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On the boundedness and invertibility
of boundary potentials
in Lipschitz domains

P. Laubin (Univ. Liége)

The method of boundary layer potentials is at the same time a theo-
retical and a practical tool to solve boundary value problems on an open
subset of R®. Boundedness and index properties of these boundary layers
have been studied in general Lipschitz domains, [3], [6], [15], [22]. In this
paper, we present some improvements of these results in three special situ-
ations that are motivated by numerical applications. We emphasize on the
strong ellipticity of the generated boundary operators and on their mapping
properties in Sobolev spaces of high order.

The first one is the Dirichlet boundary value problem in a plane domain
with cuts. We present some results obtained in [13]. The main difficulty is
that the double layer potential presents degeneracy and has a large kernel.
To obtain a continuous and bijective operator, we add a new term to the
potential along each cut. It essentially acts as a Hilbert transform along
the cuts. Unfortunately, mixed with the double layer potential, it does
not lead to a coercive operator. We modify it with an explicit inverse of the
Hilbert transform in an interval. This choice has also the advantage that the
singular functions generated by the cuts are immediately taken into account
by the form of the potential. In this way, the boundary unknown on the
cuts has the same regularity as the data. Since we consider non-connected
boundaries, we also have to add an operator with a finite dimensional range
in order to obtain a bijective operator.

Next, we consider the mixed Dirichlet-Neumann problem for the lapla-
cian and present some results of [14]. The difficulty here comes essentially
from the transition of the spaces where the problem is well posed, H 1/2 on
the Dirichlet part of the boundary and H~1/2 on the Neumann part. This
leads us to the use of a mixed single and double layer potential which is
quite different from the ansatz used in the direct method, [2]. The index
of the boundary operator depends on the value of a generalized capacity
associated to the polygon and to the decomposition of the boundary in a
Dirichlet and a Neumann part.

The third problem is the Lamé system in a bounded Lipschitz open
subset of R®. We discuss the properties of the double layer potential in
this framework. Here, this potential depends on the choice of the boundary
operator generalizing the normal derivative. It turns out that in general
it involves a singular operator of Cauchy’s type. This problem is avoided
using a special value of a free parameter in the generalized stress boundary
operator.



1 The Dirichlet problem in domains with cuts

Let ) be a bounded Lipschitz open subset of R™ and denote by v the unit
outward normal to Q. If f € L?(0Q) then the double layer potential

1 (z—y)v,
(k1)) = o [ TE2 ) doty), e,
)= 57 | R () doty)
is a harmonic function in ) and has a non tangential limit on 9 almost
everywhere, see [17] and [22]. If, in the sense of [22], [';(z) is a regular family
of cones of (1, we have

lim  Kf(y) = ~%(I— K)f(z)

y—z,yeli(z)

almost everywhere with

(kD)) =1 [ EZ02 1) doy),

r lz—y"

Moreover, if we define the non-tangential maximal function by

u;(z) = sup |u(y)l,
yeri(x)

we have
) L2a0) < CllfllL2(an)-
In this way, the Dirichlet problem for the laplacian in

{ —Au=0
Ugn = 9
can be solved by inverting the operator I — K on the boundary. If the
boundary data f belongs to H/2(8Q) then Kf € H'(Q2). The equivalence
between the integral equation and the boundary value problem is discussed
in [2]. The invertibility of I — K in L2(0Q) and in H!(8) are proved in [22]

when the boundary is connected.
Let us consider the case of a polygonal open subset of R? with cuts. Let
U be a bounded open subset of R? with a connected polygonal boundary
OU and corners Py, P;,P,...,Pv = Py. The boundary is the union of
closed straight lines L; joining P; to P;;;. Denote by w; € ]0,2x[\{n} the
measure of the interior angle at P; and by +; a parametrization of L; by the
arc length from [0, ¢;] onto L;. We consider the Dirichlet problem
{ Au_— 0 in Q - (1)

uar = fr ury = [+

where Q = U\ (To U ... UTp—y) and Ty,...,Tpr—1 are separate closed
line segments included in U. Let T' = Uj"’i BlI‘j. Since we allow different
boundary values on both sides of the cuts, we choose an orientation for each
I'; and make a distinction between the two sides I'; . of T';.

If cuts are present the boundary of ) is not connected. This is a first ob-
struction to the use of the double layer potential in this situation. Moreover
along the two sides of a cut, the two boundary values would be opposite
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modulo a smooth contribution from the other parts of the boundary. It
follows that the boundary operator would have a large kernel. Hence the
double layer potential cannot be used alone.

