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Characterization of entire functions of ;
exponential type with respect to the Lie norm

ERRZELEETFM BE /T (Keiko Fujita)

Introduction

We consider the space of entire functions on E = C™! and denote it by
O(E). Let F(z) = £, Fx(2) € O(E) be the homogeneous expansion of F
into homogeneous polynomials Fy of degree k. For a norm N(z) on E put

Exp (E; (r, N)) = {F € O(E);Vr' > r,3C > 0 s.t. |F(2)| < Cexp(r'N(z))}
and ||Flgzypy = suP{|F(2)|; N(2) < 1}. Then we know that

F € Exp (E; (, N)) <= 1iﬁsup(k!”FkHC(z}N[u))I/k <.
o0

An entire function can also be expanded into the double series with (k — 21)-
homogeneous harmonic polynomials Fy;_o,k =0,1,---,1=0,1,---,[k/2];

[k/2]

[ee} o0
z) =3 Fi(2) ZZ ) Fie—21(2),
k=0 k=0-1=0
where the convergence is uniform on compact sets in E.

In this note, we consider the case that the norm N(z) is the Lie norm
L(z) or the dual Lie norm L*(z). First, we formulate, in terms of the growth
behavior of Fj ko, the necessary and sufficient conditions for an entire func-
tion F to belong to Exp (E; (r, N)). Here we will present the following results
according to [1]: '



142

For F(2) = ¥, zg’;/o?] (22)! Fy, k—2(2), we have ‘

_ k! 1/(2k—21)
F e Exp (E; (1”, L)) <= lim sup <T_]c”Fk,k—2l”C(51)> < 1,

2k—2l—00
: . : 2k (k — 1)! 1/(2k—21)
F € Exp (E;(r,L*)) <= limsup | ———||Fri-2llc(sy) <1,
2k—2l—00 T

where S is the unit real sphere. (See Theorems 1.4 and 2.1.)

Second, we will study the spaces of entire eigenfunctions of exponential
type of the Laplacian; Exp o_y2(E; (r, L)) and Exp o_y2(E; (r, L*)). For these
spaces we will prove the following relation which generalizes a theorem in [5]:

Theorem

- . 2 2
Exp po_2(E; (r, L*)) = Exp o_y2 (E <T ;?J)" ,L>), Al <

(See Theorem 3.3.) From this relation we have

Bxp (B r, L)) ¢ Exp (B (r, 1)) C Bxp (B (2r, L))

1 Lie norm
Let N(z) be a norm on E = C*!. Its dual norm N*(2) is defined by
N*(z) = sup{|z- (|, N(¢) < 1}.
The open and the closed N _balls of radius r with center at 0 are defined by
By(r)={z € E;N(z) <r}, r >0, By[r]={z€E;N(2) <r}, r>0.

Note that By(co) = E. We denote by O(By(r)) the space of holomorphic
functions on By (r). Put O(By[r]) = lirggld O(By(m),

Exp (E; (r,N)) = {F € OE);Vr' >r,3C > 0s.t. |F(2)| < Cexp(r'N(z))},
Exp (E;[r,N]) = {Fe€OE);3Ir' <r,3C > 0s.t. |[F(2)| < Cexp(r'N(z))}.
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Note that for any norm N on E we have Exp (E; (0, N)) = Exp (E; (0)).
We denote by ’P’“(E) the space of homogeneous polynomials of degree k.
Define the k-homogeneous component f, € P*(E) of f € O({0}) by
1 t
f(t2),

21 Jjt|=p tht1

(1)

where p is sufficiently small. Then we know the following theorem (see, for

fr(z) =

example, [2]):

THEOREM 1.1 Let N(z) be a norm on E and Fy € P*(E). Then we have

F = ZFk ) € Exp (E; (r,N)) <= liﬁs:gp(k!npk||C(BN[1D)1/k <r

F= ZFk z) € Exp (B;[r,N]) <= liﬁsup(k!||Fk||C(BN[1]))1/’° <r,
k=0 o0

where || Fllo(gyny = sup{IF(2)|; N(2) < 1}.
We define the Lie norm L(z) of z € E by
2) =\ llzIP + /Il - [2P.

