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Singular Solutions of Nonlinear Differential Equations
— an application of Fuchsian differential equations

Takao KOBAYASHI
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1 Introduction

We consider nonlinear partial differential equations of Kovalevskian type

o'y = f(t,a:; (agagu) j<m—1 ) )]

jtlajgm

where t € C, z € C% and the coefficients are holomorphic in a neighborhood {2 of the origin in (OLam
We give a simple example to explain the motivation, before introducing complicated notations.

Example 1 (Burgers equation).
Uge + 2uug —uy =0 (2)
has a formal Laurent series solution

1 1
u=1t"1+gt+( —ggz)t?’-i----, 3)

Egm
where g = g(z) is an arbitrary holomorphic function.

It is easy to obtain such a formal solution (3): First, assume u is of the form

(e,
u=1t’ Z U (z)t" (up #0), “)

n=0
substitute (4) into the equations and then equate the coefficients of the power of ¢ to 0. We have 0 = —1,

2ug(1 — up) = 0 and
m+Dn=2un=-2 Y (- Duy+unge (n>1). (5)
i+j=n
1<6,5<n—1

It is natural to ask whether the formal series (3) converges or not. Of course, it converges to define
exact solutions, which are singular on ¢ = 0. We have four proofs of its convergence.

(I) Linearization:
By setting

w
u=(lnw) = e
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Burgers equation is equivalent to the linear equation
wy — wg = 0. (6)
Singular solution (3) is given by the initial condition
Wlt=0 = 0, wi|t=0 = h(x)
with a suitably chosen h(z).

(II) Direct estimates:
Using recurrent equation (5), Ishii [2] and Ouchi [4] estimeted the u,,’s directly.

(III) Leray-Volevich system:
Let u = §, then ) satisfies the equation

Mt + 20 — 202 — A\, = 0. Q)

After some calculation, Equation (7) reduces to the following Leray-Volevich system

Ae=1-=XMg+ 2\
t x + Ky (8)
pt = Atz + Aght — Aza-
The solution (3) is given by the initial condition
Alt-——() = 0’
ple=0 = h(z)
with suitably chosen h(z).
(IV) Fuchsian differential equations:
Let o = —1 and put
N o0
ay = Z unt™t?, wy = Z UN+14nt" T ©)
n=0 n=0
Then u = ay + tV 17wy and
ang + 2aNan — ag = t7 N < Hy (10)

where Hy is a holomorphic function. Substituting (9) into (2), we obtain from (10)

(td + N + 1)(t0; + N — 2Jwy =
tANy +tBywn + tCN(tat + N +o)wy — tz’UN,x + 2thN(t8t + N +o0)wy, (A1)

where Ay, By and Cy are some holomorphic functions. Now we can apply a theorem by Gérad—
Tahara [1].

Consider the following nonlinear differential equation:

(t8)™w = F(t,: (10)702) ; yen ) (12)
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where F(t,; Z) is holomorphic in a neighborhood of (¢, z; Z) = (0, 0;0) and satisfies

F(0,z;0) =0, (13)
oF .
aZJa(O z;0) =0 if |a| > 0. (14)

The characteristic polynomial of (12) is

,,_n

m—

oF

15
8Z],0 (0,z;0)0’ (15)

C(p,

J=0

Theorem 1 (Gérard-Tahara). If C(n,0) # O for all positive integers n, then (12) has a unique formal
solution w = Y>> 1 wy, ()t with w(0,z) = 0, where wy,(z) are holomorphic on a common neighbor-
hood of the origin in C%. Moreover this power series is convergent and holomorphic near the origin in
(Ct X Cg

2 Characteristic Exponent

We put
A:={(j,a) eNxN¢: j<m, j+|aof <m}

and write (1) as

Ou = f(t,x; 8Au), (16)
where f(t,z; Z) is holomorphic in Q x C#A,
We expand f in Z
ft,z; 2) Z fult, z) (17
HEM

where M is a subset of N#4,
Let k, € N be the valuation of f,(¢,z) int,

o0
fult,z) =5 >~ £, k(@) tF. (18)
Definition 1. The characteristic exponent o, of (16) with respect to the surface t = 0 is
—-m-—k
G, i= sup e(p) —m = Ry (19)
LEM lul -1
lu>2

where

= > fjer  w) = D i b

(J,0)eA (:e)eh
We assign weights as follows:
U — 0 O — —1 t— 1.

Then the total weight of the right hand side of (16) is m — o and that of the term f,,(8%u)* is |ulo —
Ye(p) + Ky
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Burgers equation (2):

c0—2=20-14+0=0=-1.

Example 2 (KdV equation).
Upr — OUUL + Uy = 0 (20)
has
0—-3=20—-14+0= 0 = -2,
and Laurent series solutions

1
u=2t_2+gt2—i—ht4—ﬂgzt5+---,

where g = g(z) and h = h(z) are arbitrary holomorphic functions.

il —ve(w) + ky

Characteristic exponent of KdV equation (20)

Lemma 1.
(i) o, is invariant with respect to coordinate change which keeps the variable 1.
(i) 0. < mog < m — 1, where my is the order of differentiation with respect to t in f(t, u; 8Au).