To avoid these problems, we consider a more general potential. We look
for the solution in the form

um>:=—1/'9:ﬁﬂﬁmwddw

21 Joq |z —yl?

1 ( y).t

+§meMW@MM

where ¢, is the unit tangent vector to 92 choosen in such a way that (v, t,)
is a positive basis.

Here again the non tangential limits are known away from the endpoints
if Trh € L%(T), see for example [20] p.186. We have

. L [ (z—y)ty /b g(a(?))
1 — [ BZYY g _9\ott))
2-r0(5),2€0:(0() 27 Jp, |@ — yP? F)doly) =gopv | T

almost everywhere on T'; , and I'; _ if g € L?(T;). Up to a constant, this is
the Hilbert transform restricted to the cut.

The suitable functional spaces for ¢ and h are described below. The
insertion of the operator Tt in the second term is important. Without it,
we loose the coercivity of the boundary operator since the operator on the
boundary would then reduce to a Hilbert transform.

We use the following notations. For a fixed j, let ¢ : [a,b] — T'; be a
parametrization of the cut I'; by arc length. The operator Tt is defined by

V( —s)s—a h(a(t)

t—a) s—t

dt

(Trh)(o(s)) “‘pm/

The function s; is given by

1 1
sj(o(s)) = — .
(o) = 57—
The choice of the operator Tt comes from the following result. Let

I = [a,b] be a compact interval of R. If f € C*°(I), let

b
%pv f(y) p

a LU

Hif(z) =

and

V(b—z)(z —a)
Urf(z) = ——P / A
Vib—9)(y—a) T - y
The operator Hj is injective in L2(I ) but has a dense non closed range on
this space. However, we can avoid this problem. If |a| < 2, denote by
Lo(R,) the set of functions f on R, such that 2~ %f(z) € L*(R;). With

the norm
2 T 2
I, = [ =@ e
this is a Hilbert space. We have the following result [13].
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Proposition 1.1 If |a| < § (resp. 0 < a < 1) then Hy (resp. Uy) can be
extended as a continuous operator from L, (]a,b]) wnto itself.
If0<a<jand f € Ly(]a,b]), we have UrH[ f = f and

b
i) = @) - = [ 7 _fg()y —dy

On these spaces, we have

b
ker Hy = {0}, imH| = {f € Lo(J0,1]) : fw) dy = 0}

a V(b-y)(y—a)

ker Uy =)1({, imU; = Ly(]a, b[).

Using the lemma 1.2, we obtain that the contribution of i, in (2) can
also be written

1P V(2= 0(a)(z —a(b) h(dét))
o a(%( z —o(t) )= 1) b —1)(t — a)

dt

where z = x; + iz2 and \/(z — o(a))(z — o(b)) is chosen analytic in C\ T;
and such that

lim 2\/(z = o(a)(z — o (®)) = 1.

200 2

The two forms of the new term are convenient for different purposes.

Lemma 1.2 If z € C\[0,1] and f € L,(]0,1]) with 0 < a < § then

1 [t rcosf —t "
— t)d
7r/0 r2 — 2tr cos § + t2 Upy () dt

LN VG )
- [ o )-1) ds

7r z—s s(1—s)

where z = re'¥ and \/z(z — 1) is chosen analytic in C\ [0, 1] and positive in
J1, +ool.

The functions u; are necessary to obtain an injective boundary operator.
This essentially occurs because the boundary of  is not connected. One has
to choose them in such a way that their linear hull has a trivial intersection
with the image of the two other terms in (2). With the previous notations,
a good choice is

o(a)+ o(b) o(a) —o(b)
uj(2) = log|z — ———2———(— +V(z = 0(a))(z — a(b))] —log ‘——-——2—'
for € C\ ;. This is an harmonic function and it belongs to H L@\ Ty)
for every bounded open subset Q of C. Extended by 0 on T'j, it becomes

continuous and subharmonic in C.

Note that if the cut is the positive real axis, the singular function (z log )
is generated by the first term in (2) whereas 3/7 is generated by the second
term.