Then L(z) is the cross norm of the Euclidean norm ||z||; that is,

L(z) = 1nf{Zi)\ ||]xJ||,z-—Z)\ iz, \j € C,z; € R"+1,m€Z+}.

j=1 j=1
Thus putting || fxllc(sy) = sup{|fe(z)|;z € S1}, for fx € P*(E) we can see
| fello,ppy =l felleesy-
Therefore as a corollary of Theorem 1.1, we have
COROLLARY 1.2 Let F(2) = £, Fi(2), Fx € P*(E). Then we have
F € Exp (B; (r, L)) <= lmsup(k!| Fillees))”* <,

F € Exp (B;[r, L]) <= limsup(k!||Fxllc(sy)/* < .
k—oo .



Let Py »(t) be the Legendre polynomial of degree k£ and of dimension n+1.
The harmonic extension Py (2, w) of Pyn(2 - w) is given by

Bon(z,w) = (VA (Vu?) P (ﬁ : ?%) .
Then Pk,n(z,w) is a k-homogeneous harmonic polynomial in z and in w
and satisfies | Py n(z, w)| < L(2)*L(w)*. We denote by PX(E) the space of
homogeneous harmonic polynomials of degree k. The dimension of PX (E) is
known to be (2k +n — 1)(k +n —2)!/(k!(n - 1)!) = N(k,n).

When N (z) = L(z), we omit the subscript; for example, we write B(r) for
By (r). For a holomorphic function on B(r) we know the following theorem:

THEOREM 1.3 ([3, Theorem 3.1})
Let f € O(B(r)). Define the k-homogeneous component of f by (1) and

define the (k, j)-component of f by
fri(2) = NG [ Selr)Bya(z,m)dr, 2)

where dr is the normalized invariant measure on the unit real sphere Si.
Then f; is a j-homogeneous harmonic polynomial and we can ezpand f

into the double series:
[k/2]

o0 [o o]
f(z):ka ZZ )k ]fk Z Z fkk 2(2), (3)
k=0 k=0 j=0 k=0 1=0
where the convergence is uniform on compact sets in B (r) and we have
lim sup (¥l fx -21llosy) /P < 1. (4)
2k—2l—00

Conversely, if we are given a double sequence {fyx—2} of homogeneous
harmonic polynomials fy x—21(2) satisfying (4), then the right-hand side of (3)
converges to a holomorphic function f uniformly on compact sets in B(T) and
the (k, k — 21)-component of f is equal to the given fy o
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For an entire function of exponential type, [1] proved the following theorem:
We can prove it by the property of the Lie norm. Here, we omit its proof.

THEOREM 1.4 ([1, Theorem 3.7]) Let F(z) = ¥ WA (2 F, 4 _a(2),
Frp_o € PE 2(E), be the expansion of F € O(E). Then we have

) 5l 1/(2k—21)
F € Exp (E; (r, 1)) < ZI;mlsuP (;;HFk,k—zzHC(sl)) <1

2 Dual Lie norm
The dual Lie norm L*(z2) is given by

L*(2) = y/(ll2If? + |22]) /2.
Since |v22| < L*(2) < ||2|| £ L(2) < 2L*(z), we have

Exp (B (r, L*)) C Exp (B; (r, L)) C Exp (E; (2r, L*)). (5)

Similar to Theorem 1.4, for the dual Lie norm L*(z), we have the following

theorem:

THEOREM 2.1 ([1, Theorem 5.2]) Let F(2) = 520 N2 (22)!F - (2),
Frp-a € Pk 2l( ), be the expansion of F' € O(E) Then we have

o 1 (k — I)! wm
F € Exp (B; (r, L") & limsup THﬂ,k—ﬂllC(&)) <1 (6)
—2l—s00

For a proof, we use the Cauchy-Hua transformation and the Fourier trans-
formation. First we introduce the invariant measure on the Lie sphere.

