. $u(z) \in Asy_{\{+\infty\}}(\Omega(\theta))$ means that u(z) is holomorphic at z = 0.

§3 Theorem

First we give a condition on $P(z, \partial)$ treated in this paper.

Condition-i $j_{\alpha} = 0$ for all $\alpha \in \Delta_0(i)$.

If
$$P(z,\partial)$$
 satisfies Condition-i, then $\mathfrak{P}_{i}(z,\partial) = (\sum_{\alpha \in \Delta_{0}(i)} b_{\alpha}(0,z')\partial_{0}^{\alpha'})\partial_{0}^{k_{i}-l_{k_{i}}}$.

We have

Theorem 4 Suppose that $P(z,\partial)$ satisfies Condition-i and $\chi_{P,i}(0,\hat{\xi}') \neq 0$, $\hat{\xi}' = (1,0,\cdots,0)$. Let $u(z) \in \mathcal{O}_{(\gamma_i)}(\Omega(\theta))$ be a solution of

(3.1)
$$P(z,\partial)u(z) = f(z) \in Asy_{\{\gamma_i\}}(\Omega(\theta))$$

satisfying

(3.2)
$$\partial_1^h u(z_0, 0, z'') \in Asy_{\{\gamma_i\}}(\Omega(\theta) \cap \{z_1 = 0\}) \text{ for } 0 \le h \le l_{k_i} - 1.$$

Then there is a polydisk W centered at z = 0 such that $u(z) \in Asy_{\{\gamma_i\}}(W(\theta))$.

We studied in [1] and [2] similar problems for the case i = p - 1 and $l_{k_{p-1}} = 0$. We gave in [2] a simple proof of the same result as Theorem 4 for this case. We show Theorem 4 by modifying the discussion in [2]. When Condition-i does not hold, solutions become less regular and we studied in [3] the behaviours of solutions under the condition that i = p - 1 and $l_{k_{p-1}} = 0$ but Condition-(p-1) does not necessarily hold.

§4 Example

We give an example. Let us consider

$$(4.1) P(z,\partial) = \partial_1^5 + \partial_1^3 \partial_0 + \partial_0^2, \quad z = (z_0, z_1) \in \mathbb{C}^2.$$

We have

$$\begin{cases} \gamma_0 = +\infty, & \gamma_1 = 1, \quad \gamma_2 = 1/2, \quad \gamma_3 = 0, \\ \chi_{P,0}(z', \xi_1) = \xi_1^5, & \chi_{P,1}(z', \xi_1) = \xi_1^3, & \chi_{P,2}(z', \xi_1) = I. \end{cases}$$

Obviously $P(z,\partial)$ satisfies Condition-i and $\chi_{P,i}(z',1) \neq 0$ for i=0,1,2. So it follows from Theorem 4 that there is a polydisk W centered at z=0 such that

 $i = 0 : u(z) \in \mathcal{O}_{(+\infty)}(\Omega(\theta)), \ \partial_1^h u(z_0, 0) \in Asy_{\{+\infty\}}(\Omega_0(\theta)) \ (0 \le h \le 4),$ $f(z) \in Asy_{\{+\infty\}}(\Omega(\theta)) \Rightarrow u(z) \in Asy_{\{+\infty\}}(W(\theta)),$ $i = 1 : u(z) \in \mathcal{O}_{(1)}(\Omega(\theta)), \ \partial_1^h u(z_0, 0) \in Asy_{\{1\}}(\Omega_0(\theta)) \ (0 \le h \le 2),$ $f(z) \in Asy_{\{1\}}(\Omega(\theta)) \Rightarrow u(z) \in Asy_{\{1\}}(W(\theta)),$ $i = 2 : u(z) \in \mathcal{O}_{(1/2)}(\Omega(\theta)), \ f(z) \in Asy_{\{1/2\}}(\Omega(\theta)) \Rightarrow u(z) \in Asy_{\{1/2\}}(W(\theta)).$

References

- [1] Ōuchi,S., An integral representation of singular solutions and removable singularities to linear partial differential equations, *Publ. RIMS Kyoto Univ.*, **26** (1990), 735-783.
- [2] Ōuchi, S., Singular solutions with asymptotic expansion of linear partial differential equations in the complex domain, *Publ. RIMS Kyoto Univ.*, **34** (1998), 291-311.
- [3] Ōuchi, S., Growth property and slowly increasing behaviour of singular solutions of linear partial differential equations in the complex domain (preprint).
- [4] Ōuchi, S., Asymptotic expansion of singular solutions and the characteristic polygon of linear partial differential equations in the complex domain (preprint).