We denote by T the operator mapping (gau, gjr, h) to the boundary
values of (2) and (2) on 9U, 'y and T"_.
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On the boundary of U, we consider the usual Sobolev spaces
H*(8U) = Co(dU) N {f € L*(AU) : fir, o € H*(10,4[), j =0,...,N -1}

with the norm
N-1
HfH%{s(aU) = Z 1iL; °7j|l%13(]0,tj[)'
=0
We also define

H(L;) = {f € L*(L;) : f oy € Hy(]0,t;D},

HE(U) = {f € H*dU) : fir, € H§(Ly), j =0,...,N = 1}

with the induced norms.

We have to add the singular functions on the boundary which are gener-
ated by the inversion of the double layer potential on 9U. They are defined
in the following way. If 0 < w < 2, let

(2k + 1) ke N}U{ 2k

es = {
o = {gﬁlr ke N}u{———(zkﬂi

:kEN}
k € N}

be the set of singular exponents for the angle w. Let us describe the functions
associated to a fixed corner P;. Denote by x the distance to P;. We use the
notation (f,g) to specify the function equal to f on T'; and to gonTlj_j.
The function is equal to zero on the other sides. If s — 5 ¢ ei , we denote

by L; 5 the linear hull in L*(9U) of the functions

o (z% %) ifozEej,‘j, a<s—3,

(z%log(x),z*log(z)) if a € ejj.,(a <s— % and « is of the form p + %—
- with p € N,

o (z%,—z*) ifacey \ {0}, a<s -3

(z* log(z), —z° log(z)) if a € € \{0}, o <5 — % and « is of the form
p+ % with p € N.
For each j, choose a function y; on @U that is the restriction of a function

of C3°(R?) and equal to §;;, near Py for every k. Consider the space

N-1

HO(OU) = Hy(0U) + > _ XiLjs-
j=0

Of course, it does not depend on the choice of the x}s. For every j, let wjp,
0<k<Kj bea basis of L;s- If

-1

‘9+ZX] Z CikUjk
=0



with g € H§(0U), define

N-1K;-1
2
£ 00y = HQH%{g(aU) + Z |cjkl?.

i= k=0

With this norm, H*(9U) is a Hilbert space.
In the same way, we consider

HY(T) = {f € L*(): fir, € H*(T}), j =0,...,N — 1}

and denote by H%0(T") the subset of H*(T") containing the elements vanishing
at the endpoints of each I';. These spaces are endowed with the usual H?
norm as above.

If s > 1/2,, define H¥(I'y, ) as the subset of H*(I") x H*(T") formed
by the pairs (f, g) where f and g take the same value at the endpoints of
each I';.

It is known, see for example [7], that if s > 0 and s is not an integer then
the trace operator maps H*t1/2(Q) on H*(0U) x H*(I'y,T_). With these
notations, we have the following result, [13].

Theorem 1.3 Ifs > 1 and s — 5 ¢ efj for every j then the operator T is
continuous and bijective from H3(OU) x H®°(T') x H*(T') onto H*(QU) x
HS(F-H F—)

2 The mixed problem

As above, let us consider a bounded polygonal open subset Q2 of R? with a
connected boundary ' = 9Q = U].Aigl I'j. Here[';, 0 < j < M, isa closed
straight line segment. We denote by P; the corner point where I';_; and
I'j meet. The interior angle at P; is denoted by w;. It is assumed that this
angle belongs to ]0, 2r[\{r}. As above, denote by v the unit inward normal
vector and by ¢ the unit tangent vector on the boundary. In the definitions
of the singular exponents and of the associated spaces and operators, we use
the index + for the interior domain and — for the exterior one.

Assume that we have a decomposition I" = I'pUI'y where I'p = Uje.,, T}
I'n = Ujeexl'js epNen = p and epUey = {0,1,...,M — 1}. We assume
that ey # ) since this simplifies the exposition.

We denote by eyp the set of indices j € ep such that j — 1 (M — 1 if
j = 0) belongs to ey. Let p be the number of elements of eyp. It follows
that I'p has p connected components I'p 1,...,['p .

We consider the interior mixed Dirichlet-Neumann problem

{-—Auzo in Q

ur, =uo, Uy = U1,
and also the exterior problem

—Au=0 in R2\Q
UII“D = UQ, BVU‘FN = ui, (3)

u(z) = alog|z| + O(1), x — oo,



with a singularity at infinity. Here ug, u; and q are given. This formulation
of the exterior problem with g # 0 contains the Green’s function with pole
at infinity. It is useful for the presentation of our results below.

If T'p is not empty, these problems have a unique variational solution u
for any data ug € HY/2(I'p), uy € H™Y/?(T'y) and a € C. If Tp = @, then
the solution exists and is unique modulo a constant if u; € H~/2(I'y) has
mean value 0 in the interior case and satisfies

1
a4+ — u1d0=0
2

in the exterior case.