2.1 Lie sphere
The Shilov boundary of B[r] is the Lie sphere ¥,:

2, = {re®w;0 <0< 2m we S} ={’w;0<0<2r, we S}
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Note that —ze!®+™) = ze¥ and ¥, = (R/(27Z) x S,)/ ~, where ~ is the
equivalence relation defined by (8, z) ~ (6+, —z), and that for f € O(B[r])

we have sup{|f(z)|;z € B[r]} =sup{|f(2)];z € Z,}.
We define the invariant integral over X, by

. 1 2w i0 .
. f(2)dz = %/0 s, f(re®w)dwdb.

For f,g € O(B[r]), the integral s f (2)g(2)dz is well-defined. Since

o= [ 1@ = 3o [ s ")
o [k/2]

= > Y Qk/ Fro—21(w) Gt k-2t (W) duw,

k=0 [=0

(, )s, is an inner product on O(B[r]). If f € O(B[r]) and g € O(B(r)), then
for s > 1 sufficiently close to 1 the integral [y f(z/s)g g(sz)dz is well-defined
and does not depend on s by (7). Thus for f € O(B[r]) and g € O(B(r)) or
for g € O(B[r]) and f € O(B(r)) we write

/2, f(2/9)g(s2)dz = 8/2, (7@

Let H?(B(r)) be the completion of O(B[r]) with respect to the inner
product (, )z,, and put || f||2. = fs, |f(w)|?dw. Then by the definition,

H(B(r)) = {f(z> - f: f(2)
fo € PHE), kf,; I5l2, = f:r%ufkn; < oo}

[k/2] (&)
Note that H2(B(r))|s, C L?(%,), where L?(Z,) is the Hilbert space of square

Il

i Z fkk 2(2);

=0

00 [k/2]
frr-u € PE2(E), ), D r* Z | Foge—llZ, < 00}

k=0

integrable functions on E
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Furthermore, we can see that H2(B(r)) is isomorphic to the Hardy space:

H?(B(r)) = {f € O(B(r); sup [ |f(tz)|%dz < oo}

o<t /5,

Clearly, we have

O(B[r)) <= H*(B(r)) = O(B(r)). 9)

2.2 Cauchy-Hua transformation

The Cauchy-Hua kernel H,(z,w) is defined by

1
(1—2z-wW+ 22w?)(n+1)/2°

H,(z,w) = Hi(z/r,w/r), Hi(z,w)=

Then H,(z,w) is holomorphic on {(z,w) € E x E; L(z)L(w) < r?}. Note
that H,(z,w) = H,(w, z) and H,(z,w) is expanded as follows;

X N(k,n+2)(n+1) ~

Hl(zam) = k%% 2%k +n+1 Pk,’n+2(zaw)
oo [k/2] _
= > > N(k—2l,n)(2*) (w?) Pe_ain(z, w).
k=0 [=0

For f € O(B(r)), we have the following integral representation:
flz) = 3/2 H, (2, w)f(w)dw.

(See, for example, [4].) 7

We denote by X' the dual space of X; for example, O'(By(r)) means the
dual space of O(By(r)).

Let T € O'(B[r]). If w € B(r), then the mapping z — H,(z,w) belongs
to O(B][r]). Thus we can define the Cauchy-Hua transform CT of T by

CT(w) = (Tz,Hr(z?w)), w € B(r).

We call the mapping C : T +— CT the Cauchy-Hua transformation.
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THEOREM 2.2 Letr > 0. The Cauchy-Hua transformation C establishes the
following topological antilinear isomorphisms:

C : O'(B[r]) = O(B(r)),

C : O'(B(r)) = OB[r]).

Tg*s/

for T € O'(B[r])) and g € O(B[r]) or for T € O'(B(r)) and g € O(B(r)),

which gives the inverse of C.

Further, we have

(For a proof see, for example, [4].)

