Characterization of entire functions of exponential type with respect to the Lie norm

佐賀大学文化教育学部 藤田 景子 (Keiko Fujita)

Introduction

We consider the space of entire functions on $\tilde{\mathbf{E}} = \mathbf{C}^{n+1}$ and denote it by $\mathcal{O}(\tilde{\mathbf{E}})$. Let $F(z) = \sum_{k=0}^{\infty} F_k(z) \in \mathcal{O}(\tilde{\mathbf{E}})$ be the homogeneous expansion of F into homogeneous polynomials F_k of degree k. For a norm N(z) on $\tilde{\mathbf{E}}$ put

$$\operatorname{Exp}\left(\tilde{\mathbf{E}};(r,N)\right) = \left\{ F \in \mathcal{O}(\tilde{\mathbf{E}}); \forall r' > r, \exists C \ge 0 \text{ s.t. } |F(z)| \le C \exp(r'N(z)) \right\}$$

and $\|F\|_{C(\tilde{B}_N[1])} = \sup\{|F(z)|; N(z) \le 1\}$. Then we know that

$$F \in \operatorname{Exp}(\tilde{\mathbf{E}}; (r, N)) \iff \limsup_{k \to \infty} (k! ||F_k||_{C(\tilde{B}_N[1])})^{1/k} \le r.$$

An entire function can also be expanded into the double series with (k-2l)-homogeneous harmonic polynomials $F_{k,k-2l}$, $k=0,1,\cdots,l=0,1,\cdots,[k/2]$;

$$F(z) = \sum_{k=0}^{\infty} F_k(z) = \sum_{k=0}^{\infty} \sum_{l=0}^{\lfloor k/2 \rfloor} (z^2)^l F_{k,k-2l}(z),$$

where the convergence is uniform on compact sets in $\tilde{\mathbf{E}}$.

In this note, we consider the case that the norm N(z) is the Lie norm L(z) or the dual Lie norm $L^*(z)$. First, we formulate, in terms of the growth behavior of $F_{k,k-2l}$, the necessary and sufficient conditions for an entire function F to belong to $\text{Exp}(\tilde{\mathbf{E}};(r,N))$. Here we will present the following results according to [1]:

For
$$F(z) = \sum_{k=0}^{\infty} \sum_{l=0}^{[k/2]} (z^2)^l F_{k,k-2l}(z)$$
, we have

$$F \in \text{Exp}(\tilde{\mathbf{E}}; (r, L)) \iff \limsup_{2k-2l \to \infty} \left(\frac{k!}{r^k} \| F_{k, k-2l} \|_{C(S_1)} \right)^{1/(2k-2l)} \le 1,$$

$$F \in \text{Exp}(\tilde{\mathbf{E}}; (r, L^*)) \iff \limsup_{2k-2l \to \infty} \left(\frac{2^k l! (k-l)!}{r^k} \| F_{k, k-2l} \|_{C(S_1)} \right)^{1/(2k-2l)} \le 1,$$

where S_1 is the unit real sphere. (See Theorems 1.4 and 2.1.)

Second, we will study the spaces of entire eigenfunctions of exponential type of the Laplacian; $\operatorname{Exp}_{\Delta-\lambda^2}(\tilde{\mathbf{E}};(r,L))$ and $\operatorname{Exp}_{\Delta-\lambda^2}(\tilde{\mathbf{E}};(r,L^*))$. For these spaces we will prove the following relation which generalizes a theorem in [5]: **Theorem**

$$\operatorname{Exp}_{\Delta-\lambda^2}(\tilde{\mathbf{E}};(r,L^*)) = \operatorname{Exp}_{\Delta-\lambda^2}\left(\tilde{\mathbf{E}};\left(\frac{r^2+|\lambda|^2}{2r},L\right)\right), \quad |\lambda| \leq r.$$

(See Theorem 3.3.) From this relation we have

$$\operatorname{Exp}\left(\tilde{\mathbf{E}};(r,L^*)\right) \underset{\neq}{\subset} \operatorname{Exp}\left(\tilde{\mathbf{E}};(r,L)\right) \underset{\neq}{\subset} \operatorname{Exp}\left(\tilde{\mathbf{E}};(2r,L^*)\right).$$

1 Lie norm

Let N(z) be a norm on $\tilde{\mathbf{E}} = \mathbf{C}^{n+1}$. Its dual norm $N^*(z)$ is defined by

$$N^*(z) = \sup\{|z \cdot \zeta|; N(\zeta) \le 1\}.$$

The open and the closed N-balls of radius r with center at 0 are defined by

$$\tilde{B}_N(r) = \{ z \in \tilde{\mathbf{E}}; N(z) < r \}, \ r > 0, \ \ \tilde{B}_N[r] = \{ z \in \tilde{\mathbf{E}}; N(z) \le r \}, \ r \ge 0.$$