2.1 The spaces

The space H!/2 is of particular use in the following constructions and its
special nature requires some care. See for example [7] for basic properties
and some characterizations of H/2(R).

Let C = I,Tp or I'y. Following [2], we define H'/2(C) as the set of
elements of L2(C) whose extension by 0 outside C belongs to H/?(T'). Of
course H'/2(T') = H'/?(I"). We also need the dual spaces

ﬁ«l/?(c) — H1/2(C)I

and _
H-—-]./?(c) — H1/2(C),.

We define ﬁv_l/z(C) as the subspace of ﬁ‘l/Z(C) formed by the elements
whose integrals on each connected component of C' vanish.

As in the previous section, the spaces have to be refined to take into
account the singularities generated by the corners. The singular exponents
can be defined in the following way.

For a mixed corner P with interior angle w, let

e(m) = (2k—%)£—1:keN\{O}}U{(%—-l—) m

S)5—— —1:k e N\ {0}},

1.7
(m) _ r_ 1.
eye {(2k+2)w 1: keN}U{(2k+2)2 1:keN}
and e&m) = efgj;) U e&’)’ﬁ). Ifs—1 3¢ e(m) denote by ﬁfu"‘s) 4 the linear hull in

L?(T) of the functions

%\ .
. (:i:xa> lfaEe((Zé), ~l<a<s—3,

rva)ln(x 1fa€e£,2,—1<a<s——anda€ + N,

In(x) 1fa€e£,"?,~l<a<s——anda€ + N,

¢ 1
. 20 lfaEewm “-I<a<s—3;
- (2)

Fx
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where z is the distance to P. Here, the vector notation means that the
first component is the value of the function on the segment preceding P in
the direction of the tangent vector ¢ and the second one is the value on the
segment following P. The function is equal to zero on the other sides.

Note also that if n is an integer and n — 1/2 ¢ ew ) then dim ﬁf‘)n) 4=
2n 4 1.

If P; is a mixed corner, the set of singular exponents is Cw; = eg]") The

associated singular functions space is £i = ﬁEJ )s yifj—1l€eyandjeep.

In the other case, j —1 € ep and j € ey, we have to use [jji = EL(ZL)S + We
remind the reader that the 4+ (resp. —) corresponds to the interior (resp.
exterior) problem.

We proceed in the same way for the pure Dirichlet and Neumann corners.

Let

e’f {_2_1375_1 ke N}u{%—%— 1:keN},
2k + 1)w 2k
eﬁ},:{(———z——)——l kEN}U{ T -l:keN}

and ) = 6551,2; U e‘(upl fs—1 ¢ ) denote by ﬁ((f;’i_ the linear hull in
L?(I") of the functions

z* ; (p) 1 1
. 40 1fa€ew,e, —z<a<s—j,

= i () . )
o (iwa)ln(x) fa€cese, 0<a<s—zanda€ ;5 +N,

N . ® _1 1
g foa€eop —5<a<s—s,

¢ )
¢ (:an)ln(x) lfaeec(sz;,0<a<s~%—andag%+1\}

with the same notations as above.

Clearly —1/2 ¢ ™ if o e 10,27 [\{w}. Hence dim C( ) = 1. This
one dimensional space is not included in L?(T"). However 1t is 1ncluded in
H~Y2(T) since z* € H-Y2(R,) if -1 < o < —1/2

Note that if n is an integer and n — §é e ) then dim E(p) = 2n. Hence
there is a shift in the dimension of the spaces of singular functlons between
the two types of corners.

If P; is a pure Dirichlet or Neumann corner, the set of s1ngular exponents

is e,; = e((f ) and the associated singular functions space is Ei = ﬁ&]) st
For each Jj» choose a function x; on I" which is the restriction of an ele-
ment of C§°(IR?) and equal to d;x near P for every k. Denote by #% (I'p,'y)

the subspace of
M-1

H(I'p) x Hy(Tw) + Y X L5,
Jj=0
formed by the elements (f, g) such that the integral of f on each connected
component of I'p is 0. This space does not depend on the choice of the
functions ;.
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Note that % (I'p,T'y) is not a subspace L2(I'p) x L?(T'y) if there is at

least one mixed corner P;. Indeed —1/2 ¢ ™ if €10,2n[\{r}. Hence
dim E;%O = 1. The one dimensional space Xjﬁji,o = 1 is not included in
L2(T"). However it is included in H~1/2(T") since z® belongs to H~/2(R;) if
—1 < @ < —1/2. This additional degree of freedom in the unknown function
at the mixed corners is balanced by the requirement that the integral of f
vanishes on each connected component of I'p.

