Singular Solutions of Nonlinear Differential Equations — an application of Fuchsian differential equations

Takao KOBAYASHI

小林隆夫(東京理科大理工)

1 Introduction

We consider nonlinear partial differential equations of Kovalevskian type

$$\partial_t^m u = f\left(t, x; \left(\partial_t^j \partial_x^\alpha u\right)_{\substack{j \leqslant m-1\\j+|\alpha| \leqslant m}}\right) \tag{1}$$

where $t \in \mathbb{C}$, $x \in \mathbb{C}^d$ and the coefficients are holomorphic in a neighborhood Ω of the origin in \mathbb{C}^{d+1} . We give a simple example to explain the motivation, before introducing complicated notations.

Example 1 (Burgers equation).

$$u_{tt} + 2uu_t - u_x = 0 (2)$$

has a formal Laurent series solution

$$u = t^{-1} + gt + \left(\frac{1}{10}g_x - \frac{1}{5}g^2\right)t^3 + \cdots,$$
(3)

where g = g(x) is an arbitrary holomorphic function.

It is easy to obtain such a formal solution (3): First, assume u is of the form

$$u = t^{\sigma} \sum_{n=0}^{\infty} u_n(x) t^n \qquad (u_0 \neq 0), \tag{4}$$

substitute (4) into the equations and then equate the coefficients of the power of t to 0. We have $\sigma = -1$, $2u_0(1-u_0) = 0$ and

$$(n+1)(n-2)u_n = -2\sum_{\substack{i+j=n\\1\leqslant i,j\leqslant n-1}} (j-1)u_iu_j + u_{n-2,x} \quad (n\geqslant 1).$$
 (5)

It is natural to ask whether the formal series (3) converges or not. Of course, it converges to define exact solutions, which are **singular** on t = 0. We have four proofs of its convergence.

(I) Linearization:

By setting

$$u = (\ln w)_t = \frac{w_t}{w},$$

Burgers equation is equivalent to the linear equation

$$w_{tt} - w_x = 0. (6)$$

Singular solution (3) is given by the initial condition

$$w|_{t=0} = 0, \qquad w_t|_{t=0} = h(x)$$

with a suitably chosen h(x).

(II) Direct estimates:

Using recurrent equation (5), Ishii [2] and \bar{O} uchi [4] estimeted the u_n 's directly.

(III) Leray-Volevich system:

Let $u=\frac{1}{\lambda}$, then λ satisfies the equation

$$\lambda \lambda_{tt} + 2\lambda_t - 2\lambda_t^2 - \lambda \lambda_x = 0. (7)$$

After some calculation, Equation (7) reduces to the following Leray-Volevich system

$$\begin{cases} \lambda_t = 1 - \lambda \lambda_x + \lambda^2 \mu, \\ \mu_t = \lambda \mu_x + \lambda_x \mu - \lambda_{xx}. \end{cases}$$
 (8)

The solution (3) is given by the initial condition

$$\begin{cases} \lambda|_{t=0} = 0, \\ \mu|_{t=0} = h(x) \end{cases}$$

with suitably chosen h(x).

(IV) Fuchsian differential equations:

Let $\sigma = -1$ and put

$$a_N = \sum_{n=0}^{N} u_n t^{n+\sigma}, \quad w_N = \sum_{n=0}^{\infty} u_{N+1+n} t^{n+1}.$$
 (9)

Then $u = a_N + t^{N+\sigma} w_N$ and

$$a_{N,tt} + 2a_N a_{N,t} - a_x = t^{\sigma - 2 + N + 1} \times H_N \tag{10}$$

where H_N is a holomorphic function. Substituting (9) into (2), we obtain from (10)

$$(t\partial_t + N + 1)(t\partial_t + N - 2)w_N = tA_N + tB_N w_N + tC_N(t\partial_t + N + \sigma)w_N - t^2 v_{N,x} + 2t^N w_N(t\partial_t + N + \sigma)w_N,$$
(11)

where A_N , B_N and C_N are some holomorphic functions. Now we can apply a theorem by Gérad–Tahara [1].