Note that $\tilde{B}_N(\infty) = \tilde{\mathbf{E}}$. We denote by $\mathcal{O}(\tilde{B}_N(r))$ the space of holomorphic functions on $\tilde{B}_N(r)$. Put $\mathcal{O}(\tilde{B}_N[r]) = \liminf_{r'>r} \mathcal{O}(\tilde{B}_N(r'))$,

$$\operatorname{Exp}\left(\tilde{\mathbf{E}};(r,N)\right) = \{F \in \mathcal{O}(\tilde{\mathbf{E}}); \forall r' > r, \exists C \ge 0 \text{ s.t. } |F(z)| \le C \exp(r'N(z))\},$$

$$\operatorname{Exp}\left(\tilde{\mathbf{E}};[r,N]\right) = \{F \in \mathcal{O}(\tilde{\mathbf{E}}); \exists r' < r, \exists C \ge 0 \text{ s.t. } |F(z)| \le C \exp(r'N(z))\}.$$

Note that for any norm N on $\tilde{\mathbf{E}}$ we have $\mathrm{Exp}\left(\tilde{\mathbf{E}};(0,N)\right)=\mathrm{Exp}\left(\tilde{\mathbf{E}};(0)\right)$.

We denote by $\mathcal{P}^k(\tilde{\mathbf{E}})$ the space of homogeneous polynomials of degree k. Define the k-homogeneous component $f_k \in \mathcal{P}^k(\tilde{\mathbf{E}})$ of $f \in \mathcal{O}(\{0\})$ by

$$f_k(z) = \frac{1}{2\pi i} \int_{|t|=\rho} \frac{f(tz)}{t^{k+1}} dt,$$
 (1)

where ρ is sufficiently small. Then we know the following theorem (see, for example, [2]):

THEOREM 1.1 Let N(z) be a norm on $\tilde{\mathbf{E}}$ and $F_k \in \mathcal{P}^k(\tilde{\mathbf{E}})$. Then we have

$$F = \sum_{k=0}^{\infty} F_k(z) \in \operatorname{Exp}\left(\tilde{\mathbf{E}}; (r, N)\right) \iff \limsup_{k \to \infty} (k! \|F_k\|_{C(\tilde{B}_N[1])})^{1/k} \le r,$$

$$F = \sum_{k=0}^{\infty} F_k(z) \in \operatorname{Exp}\left(\tilde{\mathbf{E}}; [r, N]\right) \iff \limsup_{k \to \infty} (k! ||F_k||_{C(\tilde{B}_N[1])})^{1/k} < r,$$

where $||F||_{C(\tilde{B}_N[1])} = \sup\{|F(z)|; N(z) \le 1\}.$

We define the Lie norm L(z) of $z \in \tilde{\mathbf{E}}$ by

$$L(z) = \sqrt{||z||^2 + \sqrt{||z||^4 - |z^2|^2}}.$$

Then L(z) is the cross norm of the Euclidean norm ||x||; that is,

$$L(z) = \inf \left\{ \sum_{j=1}^{m} |\lambda_j| ||x_j||; z = \sum_{j=1}^{m} \lambda_j x_j, \lambda_j \in \mathbf{C}, x_j \in \mathbf{R}^{n+1}, m \in \mathbf{Z}_+ \right\}.$$

Thus putting $||f_k||_{C(S_1)} = \sup\{|f_k(x)|; x \in S_1\}$, for $f_k \in \mathcal{P}^k(\tilde{\mathbf{E}})$ we can see

$$||f_k||_{C(\tilde{B}_L[1])} = ||f_k||_{C(S_1)}.$$

Therefore as a corollary of Theorem 1.1, we have

Corollary 1.2 Let $F(z) = \sum_{k=0}^{\infty} F_k(z)$, $F_k \in \mathcal{P}^k(\tilde{\mathbf{E}})$. Then we have

$$F \in \operatorname{Exp}(\tilde{\mathbf{E}}; (r, L)) \iff \limsup_{k \to \infty} (k! ||F_k||_{C(S_1)})^{1/k} \le r,$$

$$F \in \operatorname{Exp}(\tilde{\mathbf{E}}; [r, L]) \iff \limsup_{k \to \infty} (k! ||F_k||_{C(S_1)})^{1/k} < r.$$

Let $P_{k,n}(t)$ be the Legendre polynomial of degree k and of dimension n+1. The harmonic extension $\tilde{P}_{k,n}(z,w)$ of $P_{k,n}(z\cdot w)$ is given by

$$\tilde{P}_{k,n}(z,w) = (\sqrt{z^2})^k (\sqrt{w^2})^k P_{k,n} \left(\frac{z}{\sqrt{z^2}} \cdot \frac{w}{\sqrt{w^2}} \right).$$

Then $\tilde{P}_{k,n}(z,w)$ is a k-homogeneous harmonic polynomial in z and in w and satisfies $|\tilde{P}_{k,n}(z,w)| \leq L(z)^k L(w)^k$. We denote by $\mathcal{P}_{\Delta}^k(\tilde{\mathbf{E}})$ the space of homogeneous harmonic polynomials of degree k. The dimension of $\mathcal{P}_{\Delta}^k(\tilde{\mathbf{E}})$ is known to be $(2k+n-1)(k+n-2)!/(k!(n-1)!) \equiv N(k,n)$.

