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1 Introduction

First of all, The problem of analytic continuation of the solutions to a ho-
mogeneous linear partial differential equation with constant coefficients was
considered by Kiselman [7]. He proved that the directions to whom every
solution is analytically continued are determined by its characteristic set.
(See also Zerner [12].) After that, under an additional hypothesis, Sébbar
[11] extended the method of [7] to the case of local differential operators of
infinite order with constant coefficients. Motivated by [11], Aoki [1] proved
a local continuation theorem for the general differential operators of infinite
order with variable coefficients, using his theory of exponential calculus for
pseudo-differential operators. In the case of convolution equation with a
hyperfunction kernel defined in tube domains invariants by any real trans-
lations, Ishimura and Y. Okada [2] proved that the directions to whom not
every solution can be continued at once were contained to the characteristic
set of the operator, by using the method developped by [7] and [11].

In this talk, we consider the homogeneous convolution equation S f =0
with an analytic functional S and study the analytic continuation of the
solution f.

We refer to [5] for the details and the proof.

2 The characteristic set and the condition (S)

In this section, we shall introduce the characteristic set and the condition
(S)¢,- For any open set w C C", we denote by O(w) the space of holomorphic
functions defined on w. Let S be an analytic functional on C™ and we suppose



that S is supported by a compact convex set K C C". S denote its Fourier-
Borel-transform

S(¢) =< S,exp(z - () >, (2.1)

which is an entire function of exponential type satisfying the following esti-
mate (the theorem of Polya-Ehrenpreis-Martineau). For every ¢, we can take
a constant C, > 0 such that

1S(¢)] £ Ceexp (Hk(¢) +€lC]) (2.2)
where Hy(¢) = supRe < z,{ > is the supporting function of K.
zeK
For a set A C C", we set A* = —A. we define the convolution operator
S* by
(S* f)(z) =<8, fz —w) >u for f € O(w+ K?), (2.3)

and consider the homogeneous convolution equation
| S*:f:O. (2.4)
We define the sphere at infinity
St = (C\ {O})/R,

and denote by (oo the equivalent class of { € C*\ {0}. We consider the
compactification with directions

D> = C" U §2!

of C™.
Let f(¢) be an entire function of exponential type. In accordance with
Lelong and Gruman [9], we define the growth indicator of f by

h¢(¢) = limsup M, (2.5)

r—00 T

and the regularized growth indicator of f by

h(¢) = lircr}szlp he(€)- (2.6)

As in [2], and generalizing to the present case, we define the characteristic
set of Sx:
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Definition 2.1. We set

Char, (S*) =the complement of {roco € S2»~* ;
for every € > 0, there exist N > 0 and § > 0 such that

for any r > N and ¢ € C" satisfying ‘C - |T—| < 4,
T

we have |3(r¢)| 2 exp(h}(¢) — e)r}

and call it the characteristic set of the operator Sx.

Now we recall the definition of the condition (S), originally due to T. Kawai_

[6] and was defined in a direction in [4].

Definition 2.2. We say that an entire function f of exponential type satis-
fies the condition (S) at direction {y, € C™\ {0}, if it satisfies the following:

For every € > 0, there exisits N > 0 such that
(S)¢o for any 7 > N, we have ( € C" satisfying
¢ = Gol < &, [F(rQ)] 2 exp (h}(Go) —€) 7.

Remark . This condition is equivalent to the condition of regular growth
which is the classialc notion in the theory of entire functions (see [4]).

Remark . By (2.2) and (2.6), we have in general h%(() < Hg((). Hereafter
we shall make assumption hg({) = Hg((). For open convex domains, this
condition and the condition (S) are , in a sense, necessary and sufficient
conditions for the solvability of inhomogeneous convolution equation S * f =
g. See Krivosheev [8] for the more precise statement.

3 Main theorem and example

For the characteristic set Chare(S*) and an open convex set w C C", we
set

Q) = the interior of ( N {zeC"; Re< 2,(>= HW(C)}) . (3.1)
¢oo€Chare (S*)2

Our main theorem is the following:

Theorem 3.1. Let K C C" be a compact convez set and S an analytic
functional supported by K. We suppose that S satisfies the condition ()¢
in any directions in C* and hg(() = Hk(¢). For an open convez set w C C",
we define the open set Q by (3.1). Then every holomorphic solution f to
S % f =0 defined on w + K® extends analytically to Q + K*.
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Example . Let A = {\;, Ay, ..., N} be a finite set in C*, K its convex-hull
and p;(¢) an entire function of minimal type for 1 < j < I. For the analytic

. !
functional S, we suppose its Fourier-Borel transform S = ) p;({)exp <
j=1

J:
¢,A >. Then S is supported by K and by Ronkin [10] and by [4], we also
know h((¢) = Hk(() and that S satisfies the condition (S)¢, in any directions
in C". Therefore this analytic functional S satisfies all hypothesis of the

theorem above.

In particular, in case where p;’s are elliptic, that is to say, its characteristic
set is empty, we can prove that the characteristic set Char(S*) coincides
with the following:

{Coo€ S0 #{j ; Re < (,\; >= Hx()} 2 2}

See [3] for more detailed results. In the case of n = 1,1 = 4 and K =
the convex-hull of A, the figures are the following:

_,\3 —"I'i4
_)\4

-)\1 —>\2 —n2

Figure 1: K%  Char(S%)* and w
In this case, we remark
Char.,(S%) = the exterior normal directions {n;00,7n,00,n300,n400}.

In Figure 2, every solution f € O(w + K®) of S+ f = 0 can be analytically
continued to four corners.
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Figure 2: w+ K and Q2 + K*
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