2.3 Fourier transformation

The Fourier-Borel transform FT of T € O'(By|r]) is defined by
FT(() = (T, exp(z - C)).

We call the mapping F : T — FT the Fourier-Borel transformation.
In [2], A.Martineau proved the following theorem:

THEOREM 2.3 Let N(z) be a norm on E. The Fourier-Borel transformation

F establishes the following topological linear isomorphisms:

F: O'(By[r]) = Exp (E; (r, N*)), 0<r<oo,
F: O'(Bn(r)) = Exp (E;[r,N*]), 0<r < .
Composing the Fourier-Borel transformation F and the Cauchy-Hua trans-

formation C on @’ (B][r]), we can consider the Fourier transformation Q on
O(B(r)) as Q@ = F o C~1. Then by Theorems 2.2 and 2.3, for f € O(B(r))

we have

0f(Q) =5 [ exp(z- ) F()dx.
By the definition of @, Theorems 2.2 and 2.3 imply the following corollary:
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COROLLARY 2.4 Let r > 0. The Fourier transformation Q establishes the
following topological antilinear isomorphisms:

Q: (’)(B(r)) — Exp (E (r, L*)),

Q: O(B[r]) =+ Exp (B;[r, L*)).

By (9) and Corollary 2.4, we have
Exp (E; [r, L*]) < Q(H*(B(r))) — Exp (E; (r, L")

By a simple calculation we can determine the image Qf of f € O( B(r)),
concretely as follows:

LEMMA 2.5 Let f(2) = X2, fie(2) = 220 S (22) o _a(2) € O(B(r)),
frn-2 € PE2(E). Then we have P .

oo [k/2] 2k1-\(_§r_)

> PIT(k —1 + )(C2)lfk,k—2z(o,

k=0 1=0

where we write f(z) = f(2).
d (8

By Lemma 2.5 and (8),
oo [k/2]
Q(HA(B(r))) = {F(C) = 2_: Z(CQ) Fiejo-2(C) € O(E); Fy o € PE2(E),
00 [k/2] ' n N2
Z(%)zk > (llF(k -1+ + 1)> HFk)k-2l“§1 < oo}.

2.4 Proof of Theorem 2.1

Proor. Lt F(¢) = T2 T2 (C) Fip-ai(C) € Exp (B (r, L*). By
Corollary 2.4, there exists f € O(B(r)) such that F(¢) = Qf(¢) € Exp (E

By Lemma 2.5, for f(z) = Y32 OElkm( ) fep-2(2), fap—u € PA 2(E), we
have

() Fee—2(¢)-

; (r, 7).
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Thus we have

2k1-\(n+1)
Fk,k—?l(() 2kl'F(k l+ n+1)fkk Ql(g)

Since f € O(B(r)), by Theorem 1.3, we have

1/(2k~21)

lim sup (Tk“fk,k—2l||0(51)) <1
2k—2l—00

Therefore
1/(2k—21)

| Frk—2tllc sl)> <1,

lim sup
2k—2l—00

2HUT (k — 1 + )
rED(%51)

and it is equivalent to (6).
Conversely, assume that the sequence {Fy 2} of (k — 2{)-homogeneous
harmonic polynomials satisfies (6). Then for any § > 0 there exists C > 0

such that a 5)% ol
(1 8)%2y
| Frp—2tllcgsy) < C—zk—l,(k—_—l)—,— (10)

Put PUD(k — [ + 2L
! -1+ 2
fk,k—?l(z) = T?kI‘\(n_H) Fkk 21( ) (11)

Noting that limp_,q F”(+)q>)1/p =1 for any constant ¢ € R, by (10), we have

(2kur(k — 1+ )

I‘("T“)rk

lim sup

1/(2k—21)
| Fre—21llc(sy) ) <146,
2k—2l—o0

Since § > 0 is arbitrary we have limzlsup (r"” fk,k,21||c(sl))1/(2k_2l) <1
Therefore the function f(z) = 3224 T2 (22)! f s—2u(2) belongs to O(B(r))
by Theorem 1.3, and Qf(¢) = £2, T2 (¢2)F, ,_5(¢) by Lemma 2.5 and
(11). Further by Corollary 2.4, we have