When N(z) = L(z), we omit the subscript; for example, we write $\tilde{B}(r)$ for $\tilde{B}_L(r)$. For a holomorphic function on $\tilde{B}(r)$ we know the following theorem:

THEOREM 1.3 ([3, Theorem 3.1])

Let $f \in \mathcal{O}(\tilde{B}(r))$. Define the k-homogeneous component of f by (1) and define the (k, j)-component of f by

$$f_{k,j}(z) = N(j,n) \int_{S_1} f_k(\tau) \tilde{P}_{j,n}(z,\tau) d\tau, \qquad (2)$$

where $d\tau$ is the normalized invariant measure on the unit real sphere S_1 . Then $f_{k,j}$ is a j-homogeneous harmonic polynomial and we can expand f into the double series:

$$f(z) = \sum_{k=0}^{\infty} f_k(z) = \sum_{k=0}^{\infty} \sum_{j=0}^{k} (\sqrt{z^2})^{k-j} f_{k,j}(z) = \sum_{k=0}^{\infty} \sum_{l=0}^{[k/2]} (z^2)^l f_{k,k-2l}(z),$$
 (3)

where the convergence is uniform on compact sets in $\tilde{B}(r)$ and we have

$$\lim_{2k-2l\to\infty} \sup_{l\to\infty} (r^k || f_{k,k-2l} ||_{C(S_1)})^{1/(2k-2l)} \le 1.$$
(4)

Conversely, if we are given a double sequence $\{f_{k,k-2l}\}$ of homogeneous harmonic polynomials $f_{k,k-2l}(z)$ satisfying (4), then the right-hand side of (3) converges to a holomorphic function f uniformly on compact sets in $\tilde{B}(r)$ and the (k, k-2l)-component of f is equal to the given $f_{k,k-2l}$.

For an entire function of exponential type, [1] proved the following theorem: We can prove it by the property of the Lie norm. Here, we omit its proof.

THEOREM 1.4 ([1, Theorem 3.7]) Let $F(z) = \sum_{k=0}^{\infty} \sum_{l=0}^{[k/2]} (z^2)^l F_{k,k-2l}(z)$, $F_{k,k-2l} \in \mathcal{P}_{\Delta}^{k-2l}(\tilde{\mathbf{E}})$, be the expansion of $F \in \mathcal{O}(\tilde{\mathbf{E}})$. Then we have

$$F \in \operatorname{Exp}\left(\tilde{\mathbf{E}}; (r, L)\right) \Longleftrightarrow \limsup_{2k-2l \to \infty} \left(\frac{k!}{r^k} \|F_{k, k-2l}\|_{C(S_1)}\right)^{1/(2k-2l)} \leq 1.$$

2 Dual Lie norm

The dual Lie norm $L^*(z)$ is given by

$$L^*(z) = \sqrt{(||z||^2 + |z^2|)/2}.$$

Since $|\sqrt{z^2}| \le L^*(z) \le ||z|| \le L(z) \le 2L^*(z)$, we have

$$\operatorname{Exp}\left(\tilde{\mathbf{E}};(r,L^*)\right) \subset \operatorname{Exp}\left(\tilde{\mathbf{E}};(r,L)\right) \subset \operatorname{Exp}\left(\tilde{\mathbf{E}};(2r,L^*)\right). \tag{5}$$

Similar to Theorem 1.4, for the dual Lie norm $L^*(z)$, we have the following theorem:

THEOREM 2.1 ([1, Theorem 5.2]) Let $F(z) = \sum_{k=0}^{\infty} \sum_{j=0}^{\lfloor k/2 \rfloor} (z^2)^l F_{k,k-2l}(z)$, $F_{k,k-2l} \in \mathcal{P}_{\Delta}^{k-2l}(\tilde{\mathbf{E}})$, be the expansion of $F \in \mathcal{O}(\tilde{\mathbf{E}})$. Then we have

$$F \in \text{Exp}(\tilde{\mathbf{E}}; (r, L^*)) \Leftrightarrow \limsup_{2k-2l \to \infty} \left(\frac{2^k l! (k-l)!}{r^k} ||F_{k,k-2l}||_{C(S_1)} \right)^{\frac{1}{2k-2l}} \le 1.$$
 (6)

For a proof, we use the Cauchy-Hua transformation and the Fourier transformation. First we introduce the invariant measure on the Lie sphere.