Consider the following nonlinear differential equation:

$$(t\partial_t)^m w = F\Big(t, x; \left((t\partial_t)^j \partial_x^\alpha w \right)_{(j,\alpha) \in \Lambda} \Big), \tag{12}$$

where F(t, x; Z) is holomorphic in a neighborhood of (t, x; Z) = (0, 0; 0) and satisfies

$$F(0,x;0) \equiv 0,\tag{13}$$

$$\frac{\partial F}{\partial Z_{j,\alpha}}(0,x;0) \equiv 0 \quad \text{if } |\alpha| > 0.$$
 (14)

The characteristic polynomial of (12) is

$$C(\rho, x) := \rho^m - \sum_{j=0}^{m-1} \frac{\partial F}{\partial Z_{j,0}}(0, x; 0)\rho^j.$$
 (15)

Theorem 1 (Gérard-Tahara). If $C(n,0) \neq 0$ for all positive integers n, then (12) has a unique formal solution $w = \sum_{n=1}^{\infty} w_n(x)t^n$ with $w(0,x) \equiv 0$, where $w_n(x)$ are holomorphic on a common neighborhood of the origin in \mathbb{C}^d . Moreover this power series is convergent and holomorphic near the origin in $\mathbb{C}_t \times \mathbb{C}_x^d$.

2 Characteristic Exponent

We put

$$\Lambda := \{ (j, \alpha) \in \mathbb{N} \times \mathbb{N}^d : j < m, j + |\alpha| \le m \}$$

and write (1) as

$$\partial_t^m u = f(t, x; \partial^{\Lambda} u), \tag{16}$$

where f(t, x; Z) is holomorphic in $\Omega \times \mathbb{C}^{\#\Lambda}$.

We expand f in Z

$$f(t, x; Z) = \sum_{\mu \in \mathcal{M}} f_{\mu}(t, x) Z^{\mu}, \tag{17}$$

where \mathcal{M} is a subset of $\mathbb{N}^{\#\Lambda}$.

Let $k_{\mu} \in \mathbb{N}$ be the valuation of $f_{\mu}(t, x)$ in t,

$$f_{\mu}(t,x) = t^{k_{\mu}} \sum_{k=0}^{\infty} f_{\mu,k}(x) t^{k}.$$
 (18)

Definition 1. The characteristic exponent σ_c of (16) with respect to the surface t=0 is

$$\sigma_c := \sup_{\substack{\mu \in \mathcal{M} \\ |\mu| \ge 2}} \frac{\gamma_t(\mu) - m - k_\mu}{|\mu| - 1},\tag{19}$$

where

$$|\mu| := \sum_{(j,\alpha) \in \Lambda} \mu_{j,\alpha}, \qquad \gamma_t(\mu) := \sum_{(j,\alpha) \in \Lambda} j \cdot \mu_{j,\alpha}.$$

We assign weights as follows:

$$u \to \sigma$$
 $\partial_t \to -1$ $t \to 1$.

Then the total weight of the right hand side of (16) is $m - \sigma$ and that of the term $f_{\mu}(\partial^{\Lambda}u)^{\mu}$ is $|\mu|\sigma - \gamma_t(\mu) + k_{\mu}$.

Burgers equation (2):

$$\sigma - 2 = 2\sigma - 1 + 0 \Rightarrow \sigma_c = -1.$$

Example 2 (KdV equation).

$$u_{ttt} - 6uu_t + u_x = 0 (20)$$

has

$$\sigma - 3 = 2\sigma - 1 + 0 \Rightarrow \sigma_c = -2,$$

and Laurent series solutions

$$u = 2t^{-2} + gt^2 + ht^4 - \frac{1}{24}g_xt^5 + \cdots,$$

where g = g(x) and h = h(x) are arbitrary holomorphic functions.

Characteristic exponent of KdV equation (20)

Lemma 1.

(i) σ_c is invariant with respect to coordinate change which keeps the variable t.

(ii) $\sigma_c \leq m_0 \leq m-1$, where m_0 is the order of differentiation with respect to t in $f(t, u; \partial^{\Lambda} u)$.

3 Singular Solutions

We assume

(A-1) f(t, x; Z) is a polynomial in Z of degree greater than or equal to 2.