00 k/2]

=3 ) Fy x-21(¢) € Exp (E; (r, L*)).

k=0 =0
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3 Entire eigenfunctions of the Laplacian

Let A be a complex number. We denote the space of eigenfunctions of the

Laplacian by Oa_x:(B(r)) = {f € O(B(r)); (A, — A)f(z) = 0}, where A,

. . 2 2 2
is the complex Laplacian: A, = 25 + & + -+ + 55—,
2] 25 6zn+1

LEMMA 3.1 ([6, Theorem 2.1}])

Let f € O(B(r)) and fir_a be the (k, k — 21)-component of f defined by (2).
Then we have

(A/2)%T(k — 21 + 2£L)

T+ )Tk — 1+ 22) fr-ste-2

forl=0,1,2,---,[k/2] and k =0,1,2,-- .

f € Oaxe(B(r)) <= frp-u=

In case of the eigenfunctions of the Laplacian, by Lemma 3.1 the expansioﬁ
of (3) reduces to

() fopa(z) = j;*ikm@)fk,k(z),

where ji(t) is the entire Bessel function:

Ge(t) = Jepn-ny/a(t) =Dk + (n+1)/2)(8/2) 5TV T aca (2).
Then the (k, k)-component of f € Oa_x2(B(r)) is given by
Fur(2) = N(km) [ Pon(,m)F (). (12)
Let N(z) be a norm on E and put
Exp oy (E; (r, N)) = Exp (E; (r, N)) N Oa_x2(E).
We have the following theorem:

THEOREM 3.2 ([6, Theorem 2.1]) Let F € Oa_x(E) and Fy, be the (k, k)-
component of F defined by (12). Then we have '

- * . 1/k T
F € Exp o_y2(E; (1, L*)) <= limsup (k!HFk,kHC(Sl)) < -
k—o0 2
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We define the complex sphere S of complex radius X with center at 0 by
Sy={z e E;22 =)}

If z € S, then

1

() = (L(z) + ]!;/2,':)) . (13)

Since L(z) > L*(z), (13) is equivalent to L(z) = L*(z) + +/L*(2)? — |A]%.

Putting S,(r) = S N B(r), for |A| < r we have

2 2 _
r+ |/\I , 2 € 8S).

2r
Therefore we have Sy(r) = gAﬂBL*(T—z—EJ}E) and @' (Sy(r)) = O’ (S’A N BL(’J—;‘}E))
Restrict the Fourier-Borel transformation on O'(By(r)) to ©'(Sy N By(r))
and apply Theorem 2.3. Then we have the following theorem:

z € 8\(r) <= L*(2) <

THEOREM 3.3 For |A\| <, we have

. . 2 2
Bxp a8 ) = Bxps s (B (520 2) )

This generalizes a theorem in [5];
Exp A(E; (r,L*)) = Exp o (E; (—;,L)) , A<

Moreover, if |A\| = 7, then Exp o_ )2 (E; (r, L*)) = Expa_j2 (]:3; (r, L)) There-
fore, more precisely, we can rewrite (5) as

Exp (E; (r, L*)) C Exp (E; (r, L)) ¢ Bxp (E; (2r, L*)).
From Theorems 3.2 and 3.3 we have the following corollary:

COROLLARY 3.4
Let F € Exp o_y2(E; (1, L)), |M\ < r. Define Fyx by (12). Then we have

' R VA P
limsup (k|| Frllosy) < -

2

k—o0



Conversely, if we are given a sequence {Fyx} of k-homogeneous harmonic
polynomials Fyx(z) satisfying

_ 1/k
limsup (kK| Feellosn) <,
k—00

then 520 7k (iAV22) Fy i (2) converges to F € Exp 5_yz (E; (r+ %rE, L)) and
the (k, k)-component of F is equal to the given Fyy.
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