2.1 Lie sphere

The Shilov boundary of $\tilde{B}[r]$ is the Lie sphere Σ_r :

$$\Sigma_r = \{ re^{i\theta}\omega; 0 \le \theta < 2\pi, \ \omega \in S_1 \} = \{ e^{i\theta}\omega; 0 \le \theta < 2\pi, \ \omega \in S_r \}.$$

Note that $-xe^{i(\theta+\pi)}=xe^{i\theta}$ and $\Sigma_r=(\mathbf{R}/(2\pi\mathbf{Z})\times S_r)/\sim$, where \sim is the equivalence relation defined by $(\theta,x)\sim(\theta+\pi,-x)$, and that for $f\in\mathcal{O}(\tilde{B}[r])$ we have $\sup\{|f(z)|;z\in\tilde{B}[r]\}=\sup\{|f(z)|;z\in\Sigma_r\}$.

We define the invariant integral over Σ_r by

$$\int_{\Sigma_r} f(z) dz = \frac{1}{2\pi} \int_0^{2\pi} \int_{S_1} f(re^{i\theta}\omega) d\omega d\theta.$$

For $f, g \in \mathcal{O}(\tilde{B}[r])$, the integral $\int_{\Sigma_r} f(z) \overline{g(z)} dz$ is well-defined. Since

$$(f,g)_{\Sigma_{r}} \equiv \int_{\Sigma_{r}} f(z)\overline{g(z)}dz = \sum_{k=0}^{\infty} r^{2k} \int_{S_{1}} f_{k}(\omega)\overline{g_{k}(\omega)}d\omega$$

$$= \sum_{k=0}^{\infty} \sum_{l=0}^{[k/2]} r^{2k} \int_{S_{1}} f_{k,k-2l}(\omega)\overline{g_{k,k-2l}(\omega)}d\omega,$$

$$(7)$$

 $(,)_{\Sigma_r}$ is an inner product on $\mathcal{O}(\tilde{B}[r])$. If $f \in \mathcal{O}(\tilde{B}[r])$ and $g \in \mathcal{O}(\tilde{B}(r))$, then for s > 1 sufficiently close to 1 the integral $\int_{\Sigma_r} f(z/s) \overline{g(sz)} dz$ is well-defined and does not depend on s by (7). Thus for $f \in \mathcal{O}(\tilde{B}[r])$ and $g \in \mathcal{O}(\tilde{B}(r))$ or for $g \in \mathcal{O}(\tilde{B}[r])$ and $f \in \mathcal{O}(\tilde{B}(r))$ we write

$$\int_{\Sigma_r} f(z/s) \overline{g(sz)} dz = s \int_{\Sigma_r} f(z) \overline{g(z)} dz.$$

Let $H^2(\tilde{B}(r))$ be the completion of $\mathcal{O}(\tilde{B}[r])$ with respect to the inner product $(,)_{\Sigma_r}$, and put $||f||_{S_r}^2 = \int_{S_r} |f(\omega)|^2 d\omega$. Then by the definition,

$$H^{2}(\tilde{B}(r)) = \left\{ f(z) = \sum_{k=0}^{\infty} f_{k}(z); \\ f_{k} \in \mathcal{P}^{k}(\tilde{\mathbf{E}}), \sum_{k=0}^{\infty} ||f_{k}||_{\Sigma_{r}}^{2} = \sum_{k=0}^{\infty} r^{2k} ||f_{k}||_{S_{1}}^{2} < \infty \right\}$$

$$= \left\{ f(z) = \sum_{k=0}^{\infty} \sum_{l=0}^{[k/2]} (z^{2})^{l} f_{k,k-2l}(z); \\ f_{k,k-2l} \in \mathcal{P}_{\Delta}^{k-2l}(\tilde{\mathbf{E}}), \sum_{k=0}^{\infty} r^{2k} \sum_{l=0}^{[k/2]} ||f_{k,k-2l}||_{S_{1}}^{2} < \infty \right\}.$$

$$(8)$$

Note that $H^2(\tilde{B}(r))|_{\Sigma_r} \subset L^2(\Sigma_r)$, where $L^2(\Sigma_r)$ is the Hilbert space of square integrable functions on Σ_r .

Furthermore, we can see that $H^2(\tilde{B}(r))$ is isomorphic to the Hardy space:

$$H^2(\tilde{B}(r)) = \left\{ f \in \mathcal{O}(\tilde{B}(r)); \sup_{0 < t < 1} \int_{\Sigma_r} |f(tz)|^2 dz < \infty \right\}.$$

Clearly, we have

$$\mathcal{O}(\tilde{B}[r]) \hookrightarrow H^2(\tilde{B}(r)) \hookrightarrow \mathcal{O}(\tilde{B}(r)).$$
 (9)

2.2 Cauchy-Hua transformation

The Cauchy-Hua kernel $H_r(z, w)$ is defined by

$$H_r(z,w) = H_1(z/r,w/r), \quad H_1(z,w) = \frac{1}{(1-2z\cdot\overline{w}+z^2\overline{w}^2)^{(n+1)/2}}.$$

Then $H_r(z, \overline{w})$ is holomorphic on $\{(z, w) \in \tilde{\mathbf{E}} \times \tilde{\mathbf{E}}; L(z)L(w) < r^2\}$. Note that $H_r(z, w) = \overline{H_r(w, z)}$ and $H_1(z, \overline{w})$ is expanded as follows;

$$H_1(z, \overline{w}) = \sum_{k=0}^{\infty} \frac{N(k, n+2)(n+1)}{2k+n+1} \tilde{P}_{k,n+2}(z, w)$$
$$= \sum_{k=0}^{\infty} \sum_{l=0}^{[k/2]} N(k-2l, n) (z^2)^l (w^2)^l \tilde{P}_{k-2l,n}(z, w).$$

For $f \in \mathcal{O}(\tilde{B}(r))$, we have the following integral representation:

$$f(z) = s \int_{\Sigma_r} H_r(z, w) f(w) dw.$$

(See, for example, [4].)

