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On “new” turning points associated with
regular singular points
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1 Introduction

In this report we shall consider the following equation near the origin:

(—% + 7’ <Qo(w) + n"%(—””—) + n"2%£2-$—))> p@)=0, (L)

where 77 denotes a large parameter and @,(z) (j =0, 1,2) denotes a holomor-
phic function which does not vanish at the origin. Our eventual purpose is
to determine the connection formulas of the Borel sum of WKB solutions of
(1.1) from a view point of the exact WKB analysis ([V], [S], [DDP], [AKT]);
we treat WKB solutions in all orders by giving them an analytic meaning
through Borel resummation.

As we shall see below we will find the origin has a structure of a turning
point of (1.1). Our argument employed in this report is based on the trans-
formation theory developed in [AKT); we first discuss the transformation of
(1.1) into a canonical equation in §1. Then we give the connection formula
for this canonical equation in §2. In §3 we consider the connection formulas
for (1.1).



2 Reduction to the canonical equation

In this section we discuss the transformation of (1.1) into the Whittaker-type
equation

d? 1 b c
(-E;i‘l'?f (Z-i'?]_l;-i-f]—?F))l/):O (2.1)

near the origin. Here b = R_eg Soaa(, n) and ¢ = @2(0), where

Sodd = 1V Qo(z) + Qifl . (2.2)

is the odd degree part of the solutions of the Riccati equation

5%+ %g- =7’ (Qo(’:c“) + 771 Q;v,(‘% +n7? Q;(f) ) (2.3)

associated with (1.1). Our main result in this section is (cf. [AKT], [K])

Proposition 2.1 We can find a neighborhood U of the origin and a pre-

Borel summable series x(T,n) = zo(Z) + n71z1(2 )+ n~2z9(T) + - - - such that
each z;(T) is holomorphic in U and satisfies

(i) 20(0) = 0, (dzo/dF)(0) # 0 holds;
(¢2) Every z;(Z) vanishes at the origin;

(22t) The following relation formally holds in U;

Qo(Z) + "IQ( )+ _QQ;(;) = (aif%ln—))z(l-l—n“__b__*_n% ~c
1

—5n" {2(@,n);n} -

Hereb = R_eg §Odd(§, n), ¢ = Q2(0) and {z(Z, n); n} denotes the Schwarzian
derivative, i.e.

{z(z,n);2} = %l:, - g (—af—l,:)z (2.5)

Z
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1 z(%,n) "(_n)‘)

(2.4)



To prove this proposmon we first assume ¢ to be an infinite series of 7:
c=co+nYe; +17%c; + -+ . Then by substituting z(z,7), b and c into (2.4)
and comparing both sides degree by degree, we obtain

1 (dzo\? ~
: (3?0) — Qol®) (2.6.0)
for the 0-th degree and
dIIZo d:En _ ~ 1 dxo 2 1 d.’IJO 2
2@@' Fn(.’L') — ;L'; (—C'l'm:) bn—l - (;&%) Cp—2 (26n)

for the n-th degree, where n = 1,2,3--- and we set c_; = 0 for convenience.
Here

@1(%)

n@ = 28,
- Q ) 1 2zhx! xo — (zh)2ze 1 -
F(z) = ;'(2 ) - 1(1'/1)2 — bp—— (03:0)2( o) %o + 5{3?0(35);7]},

- 1 '
Fn(:l:) = —Z Z il?ulxu?

V1+u2_n

_ 2 : E : E : b 2 Tu41 " Tyt
kb, uz (l‘ )1+1
utvtktl=n—1 py+- +pz » vitrp=v 0

po k120, k#En—1 J v >0

— Z Z Z l-|— 1) ck:cul:zcu2 M-Elw(');l-:zmﬂ

ptvtktl=n—2 p+-tpy=p v1+vz v
pv,k >0, k#EFn—2 p1>0 u]

1 1 m u1+1 ,;+1
+§ Z Z , —1)wi (z! )l+1l

ptktl=n—2 pr+-+p=p
.k, 1>0 uj>0

3 " Tyt Ty
4 Z Z Z D1+ Dz}, ), 1($6)1+1l

ptvtl=n—2 p1+-tpp=p vi+ve=v
B, 120 u; 20 vy,v220

The holomorphic solution of (2.6.0) is

2o(7) = 2 / o)z, (2.7)
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which satisfies the condition (7). Let U be a neighborhood of the origin so.