Under (A-1), the characteristic exponent

$$\sigma_c = \max_{\substack{\mu \in \mathcal{M} \\ |\mu| \geqslant 2}} \frac{\gamma_t(\mu) - m - k_\mu}{|\mu| - 1},\tag{21}$$

is a rational number strictly less than m_0 , and the subset

$$\mathcal{M}^* := \{ \mu \in \mathcal{M} : |\mu|\sigma_c - \gamma_t(\mu) + k_\mu = \sigma_c - m \}.$$
 (22)

is not empty. We call the nonlinear term corresponding to μ in \mathcal{M}^* principal nonlinear term.

(A-2) If
$$\mu \in \mathcal{M}^*$$
 then $\mu_{j,\alpha} = 0$ for $|\alpha| \geqslant 1$

We construct a solution to (16) in the form:

$$u(t,x) := t^{\alpha} \sum_{n=0}^{\infty} u_n(x) t^{n/p},$$
 (23)

where p is the denominator of the reduced fraction σ_c .

Substitute (23) into (16), we obtain recursion equations:

$$\begin{cases}
P_c(x; u_0) \cdot u_0 = 0, \\
Q_c\left(x; u_0; \frac{n}{p}\right) \cdot u_n = R_n\left(x; \partial_x^{\alpha} u_0, \dots, \partial_x^{\alpha} u_{n-1}\right)_{|\alpha| \leqslant m},
\end{cases}$$
(24)

where

$$P_c(x;\eta) := \left[\sigma_c; m\right] - \sum_{\mu \in \mathcal{M}^*} f_{\mu,0}(x) \left(\prod_{(j,\alpha) \in \Lambda} \left[\sigma_c; j\right]^{\mu_{j,\alpha}}\right) \eta^{|\mu|-1},\tag{25}$$

and

$$Q_{c}(x;\eta;\rho) := \left[\rho + \sigma_{c}; m\right] - \sum_{\mu \in \mathcal{M}^{*}} f_{\mu,0}(x) \times \left(\prod_{(j,\alpha) \in \Lambda} \left[\sigma_{c}; j\right]^{\mu_{j,\alpha}}\right) \left(\sum_{(j,\alpha) \in \Lambda} \mu_{j,\alpha} \frac{\left[\rho + \sigma_{c}; j\right]}{\left[\sigma_{c}; j\right]}\right) \eta^{|\mu| - 1}.$$
(26)

Here we have set for $\rho \in \mathbb{R}$ and $j \in \mathbb{N}$,

$$[\rho; j] := \rho(\rho - 1) \cdots (\rho - j + 1). \tag{27}$$

 $P_c(x;\eta)$ and $Q_c(x;\eta;\rho)$ are polynomials in η and ρ and depend only on principal nonlinear terms. The order in η is $\max_{\mu \in \mathcal{M}^*} |\mu| - 1$ and m in ρ .

Burgers equation (2):

$$\sigma_c = -1,$$
 $P_c(x; \eta) = 2 - 2\eta,$ $Q_c(x; \eta = 1; \rho) = (\rho + 1)(\rho - 2).$

KdV equation (20):

$$\sigma_c = -2, \quad P_c(x; \eta) = -24 + 12\eta,$$

$$Q_c(x; \eta = 2; \rho) = (\rho + 1)(\rho - 4)(\rho - 6).$$

Remark. If $k_{\mu}=0$ for all $\mu\in\mathcal{M}^*$, then we have

$$Q_c(x;\eta;\rho=-1) = \frac{\sigma_c - m}{\sigma_c} P_c(x,\eta). \tag{28}$$

- (A-3) The equation $P_c(x;\eta) = 0$ in η has at least one solution $\eta = u_0(x)$ which is holomorphic in a neighborhood of x = 0 and $u_0(x) \not\equiv 0$.
- (A-4) One of the following holds for each $n \ge 1$

$$Q_c\left(0; u_0(0); \frac{n}{p}\right) \neq 0 \tag{a}$$

$$Q_c\left(x; u_0(x)\frac{n}{p}\right) \equiv 0, \qquad R_n\left(x, \dots, \partial_x^{\alpha} u_0, \dots, \partial_x^{\alpha} u_{n-1}\right) \equiv 0$$
 (b)

$$\begin{cases}
Q_c\left(0; u_0(0); \frac{n}{p}\right) = 0, & Q_c\left(x; u_0(x); \frac{n}{p}\right) \not\equiv 0 \\
Q_c\left(x; u_0(x); \frac{n}{p}\right) & \text{divides} & R_n\left(x, \dots, \partial_x^{\alpha} u_0, \dots, \partial_x^{\alpha} u_{n-1}\right)
\end{cases}$$
(c)

Remark. In case of (a) or (c), u_n is determined uniquely, and in case of (b), $u_n(x)$ may be any holomorphic function.