We denote by X' the dual space of X; for example, $\mathcal{O}'(\tilde{B}_N(r))$ means the dual space of $\mathcal{O}(\tilde{B}_N(r))$.

Let $T \in \mathcal{O}'(\tilde{B}[r])$. If $w \in \tilde{B}(r)$, then the mapping $z \mapsto H_r(z, w)$ belongs to $\mathcal{O}(\tilde{B}[r])$. Thus we can define the Cauchy-Hua transform $\mathcal{C}T$ of T by

$$\mathcal{C}T(w) = \overline{\langle T_z, H_r(z, w) \rangle}, \quad w \in \tilde{B}(r).$$

We call the mapping $C: T \mapsto CT$ the Cauchy-Hua transformation.

THEOREM 2.2 Let r > 0. The Cauchy-Hua transformation C establishes the following topological antilinear isomorphisms:

$$\begin{array}{ccc} \mathcal{C} & : & \mathcal{O}'(\tilde{B}[r]) \stackrel{\sim}{\longrightarrow} \mathcal{O}(\tilde{B}(r)), \\ \mathcal{C} & : & \mathcal{O}'(\tilde{B}(r)) \stackrel{\sim}{\longrightarrow} \mathcal{O}(\tilde{B}[r]). \end{array}$$

Further, we have

$$\langle T,g \rangle = s \int_{\Sigma_{\tau}} g(w) \overline{\mathcal{C}T(w)} \dot{dw}$$

for $T \in \mathcal{O}'(\tilde{B}[r])$ and $g \in \mathcal{O}(\tilde{B}[r])$ or for $T \in \mathcal{O}'(\tilde{B}(r))$ and $g \in \mathcal{O}(\tilde{B}(r))$, which gives the inverse of C.

(For a proof see, for example, [4].)

2.3 Fourier transformation

The Fourier-Borel transform $\mathcal{F}T$ of $T \in \mathcal{O}'(\tilde{B}_N[r])$ is defined by

$$\mathcal{F}T(\zeta) = \langle T_z, \exp(z \cdot \zeta) \rangle.$$

We call the mapping $\mathcal{F}: T \mapsto \mathcal{F}T$ the Fourier-Borel transformation. In [2], A.Martineau proved the following theorem:

Theorem 2.3 Let N(z) be a norm on $\tilde{\mathbf{E}}$. The Fourier-Borel transformation \mathcal{F} establishes the following topological linear isomorphisms:

$$\mathcal{F}: \mathcal{O}'(\tilde{B}_N[r]) \xrightarrow{\sim} \operatorname{Exp}(\tilde{\mathbf{E}}; (r, N^*)), \quad 0 \le r < \infty,$$

$$\mathcal{F}: \mathcal{O}'(\tilde{B}_N(r)) \xrightarrow{\sim} \operatorname{Exp}(\tilde{\mathbf{E}}; [r, N^*]), \quad 0 < r \le \infty.$$

Composing the Fourier-Borel transformation \mathcal{F} and the Cauchy-Hua transformation \mathcal{C} on $\mathcal{O}'(\tilde{B}[r])$, we can consider the Fourier transformation \mathcal{Q} on $\mathcal{O}(\tilde{B}(r))$ as $\mathcal{Q} = \mathcal{F} \circ \mathcal{C}^{-1}$. Then by Theorems 2.2 and 2.3, for $f \in \mathcal{O}(\tilde{B}(r))$ we have

$$Qf(\zeta) = s \int_{\Sigma_r} \exp(z \cdot \zeta) \overline{f(z)} dz.$$

By the definition of Q, Theorems 2.2 and 2.3 imply the following corollary:

COROLLARY 2.4 Let r > 0. The Fourier transformation Q establishes the following topological antilinear isomorphisms:

$$\mathcal{Q}: \ \mathcal{O}(\tilde{B}(r)) \stackrel{\sim}{\longrightarrow} \operatorname{Exp}(\tilde{\mathbf{E}}; (r, L^*)),$$

$$\mathcal{Q}: \ \mathcal{O}(\tilde{B}[r]) \xrightarrow{\sim} \operatorname{Exp}(\tilde{\mathbf{E}}; [r, L^*]).$$