3 Singular Solutions

We assume
(A-1) f(t,z;Z) is a polynomial in Z of degree greater than or equal to 2.
Under (A-1), the characteristic exponent ‘

’Yt(/'l’) —-m- kﬂ 21

)

K
|22
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is a rational number strictly less than mg, and the subset
M* = {p e M: |ulo. — 1(p) + ky = 0c — m}. (22)
is not empty. We call the nonlinear term corresponding to u in M* principal nonlinear term.
(A-2) If p € M* then pjo = 0forlal > 1
We construct a solution to (16) in the form:

= t%® Z un (z) P, (23)

n=0

where p is the denominator of the reduced fraction o.
Substitute (23) into (16), we obtain recursion equations:

P.(z;up) - uo =0,

(24)
Qc<a:; Uo; %) “up = Rp(x; 0o, - - - ,agun_l)laKm,

where

R = [am] = 3 fuol@)( T [ow 4727 )0, 25)
pEM* (j,2)€A
and
Q.(z;m; p) == p+UCa Z qu ( H Oc; J )( Z Ujo——T 7 P+'O'c, .]>7’]M_1.
peM* (o)A (,a)eA [0 ]

(26)

Here we have set for p € Rand j € N,
(o] =plp=1)---(p—3+1) 27)

P.(z;n) and Q.(x;n; p) are polynomials in n and p and depend only on principal nonlinear terms.
The order in 7 is max e+ || — 1 and m in p.

Burgers equation (2):
o, = —1, P.(z;mn) =2 —2n,
Q(z;n=1;p) = (p+ 1)(p—2).
KdV equation (20):
0 =—2, Plz;n)=—24+12n,
Q(zsn=2;p) = (p+1)(p—4)(p—6).

Remark. If k,, = 0 for all y € M, then we have

O — M

Q(z;mp=-1) = P.(z,n). (28)

Oc
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(A-3) The equation F.(x;n) = 0 in 1 has at least one solution 11 = ug(z) which is holomorphic in a
neighborhood of x = 0 and up(x) Z 0.

(A-4) One of the following holds for each n > 1
QC(O; up(0); ;) #0 (a)
n — (0] Qo —
Qc(x;uo(:c);) =0, Rn(x,...azuo,...,amun_l) =0 (b)

Q000 ) =0, Q(zsuo(a)i ) £0
C}C(x;uo(m);g) divides Rn(x,...ag‘uo,...,ag‘un_l)

Remark. In case of (a) or (c), uy, is determined uniquely, and in case of (b), u,(z) may be any holomor-
phic function.

Remark.
Q.(0;u0(0);0) =0

has at most m distinct roots.

Theorem 2. Suppose (A-1), (A-2), (A-3), (A-4) are satisfied. Then we can construct a solution to (16)
in the form (23). Moreover all formal solutions (23) converge near the origin in C; x Cg.

We apply a theorem by Gérad—Tahara [1] to prove the convergence of formal solutions. For a positive
integer N, we put “ ’

n+1

oo
wn(t, z) == ZUN+n+1($)t P,
n=0

Proposition 1. If the formal series (23) satisfies the equation (16), then wy satisfies the following dif-
ferential equation:

N ‘
Q. (w3 uo(w); s + ;)wN = 077 G (17,5 (40792 wN) s ayen ) (29)

where G(1,x; Z) is a polynomial in Z with coefficients holomorphic near the origin in Cg}l.

Next put 7 = ¢1/P and

o0

N (r,z) =) untni1(z) " (30)

n=0

Then Wy (0, z) = 0, and by using the relation t0; = %787, we obtain wy satisfies
1 Ny . 1 j o~
Q(wuo(e): 270+ i =7 (2 (0, P 0) g gyen) | 31)
Equation (31) satisfies the conditions (13) and (14), and its characteristic polynomial is
1
Clp,2) = Q(wsuole);(p+ N)). (32)

If we take NV sufficiently large, then C(n,0) # 0 for all positive integers.
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4 Prolongation of Solutions

We need to define a modified version of characteristic exponent.

Definition 2. For (16), we define ¢* by

-m—k
o’c* = sup M_m_“ 33)
LEM lv] -1
v<p,|vi22

Example 3.

Ut + 6uuéj + xuf + uug, = 0,

. . . 1
has a singular solution with exponent o, = §:

2 3
— 3 _ T3 T 33, T 4
u 2t Yo" s !

. 1
and ones with exponent g = 5

= — —t —_
u= g +g + ( 2g1 65

where g = g(z) is an arbitrary holomorphic function with g(0) # 0.

Lemma 2.
(i) o < O'C* < mo(S m — 1)
(ii) If 0. < 0, then o, = J.

Definition 3. For o € R, we define d.(c) by

0c(0) == uiél/& (Jv]| = Do — () + m+k,
v |y 22

= Jélfw (lvlo — %(W) + ku) — (0 —m).
v<m|v|22

Lemma 3.

(i) 6c(c) = Oifand only if o = 0.

(ii) If o > a7, then 6.(c) > 0.

(iii) 6o(mo) > 0.

(iv) If 0c(0) > 0 and o < my, then there is a constant § > 0 such that

vlo — (W) +kyZ20-m+46

forallpe M, v < p.
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Definition 4. u € O(2_) is bounded of order ¢ in 2_ means that 3M > Osuch thatforall (¢,z) € Q_,
ifo <0

lu(t, z)| < M|Rt|”
orifo > 0,

M “forj=0,1,..,|0],

|8 u(t, z)| < {Mlﬂ‘ﬁtl"—j forj = o] +1,

Example 4. t7 - h(t, z) with a holomorphic function h(¢, z) is bounded of order o, and logt - h(t, x) is
bounded of order —e for any € > 0.

Theorem 3. If u € O(Q_) satisfies Equation (16) and is bounded of order o in Q2_ with d.(c) > 0,
then u is holomorphic in a neighborhood of the origin. Especially if o > o, or 0 = mo, then u is
holomorphic near the origin. '

Corollary 1. Ifu € O(Q)_) satisfies Equation (16) and the derivatives of u up to order mq are bounded
in Q_, then u is holomorphic near the origin.

Remark 1. Examples 1 and 2 give singular solutions which are bounded of order ¢, = ¢, and Exam-
ple 3 gives ones of order ¢ with ¢ > ¢.
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