We can of course see the elements of #% (I'p,'y) as a pair of functions,
one on I'p and one on I'y, or as a single function on I'. For every j, let wuy,
0 < k < Kj, be a basis of [%S. If

M-1 Kj—-1
uU=7v+ E X CikUjk

j= k=

[ee]

with v € H§(I'p) x H§(Tn) then H (T'p,Tn) is a Hilbert space for the

norm
M-1K;-1

||U||3{§t(rD,rN) = Z Z lejkl® + Ilvll $(Cp)x H3(Tn)®
=0 k=0
The choice of the basis of singular functions does not matter for the asymp-
totic estimates since the space is finite dimensional. However, a well de-
signed basis close to orthogonality is important for the condition number in
practical computations.

2.2 The boundary operators

To solve (2), we use the following ansatz

Klg.h)@) = 3= [ atu)logle —yldoy ()
1 (z —y).v
+ 5 . _—lg—:'&—l_g—g h(y) do(y) (5)

for z € R? \ T. It is quite different from the one used in the direct method.
In this case the two previous integrals contain the known boundary data wu;
and y, and the boundary unknowns appear in the single layer potential on

I'p and the double layer potential on I'jy.
To solve (3), we use the similar ansatz

Kgho(e) = ct5- [ gl)logle ~yldo(y) (6)
1 (z —y).v
tor . Isv——ylzy h(y) do(y) (7)

for x € R?\T'. The constant c is required to get surjectivity of the boundary
operators defined below.

Let (f,g) € Hy "*(T'p) x H~1/2(Ty). There is a unique h € H/2(Tp)
such that 9;h = f. By the Theorem 1 of [1], the function (4) defined by g
and h belongs to H'(Q). In the same way, the function (6) is H! in any

bounded open subset of R? \ (I and has the asymptotic behavior required
in (3).
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We consider the operators

Ty : HyV2(Cp) x H-V2(Ty) — H Y2(Tp) x H YTy
(fa g) - (atU|I‘Da 8UU]I‘N)
where v is defined by (4) for the interior problem, by (6) for the exterior one
and h € HY/2(I'p) satisfies ,h = f. The subscript + (resp. —) means that
we consider the interior (resp. exterior) problem and that the boundary
values are taken from inside (resp. outside).

The existence of the boundary values and of the normal derivative in the
space H'/2(T'p) x H-'/2(T'y) is a consequence of the Lemmas 3.2 and 3.6
of [1] since 4 is in the maximal domain of A. This shows that the oper-
ators Ty make sense since the tangential derivative maps H/2(I'p) into
H™'*(Tp).

If (f,g) € L*(T'p) x L?(T'y), it follows from the results of [9] and [10]
that the function v defined by (4) belongs to H%/2(Q) and that the one
defined by (6) is H3/2 in any bounded open subset of R? \ ). Hence the
traces are continuous on the closure of each side I';. This remains true if

(f,9) € HL(Tp, )
For each j = 1,...,p, we fix a point Q; on I'p ;. We can for example
take the points P; with j € exp. We use the finite rank operators

S+ : H?,_(FD,FN) - (Cp : (fag) — (U(Ql)a 7U(QP))

S_: HQ(PD,FN) x C— CP : (f’g) — (U(Ql)u .. 7U(QP))
where v is defined as above by (4) and (6) respectively.

2.3 The mapping properties

If 'p = 0, our ansatz (4) is the single layer potential. It defines a one to
one boundary operator if and only if the capacity of ) is not one. In the
general case, denote by G the solution of the mixed problem

AG=0 in R?\Q
Gry =0, 9,Gir, =0, (8)
G(z) =log|z| + O(1), = — +oo.

We define the mixed capacity v of ) with respect to the decomposition
(I'p,Tn) of the boundary I' by the limit

logy = Ilgglo G(z) — log |z|.

The central mapping properties of the boundary operator defined by (4)
are summed up in the following result.