By (9) and Corollary 2.4, we have

$$\operatorname{Exp}(\tilde{\mathbf{E}}; [r, L^*]) \hookrightarrow \mathcal{Q}(H^2(\tilde{B}(r))) \hookrightarrow \operatorname{Exp}(\tilde{\mathbf{E}}; (r, L^*)).$$

By a simple calculation we can determine the image Qf of $f \in \mathcal{O}(\tilde{B}(r))$, concretely as follows:

LEMMA 2.5 Let $f(z) = \sum_{k=0}^{\infty} f_k(z) = \sum_{k=0}^{\infty} \sum_{l=0}^{[k/2]} (z^2)^l f_{k,k-2l}(z) \in \mathcal{O}(\tilde{B}(r)),$ $f_{k,k-2l} \in \mathcal{P}_{\Delta}^{k-2l}(\tilde{\mathbf{E}}).$ Then we have

$$Qf(\zeta) = \sum_{k=0}^{\infty} \sum_{l=0}^{[k/2]} \frac{r^{2k} \Gamma(\frac{n+1}{2})}{2^k l! \Gamma(k-l+\frac{n+1}{2})} (\zeta^2)^l \overline{f_{k,k-2l}}(\zeta),$$

where we write $\overline{f}(z) = \overline{f(\overline{z})}$.

By Lemma 2.5 and (8),

$$Q(H^{2}(\tilde{B}(r))) = \left\{ F(\zeta) = \sum_{k=0}^{\infty} \sum_{l=0}^{[k/2]} (\zeta^{2})^{l} F_{k,k-2l}(\zeta) \in \mathcal{O}(\tilde{\mathbf{E}}); F_{k,k-2l} \in \mathcal{P}_{\Delta}^{k-2l}(\tilde{\mathbf{E}}), \\ \sum_{k=0}^{\infty} (\frac{2}{r})^{2k} \sum_{l=0}^{[k/2]} \left(l! \Gamma(k-l+\frac{n+1}{2}) \right)^{2} \|F_{k,k-2l}\|_{S_{1}}^{2} < \infty \right\}.$$

2.4 Proof of Theorem 2.1

PROOF. Let $F(\zeta) = \sum_{k=0}^{\infty} \sum_{l=0}^{[k/2]} (\zeta^2)^l F_{k,k-2l}(\zeta) \in \operatorname{Exp}(\tilde{\mathbf{E}};(r,L^*))$. By Corollary 2.4, there exists $f \in \mathcal{O}(\tilde{B}(r))$ such that $F(\zeta) = \mathcal{Q}f(\zeta) \in \operatorname{Exp}(\tilde{\mathbf{E}};(r,L^*))$. By Lemma 2.5, for $f(z) = \sum_{k=0}^{\infty} \sum_{l=0}^{[k/2]} (z^2)^l f_{k,k-2l}(z)$, $f_{k,k-2l} \in \mathcal{P}_{\Delta}^{k-2l}(\tilde{\mathbf{E}})$, we have

$$F(\zeta) = \sum_{k=0}^{\infty} \sum_{l=0}^{[k/2]} \frac{r^{2k} \Gamma(\frac{n+1}{2})}{2^k l! \Gamma(k-l+\frac{n+1}{2})} (\zeta^2)^l \overline{f_{k,k-2l}}(\zeta).$$

Thus we have

$$F_{k,k-2l}(\zeta) = \frac{r^{2k}\Gamma(\frac{n+1}{2})}{2^k l! \Gamma(k-l+\frac{n+1}{2})} \overline{f_{k,k-2l}}(\zeta).$$

Since $f \in \mathcal{O}(\tilde{B}(r))$, by Theorem 1.3, we have

$$\limsup_{2k-2l\to\infty} \left(r^k ||f_{k,k-2l}||_{C(S_1)}\right)^{1/(2k-2l)} \le 1.$$

Therefore

$$\limsup_{2k-2l\to\infty} \left(\frac{2^k l! \Gamma(k-l+\frac{n+1}{2})}{r^k \Gamma(\frac{n+1}{2})} \|F_{k,k-2l}\|_{C(S_1)} \right)^{1/(2k-2l)} \le 1,$$

and it is equivalent to (6).

Conversely, assume that the sequence $\{F_{k,k-2l}\}$ of (k-2l)-homogeneous harmonic polynomials satisfies (6). Then for any $\delta > 0$ there exists $C \geq 0$ such that

$$||F_{k,k-2l}||_{C(S_1)} \le C \frac{(1+\delta)^{2k-2l} r^k}{2^k l! (k-l)!}.$$
 (10)

Put

$$f_{k,k-2l}(z) = \frac{2^k l! \Gamma(k-l+\frac{n+1}{2})}{r^{2k} \Gamma(\frac{n+1}{2})} \overline{F_{k,k-2l}}(z).$$
(11)