~

that zo(z) , @1(Z) and Q2(2) are holomorphic in U.
Next we determine (7). To make a solution of (2.6.1) to be holomorphic
zo(Z -
0( ) 2F1($)

near T = 0, we set
_ @:(0)
e (‘ 2 QO(O))' B9

(Note that Fy(z) has a simple pole at the origin.) Then

2(&) = /0 5#0(5) (Fl(’i) - (aj’o)?bo> d& (2.9)

is a holomorphic solution of (2.6.1) in U. Here we have chosen the origin
as an end-point of the integration in (2.9); otherwise F5(Z) has a pole at
the origin whose degree is greater than two. In this case (2.6.3) admits no
holomorphic solutions.

By the same reason we choose ¢y and b, so that

Fa(f)—(x_g)z%—(”é’)zbl ’ (210

Zo To

b():

is holomorphic in U. (Note that F3(x) has a double pole at the origin.) Then

m(@ - /:4\/—5—0% (Fz(za)) - (%)Zco - %)361) & (211)

is holomorphic in U, and gives the solution of (2.6.2) in U which vanishes at
the origin.

In a similar way, we can recursively determine z,(%) for n = 3,4,5,---.
Since z;(Z) vanishes at the origin for j = 0,1,2,---,n — 1, F,(¥) has a pole
of degree, at most, two at the origin. Hence by choosing b,_;, and c,_;
appropriately

Fo(%) - (g)g Cnz — (25)21;”_1 (2.12)

0
becomes holomorphic in U. Then

(3 = /0 xré.@ (Fn(':f) _ (i—'z)zcn_z, - (160)21;”;1) & (2.13)
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is holomorphic in U, and gives the solution of (2.6.n) which vanishes at the
origin. .

Thus we have determined {z,(Z)}, {b,} and {c,}. Furthermore we can
prove ¢; = 0 for j = 1,2,3,---. By multiplying both sides of (2.4) by 7% and
taking the limit of Z tending to 0. Then we obtain

. (0z(F,eta)\’ [ _, T -
-2 — 7 2 = 2 2.14

where we have used z;(0) = 0 for any j.

Let
. 1 bo -1 by  c— (1’0)2
Sodd - 277+ T +77 (.77 + 1:2
by  2bgby,  2bo((bg)2 —c+1
+n7? (—2— ot ol(bo) —_— )) +--- (215)
X M z

1 b =0 260 —c+1)
(= gt =—0—+) @1

be the odd degree part of solutions of the Riccati equdtion associated with
(2.1). Then we can prove that the following formally holds (cf. [KT]):

~ Oz(z, ~

Soaa(,n) = f% ) Soad(z(,n),n). (2.17)
As a corollary of (2.17) we obtain

Res Soaa(Z,n) = Res Soaa(z,m) (= ). (2.18)

The remaining part of the proof is to show the pre-Borel summability of
z(Z,n), which follows in a similar way as in [AKT]. (See also [K]). O

We should note here the relation between WKB solutions of (1.1) and
(2.1); as a corollary of (2.17), we can find Cy = Cy o+ Cyr1n ' +Cron™2+---
so that the following relation formally holds;

~ z(T -1/2
L@ =ce(Z2D) Cne@nar @

where

104

pu(E,n) = \/Sio; exp (ﬂ:n /0 i mdi) exp (i /0 ’ <Sodd -1 Qo(ZE)) d’i)

(2.20)
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are WKB solutions of (1.1) and

e 1 b
Yi(z,n) = \/%:cib exp (:I:%n) exp (:i: L (Sodd — 3% = ;) dm)
| . (2.21)
are WKB solutions of (2.1). Here z is an appropriate reference point. (Hence
Cy+ depend on z.)
Keeping these relations (2.19) in mind, we shall consider the connection
problem of WKB solutions of the canonical equation in the next section.