Remark.

$$Q_c(0; u_0(0); \rho) = 0$$

has at most m distinct roots.

Theorem 2. Suppose (A-1), (A-2), (A-3), (A-4) are satisfied. Then we can construct a solution to (16) in the form (23). Moreover all formal solutions (23) converge near the origin in $\mathbb{C}_t \times \mathbb{C}_x^d$.

We apply a theorem by Gérad–Tahara [1] to prove the convergence of formal solutions. For a positive integer N, we put

$$w_N(t,x) := \sum_{n=0}^{\infty} u_{N+n+1}(x) t^{\frac{n+1}{p}}.$$

Proposition 1. If the formal series (23) satisfies the equation (16), then w_N satisfies the following differential equation:

$$Q_{c}\left(x; u_{0}(x); t\partial_{t} + \frac{N}{p}\right) w_{N} = t^{1/p} \cdot G\left(t^{1/p}, x; \left((t\partial_{t})^{j} \partial_{x}^{\alpha} w_{N}\right)_{(j,\alpha) \in \Lambda}\right), \tag{29}$$

where $G(\tau, x; Z)$ is a polynomial in Z with coefficients holomorphic near the origin in $\mathbb{C}^{d+1}_{\tau,x}$.

Next put $\tau = t^{1/p}$ and

$$\tilde{w}_N(\tau, x) = \sum_{n=0}^{\infty} u_{N+n+1}(x)\tau^{n+1}.$$
(30)

Then $\tilde{w}_N(0,x)\equiv 0$, and by using the relation $t\partial_t=\frac{1}{p}\tau\partial_\tau$, we obtain \tilde{w}_N satisfies

$$Q_{c}\left(x; u_{0}(x); \frac{1}{p}\tau \partial_{\tau} + \frac{N}{p}\right) \tilde{w}_{N} = \tau \cdot G\left(\tau, x; \left(\left(\frac{1}{p}\tau \partial_{\tau}\right)^{j} \partial_{x}^{\alpha} \tilde{w}_{N}\right)_{(j,\alpha) \in \Lambda}\right). \tag{31}$$

Equation (31) satisfies the conditions (13) and (14), and its characteristic polynomial is

$$C(\rho, x) = Q_c\left(x; u_0(x); \frac{1}{p}(\rho + N)\right). \tag{32}$$

If we take N sufficiently large, then $C(n,0) \neq 0$ for all positive integers.

4 Prolongation of Solutions

We need to define a modified version of characteristic exponent.

Definition 2. For (16), we define σ_c^* by

$$\sigma_c^* = \sup_{\substack{\mu \in \mathcal{M} \\ \nu \leqslant \mu, |\nu| \geqslant 2}} \frac{\gamma_t(\nu) - m - k_\mu}{|\nu| - 1}.$$
(33)

Example 3.

$$u_{tt} + 6uu_t^3 + xu_t^2 + uu_x = 0,$$

has a singular solution with exponent $\sigma_c = \frac{1}{3}$:

$$u = t^{1/3} - \frac{x}{12}t^{2/3} + \frac{x^2}{240}t^{3/3} + \frac{x^3}{5184}t^{4/3} - \cdots,$$

and ones with exponent $\sigma_c^* = \frac{1}{2}$:

$$u = \frac{1}{3}g^2 + \frac{1}{g}t^{1/2} + \left(-\frac{1}{2g^4} - \frac{x}{6g^2}\right)t + \cdots,$$

where g = g(x) is an arbitrary holomorphic function with $g(0) \neq 0$.

Lemma 2.

- (i) $\sigma_c \leqslant \sigma_c^* \leqslant m_0 (\leqslant m-1)$.
- (ii) If $\sigma_c \leq 0$, then $\sigma_c = \sigma_c^*$.