Noting that $\lim_{p\to\infty} \left(\frac{\Gamma(p+q)}{\Gamma(p)}\right)^{1/p} = 1$ for any constant $q \in \mathbf{R}$, by (10), we have

$$\limsup_{2k-2l\to\infty} \left(\frac{2^k l! \Gamma(k-l+\frac{n+1}{2})}{\Gamma(\frac{n+1}{2}) r^k} \|F_{k,k-2l}\|_{C(S_1)} \right)^{1/(2k-2l)} \le 1+\delta.$$

Since $\delta > 0$ is arbitrary we have $\limsup_{2k-2l\to\infty} \left(r^k \|f_{k,k-2l}\|_{C(S_1)}\right)^{1/(2k-2l)} \leq 1$. Therefore the function $f(z) = \sum_{k=0}^{\infty} \sum_{l=0}^{[k/2]} (z^2)^l f_{k,k-2l}(z)$ belongs to $\mathcal{O}(\tilde{B}(r))$ by Theorem 1.3, and $\mathcal{Q}f(\zeta) = \sum_{k=0}^{\infty} \sum_{l=0}^{[k/2]} (\zeta^2)^l F_{k,k-2l}(\zeta)$ by Lemma 2.5 and (11). Further by Corollary 2.4, we have

$$F(\zeta) = \sum_{k=0}^{\infty} \sum_{l=0}^{[k/2]} (\zeta^2)^l F_{k,k-2l}(\zeta) \in \text{Exp}(\tilde{\mathbf{E}}; (r, L^*)).$$

q.e.d.

3 Entire eigenfunctions of the Laplacian

Let λ be a complex number. We denote the space of eigenfunctions of the Laplacian by $\mathcal{O}_{\Delta-\lambda^2}(\tilde{B}(r)) = \{f \in \mathcal{O}(\tilde{B}(r)); (\Delta_z - \lambda^2)f(z) = 0\}$, where Δ_z is the complex Laplacian: $\Delta_z = \frac{\partial^2}{\partial z_1^2} + \frac{\partial^2}{\partial z_2^2} + \dots + \frac{\partial^2}{\partial z_{n+1}^2}$.

LEMMA 3.1 ([6, Theorem 2.1])

Let $f \in \mathcal{O}(\tilde{B}(r))$ and $f_{k,k-2l}$ be the (k, k-2l)-component of f defined by (2). Then we have

$$f \in \mathcal{O}_{\Delta - \lambda^2}(\tilde{B}(r)) \Longleftrightarrow f_{k,k-2l} = \frac{(\lambda/2)^{2l} \Gamma(k - 2l + \frac{n+1}{2})}{\Gamma(l+1)\Gamma(k-l + \frac{n+1}{2})} f_{k-2l,k-2l}$$

for
$$l = 0, 1, 2, \cdots, [k/2]$$
 and $k = 0, 1, 2, \cdots$.

In case of the eigenfunctions of the Laplacian, by Lemma 3.1 the expansion of (3) reduces to

$$f(z) = \sum_{k=0}^{\infty} \sum_{l=0}^{[k/2]} (z^2)^l f_{k,k-2l}(z) = \sum_{k=0}^{\infty} \tilde{j}_k(i\lambda\sqrt{z^2}) f_{k,k}(z),$$

where $\tilde{j}_k(t)$ is the entire Bessel function:

$$\tilde{j}_k(t) = \tilde{J}_{k+(n-1)/2}(t) = \Gamma(k+(n+1)/2)(t/2)^{-(k+\frac{n-1}{2})} J_{k+\frac{n-1}{2}}(t).$$

Then the (k, k)-component of $f \in \mathcal{O}_{\Delta - \lambda^2}(\tilde{B}(r))$ is given by

$$f_{k,k}(z) = N(k,n) \int_{S_1} \tilde{P}_{k,n}(z,\tau) f(\tau) d\tau.$$
 (12)

Let N(z) be a norm on $\tilde{\mathbf{E}}$ and put

$$\operatorname{Exp}_{\Delta-\lambda^2}(\tilde{\mathbf{E}};(r,N)) = \operatorname{Exp}(\tilde{\mathbf{E}};(r,N)) \cap \mathcal{O}_{\Delta-\lambda^2}(\tilde{\mathbf{E}}).$$

We have the following theorem:

THEOREM 3.2 ([6, Theorem 2.1]) Let $F \in \mathcal{O}_{\Delta-\lambda^2}(\tilde{\mathbf{E}})$ and $F_{k,k}$ be the (k,k)component of F defined by (12). Then we have

$$F \in \operatorname{Exp}_{\Delta - \lambda^2}(\tilde{\mathbf{E}}; (r, L^*)) \Longleftrightarrow \limsup_{k \to \infty} \left(k! \|F_{k,k}\|_{C(S_1)} \right)^{1/k} \le \frac{r}{2}.$$

We define the complex sphere \tilde{S}_{λ} of complex radius λ with center at 0 by

$$\tilde{S}_{\lambda} = \{ z \in \tilde{\mathbf{E}}; z^2 = \lambda^2 \}.$$

If $z \in \tilde{S}_{\lambda}$, then

$$L^{*}(z) = \frac{1}{2} \left(L(z) + \frac{|\lambda|^{2}}{L(z)} \right). \tag{13}$$