3 Connection formulas for the canonical equa-
tion

Throughout this section we assume b is a complex number (i.e., independent
of ), and we shall consider the following WKB solutions of (2.1):

SO + [ (Spaa—=n—- 3.1
Yi(z,n) Soddw € exp -~ dd ~ 57—~ (3.1)

1 b _,c— b _2b(b* —c+1
Sodd = 5N+ —+1 I——+n 2—“(—“5——24'
z z z

where
(3.2)

We choose the principal branch for z*°, i.e., z*° is positive along the positive

real axis.

We define a Stokes curve of (2.1) emanating from the origin by < / \/g dz =
0

0 (hence Sz = 0). By its definition two Stokes curves emanate form the ori-
gin; one is the positive real axis, and another is the negative real axis.

Proposition 3.1 WKB solutions 14 are Borel summable except for the pos-
itive axis. Let L denote the Borel-summed WKB solutions in the lower half
plane, ¥}! the Borel-resuumed WKB solutions in the upper half plane. Then
the analytic continuation of ¥} (resp. %) across the positive real axis be-
comes _

2w
Fk+p+1/2)I(k—p+1/2)

-Il'_l + n2n¢£I (33)



(resp. ¥IT), where kK = —b and p = \/c+ 1/2. The analytic continuation of
P (resp. Y1) across the negative real azis is
: 2ime=2ir
I ~25 11 3.4
¢++F(—/c+u+1/2)F(——n—,u+1/2)n v- (34)

(resp. ¥L).

Proof  For the calculational convenience we consicder WKB solutions of
(2.1) normalized as ¢+ = n*%p.. Then @4 have an expansion of the form

o = V2 (nz)** et stoi,Jw nI2,  (35)

where ¢, ; are constants and ¢4 ¢ = 1. Their Borel transforms ¢4 g becomes

I F&—fracl2
ey (¥, 1 o :
v+ 8(,Y) \/‘E ETED (mi2> , (3.6)

where £ = —b. Thus (2/z)~"/%p4 p are funcions of y/z, which we denote by
hi(y/zx) respectively. Since i g(z,y) satisfy
9 10* k0
(—5?;3 + 1027 20y + C) v+.8(z,y) =0, (3.7)

we can verify that hy(¢) are solutions of

1 d? d 3
—_— t2 —_— —_ - =
((4 )dt2 (+31) 3 +c 4)h 0, (3.8)
or,
d? 3 d 3
where s =t +1/2. By notmg (3.5) we conclude
prB(z,y) = "_—1_\/5 (k4 K= K«+ ;s)| (3.10)
’ T(k +1/2) 2’ 2’ e
- 1 2 —k—1/2
1 1 1
XF(=k+p+=,—k—p+=,—k+=;1—35) {3.11)
2 2 2 3=¥+l
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where F(a, 3,7;2) designates the Gauss hypergeometric functions and p =
Ve+1/4. o

From this explicit descripion of the Borel transforms of WKB solutions,
we find ¢4 g(z,y) is holomorphic except for y = z/2 and y = —=z/2, and
their Borel sum -

prem) = [ e orplan)dy (312)
Fz/2 ‘
are well-defined except for Sz = 0, i.e., except for the Stokes curves.

We shall now determine the connection formula when we cross the positive
real axis. Let x be below the positive real axis as shown in the left of Fig.1.
Then the configuration of singularities of ¢4 g(z,y) and the integration path
for the Borel sum of ¢ is as shown in the right of Fig.1. ‘After we cross the
positive real axis, such a configulation changes as shon in Fig.2 and Fig.3.

To determine the singular part of ¢4 g(z,y) at y = /2, we employ the
connecion formula of Gauss Hypergeometric funcions:

1 11
sT?F (01— 7P~ 5,5;3)

107



108

c | C:j;:C”
X 2/ _ X z/2

—2/z X —2/2 x 5
Figure 3:
ORI
- TQ —Za)l‘(1 _ B)F (a, 8,51 s)
r (l) r (%) -1/2 § § _ l B )
+F@—;H1ﬂ—%u_ﬁ) F(z—mz B,5i1—s).