Definition 3. For $\sigma \in \mathbb{R}$, we define $\delta_c(\sigma)$ by

$$\begin{split} \delta_c(\sigma) &:= \inf_{\substack{\mu \in \mathcal{M} \\ \nu \leqslant \mu, |\nu| \geqslant 2}} (|\nu| - 1)\sigma - \gamma_t(\nu) + m + k_\mu \\ &= \inf_{\substack{\mu \in \mathcal{M} \\ \nu \leqslant \mu, |\nu| \geqslant 2}} (|\nu|\sigma - \gamma_t(\nu) + k_\mu) - (\sigma - m). \end{split}$$

Lemma 3.

- (i) $\delta_c(\sigma) \geqslant 0$ if and only if $\sigma \geqslant \sigma_c^*$.
- (ii) If $\sigma > \sigma_c^*$, then $\delta_c(\sigma) > 0$.
- (iii) $\delta_c(m_0) > 0$.
- (iv) If $\delta_c(\sigma) > 0$ and $\sigma \leqslant m_0$, then there is a constant $\delta > 0$ such that

$$|\nu|\sigma - \gamma_t(\nu) + k_\mu \geqslant \sigma - m + \delta$$

for all $\mu \in \mathcal{M}$, $\nu \leqslant \mu$.

Definition 4. $u \in \mathcal{O}(\Omega_{-})$ is bounded of order σ in Ω_{-} means that $\exists M > 0$ such that for all $(t, x) \in \Omega_{-}$, if $\sigma \leq 0$

$$|u(t,x)|\leqslant M|\Re t|^\sigma$$

or if $\sigma > 0$,

$$\left|\partial_t^j u(t,x)\right| \leqslant \begin{cases} M & \text{for } j=0,1,..,\lfloor\sigma\rfloor,\\ M|\Re t|^{\sigma-j} & \text{for } j=\lfloor\sigma\rfloor+1, \end{cases}$$

Example 4. $t^{\sigma} \cdot h(t,x)$ with a holomorphic function h(t,x) is bounded of order σ , and $\log t \cdot h(t,x)$ is bounded of order $-\epsilon$ for any $\epsilon > 0$.

Theorem 3. If $u \in \mathcal{O}(\Omega_{-})$ satisfies Equation (16) and is bounded of order σ in Ω_{-} with $\delta_{c}(\sigma) > 0$, then u is holomorphic in a neighborhood of the origin. Especially if $\sigma > \sigma_{c}^{*}$ or $\sigma = m_{0}$, then u is holomorphic near the origin.

Corollary 1. If $u \in \mathcal{O}(\Omega_{-})$ satisfies Equation (16) and the derivatives of u up to order m_0 are bounded in Ω_{-} , then u is holomorphic near the origin.

Remark 1. Examples 1 and 2 give singular solutions which are bounded of order $\sigma_c = \sigma_c^*$, and Example 3 gives ones of order σ_c^* with $\sigma_c^* > \sigma_c$.

References

- [1] R. Gérard and H. Tahara, Singular nonlinear partial differential equations, Aspects of Mathematics, vol. E 28, Vieweg, 1996.
- [2] T. Ishii, On propagation of regular singularities for nonlinear partial differential equations, J. Fac. Sci. Univ. Tokyo 37 (1990), 377–424.
- [3] T. Kobayashi, Singlar Solutions and Prolongation of Holomorphic Solutions to Nonlinear Differential Equations, Publ. RIMS, Kyto Univ. **34** (1998), 43–63.
- [4] S. Ōuchi, Formal solutions with Gevrey type estimates of nonlinear partial differential equations, J. Math. Sci. Univ. Tokyo 1 (1994), 205–237.
- [5] Y. Tsuno, On the prolongation of local holomorphic solutions of nonlinear partial differential equations, J. Math. Soc. Japan 27 (1975), 454–466.
- [6] M. Zerner, Domaines d'holomorphie des fonctions vérifiant une équation aux dérivées partielles, C. R. Acad. Sci. Paris Sér. I Math. 272 (1971), 1646–1648.

Takao KOBAYASHI
Department of Mathematics,
Faculty of Science and Technology,
Science University of Tokyo
takao@ma.noda.sut.ac.jp