Since $L(z) \geq L^*(z)$, (13) is equivalent to $L(z) = L^*(z) + \sqrt{L^*(z)^2 - |\lambda|^2}$. Putting $\tilde{S}_{\lambda}(r) = \tilde{S}_{\lambda} \cap \tilde{B}(r)$, for $|\lambda| < r$ we have

$$z \in \tilde{S}_{\lambda}(r) \iff L^*(z) < \frac{r^2 + |\lambda|^2}{2r}, \ z \in \tilde{S}_{\lambda}.$$

Therefore we have $\tilde{S}_{\lambda}(r) = \tilde{S}_{\lambda} \cap \tilde{B}_{L^{*}}(\frac{r^{2}+|\lambda|^{2}}{2r})$ and $\mathcal{O}'(\tilde{S}_{\lambda}(r)) = \mathcal{O}'\left(\tilde{S}_{\lambda} \cap \tilde{B}_{L^{*}}(\frac{r^{2}+|\lambda|^{2}}{2r})\right)$. Restrict the Fourier-Borel transformation on $\mathcal{O}'(\tilde{B}_{N}(r))$ to $\mathcal{O}'(\tilde{S}_{\lambda} \cap \tilde{B}_{N}(r))$ and apply Theorem 2.3. Then we have the following theorem:

THEOREM 3.3 For $|\lambda| \leq r$, we have

$$\operatorname{Exp}_{\Delta-\lambda^2}(\tilde{\mathbf{E}};(r,L^*)) = \operatorname{Exp}_{\Delta-\lambda^2}\left(\tilde{\mathbf{E}};\left(\frac{r^2+|\lambda|^2}{2r},L\right)\right).$$

This generalizes a theorem in [5];

$$\operatorname{Exp}_{\Delta}(\tilde{\mathbf{E}}; (r, L^*)) = \operatorname{Exp}_{\Delta}\left(\tilde{\mathbf{E}}; (\frac{r}{2}, L)\right), \quad |\lambda| \le r.$$

Moreover, if $|\lambda| = r$, then $\operatorname{Exp}_{\Delta - \lambda^2} \left(\tilde{\mathbf{E}}; (r, L^*) \right) = \operatorname{Exp}_{\Delta - \lambda^2} \left(\tilde{\mathbf{E}}; (r, L) \right)$. Therefore, more precisely, we can rewrite (5) as

$$\operatorname{Exp}\left(\tilde{\mathbf{E}};(r,L^*)\right) \underset{\neq}{\subset} \operatorname{Exp}\left(\tilde{\mathbf{E}};(r,L)\right) \underset{\neq}{\subset} \operatorname{Exp}\left(\tilde{\mathbf{E}};(2r,L^*)\right).$$

From Theorems 3.2 and 3.3 we have the following corollary:

COROLLARY 3.4

Let $F \in \text{Exp}_{\Delta-\lambda^2}(\tilde{\mathbf{E}};(r,L)), |\lambda| \leq r$. Define $F_{k,k}$ by (12). Then we have

$$\limsup_{k \to \infty} \left(k! \|F_{k,k}\|_{C(S_1)} \right)^{1/k} \le \frac{r + \sqrt{r^2 - |\lambda|^2}}{2}.$$

Conversely, if we are given a sequence $\{F_{k,k}\}$ of k-homogeneous harmonic polynomials $F_{k,k}(z)$ satisfying

$$\limsup_{k\to\infty} \left(k! \|F_{k,k}\|_{C(S_1)}\right)^{1/k} \le r,$$

then $\sum_{k=0}^{\infty} \tilde{j}_k(i\lambda\sqrt{z^2}) F_{k,k}(z)$ converges to $F \in \operatorname{Exp}_{\Delta-\lambda^2}\left(\tilde{\mathbf{E}}; (r+\frac{|\lambda|^2}{4r}, L)\right)$ and the (k, k)-component of F is equal to the given $F_{k,k}$.

References

- [1] Y.Iwahara, Entire functions of exponential type related to the Lie ball, Master's thesis, Sophia University, 1998. (in Japanese)
- [2] A.Martineau, Sur les fonctionnelles analytiques et la transformation de Fourier-Borel, J. d'analyse Math. de Jérusalem 11, 1963, 1-164.
- [3] M.Morimoto, Analytic functionals on the Lie sphere, Tokyo J.Math., 3(1980), 1–35
- [4] M.Morimoto, Analytic Functionals on the Sphere, Translation of Mathematical Monographs, AMS, 1998.
- [5] R.Wada, Holomorphic functions on the complex sphere, Tokyo J. Math., 11(1988), 205-218.
- [6] R.Wada and M.Morimoto, A uniqueness set for the differential operator $\Delta_z + \lambda^2$, Tokyo J. Math., 10(1987), 93-105.