(3.13)

From this relation, we find that the singular part of ¢, g(z,y) at y = z/2 is
given by '

1 V2 T+ T(e+3))
VeD(k+ DT(k+p+ (k- p+1)

1 1 1
[(1 — ) TV R~k —pt s~k pt o~k 41— 3)] (3.14)

2 2 2 iy
_ VE T(x+3)
eT(k+p+ 3Tk —n+3)

1 1 1
[(1 —8) "V (—k — p + 3K +u+ 3~k + 2 1-— s)] (3.15)
=t+}

Hense the discontinuity Ay=zj29+,8(2,y) of oy g(z,y) at y = z/2 along the
cut {y € C;Sy = I(z/2), Ry > R(z/2)} becomes

2 D(k+ 1)
A =z , = — 2 2
y=z/29+B(,Y) \/;F(n " %)F(lﬂ? — %) 2cos(mk)

_ 1 1 1
[@—1Y”mFEn—u+?—n+u+?—n+?1—ﬁh&m)
=its

I(k+ HP(—k+ 1)
P(r+p+ )0k —p+3)

cos(mk)p_ g(z,y) (3.17)



T (2,1)
= ¥Y-.B\Z,Y)-
T(k+p+3)T(k—p+3) ‘
Thus we obtain the connection formula for ¢, g(z,y) when we cross the
positive real axis. In a similar way we can determine connection formulars

when we cross the negative real axis.

4 Connection formulas for the genral case

In the above secionts we have ccnstructed the pre-Borel summable series
which transforms (1.1) to (2.1), and clarifined the behavior of Borel resuumed
WKB soluitons of the canonical equation. Following the definition for the
canonical equation, we define the Stokes curves for (1.1) emanating from the

origin by .
%/0 vV Qo(z)dz = 0. (4.1)

Then two Stokes curves emanates from the origin. v

Let 15 be WKB solutions (2.20) of (1.1), and v a Stokes curve emanating
from the origin. Having the result obtained so far, it may be expected that
when the Borel sum of 1 crosses 7 in a couterclockwise manner with respect
to the center T = 0, we obtain

~ ~ 2 C+ 26 T
g 4.2
Ve ¢++F(n+u+1/2)r(m—p+1/2)0_7 4 (42)
(N (4.3)
(4.4)
if %foi V/ Qo(T)dT is positive along the v, and

vy o U, (4.5)

~ ~ 2ime %K C_ ~
Yo = Py + %y, (4.6)

D=k +p +1/2)T(=k — u+1/2) Cy
(4.7)
if R foi v/ Qo(7)dZ is negative along the ~.

To give the proof of these formulas, we must give the analytic meaning
to (2.19); by Taylor expansion (2.19) becomes

- .9 9 5 '
Y+ 8(2,y) = A(T; Fra gy)wi,s(wo(x),y), (4.8)
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(3.18)



in the Borel plane. Here A(Z;0/07,8/8y) is a microdifferetial operator.
The problerm we have not confirmed is that the domain of this microdif-
ferential operator A(%;8/07,8/8y) is so large that the relation (2.19) be-
comes an analytic one. In fact, if we can show this claim, the following
holds: for a sufﬁc1ently small neighborhood W of the origin of Cz x Cy, both

w+ B(Z,y) and b B(Z,y) have their singularities in W only along {(z,y) €
Wiy == fo v/ Qo(Z)dz}. Furthermore the dlscontlnulty of zb+ B(T,y) (resp

110

b 5(Z,y)) along the cut {(z, y) eW:;Qy=¢g fo vV Qo(7)dz), Ry > R( fo \/Qo(w )dz)}

(resp. {(.’E,y) € W’ Sy = ‘f fo V QO d.’IJ 1§Ry Z §R fo V QO dIE

coincides with

pA%s C+ o
T(r+p+1/2)T(k —pu+1/2) C_ ¥, (%,y) (4.9)
(resp.
2ime~ %" C’ o
T(—r+p+1/2)T(—k—p+1/2) Cy ¥-5(%,y)) (4.10)
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