Theorem 2.1 Ifs > 0, then the operator T, maps H5.(F'p,Ty) into HS(I'p) x
Hi(Tn)-
Assume that s > 0 and s — % ¢ e, for every j. It follows that

e if'p # () and the mized capacity of Q) with respect to the decomposition
(Tp,Ty) is not 1, then the operator

T+ : Hi(FDer) - Hg(FD)XHS(FN)X(CP : (fvg) — (T+(fag)7s+(f7g))

1s bijective,



o if I'p # () then the operator
T :H (Tp,Tn) x C— H(I'p) x H¥(T'y) x CPHL e
(Fr9:6) = (T-(1.9) 5-(£,9), [ _gdo)

15 bijective,

o if 'p = () then T1 are Fredholm operators with index 0 and one di-
mensional kernel; T, has the same property if Up # (0 and the mized
capacity 15 1.

The condition on the capacity is analogous to the one met in the use
of the single layer potential for the pure Dirichlet problem and should not
be a real problem. Any dilation by a factor r multiplies the capacity by r.
Hence, for any open subset Q of R2, there is one and only one r > (0 such
that Q) has the capacity 1. Moreover, in this case, the addition of a good
operator of rank one gives a bijective boundary operator. For example, if
the mixed capacity is 1, we can replace (4) by

K(g,h)(z) = —/ y)log |z — y|do(y)
+§;r— i ——————(Tx _y;!;/y h(y )da(y)-{—ﬁl—?;/r gdo.

3 Boundary potentials for the Lamé system

3.1 The problem

Let Q be a bounded Lipschitz open subset of R”? with a connected boundary.
We consider the system of linearized elastostatics

Pu = —puAu = (A + p)graddivu

in Q. Here y and \ are the Lamé moduli. We assume that ;4 > 0 and
A+ 2u > 0. If X converges to infinity, this system can be interpreted as the
Stokes system of hydrostatics.

If n = 2, a fundamental solution for P is given by

1 ), z(
E = 1 — ik Red
2(2) =~ sy (A + 3w log [ T = (A + )T
If n > 2, we can take
1 A+3p

E,(z)=

)z, 2
I+ (A+
2wn—1p(A + 2p) ((n~2)lﬂﬁl"‘2 O || ).
Here )z, z( denotes the n by n matrix (z;z5)1<jr<n and I is the identity
matrix.
For a given g € H/2(9§); C"), we consider the problem of finding u €
H'(Q; C") satisfying
{ Pu=0 (9)

Ujpn = 9g-
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Let x > 0. The generalized stress boundary operator 7, = T.(v) is
defined by

n
(TeW)w)s = pdyu; + (A + p)vidivu + £ > (v;0; — v;0;)u;
j=1
where v is the almost everywhere defined outward unit normal to 9. If U
is any Lipschitz open subset of R", we consider the maximal domain of P
inU
HYU,P) = {ue HY(U;C") : Pu € L*(U;C")}.

It follows from the results of [1], see also [7], that the space Cj (€;C")
of restrictions to (2 of the elements of C§°(R™; C") is dense in H(Q, P) and
that the operator 7, first defined on Cj (Q;C") extends as a continuous
linear operator

V%) HY(Q, P) » H™Y/2(Q;CM)

for any k. Moreover, we have the Green formula

/ Pu.vd)+ Teu.vdo
Q 1)

= / (u Z dju.0jv + K Z Ojuk.Okvj + (A + p — k)divu .divv) dA
Q - - :
J 5k

for any uw € HY(Q, P), v € H(Q;C") and k > 0. A similar formula holds in
R™ \ © for functions with bounded supports.

3.2 Boundary potentials

We first follow some ideas of [1] to obtain the basic properties of the bound-
ary potentials. Let u € LZ,,,,(R"; C") such that wg~ a0 € H(R"\ 8, P)
and define :

f= P(“}R“\@Q) € Lgomp(Rn)‘
Denote by vy the trace map from H(Q;C") u H}(R? \ ;C") onto
H'/2(8Q;C™). Consider the jumps
[vou] = 70(U|Rn\§) — Yo(uQ),

[’YW“] = 7%“(“111@\5) - 7§ﬁ)(u|n)-

Using the Green formula, we obtain
(Pu)(p) = u(*Pyp)= / u.'Pod +/ _u.'PpdA
Q Rr\Q

o, hou]>

12(00) <

_ (r)
= f-cpd/\+<[71 “]770<P> L2(00)

for any ¢ € Cg"(]R”;(CN), Hence, denoting by G the convolution with the
fundamental solution, we get

u(p) = (GPu)(p) = (Pu)(Gy)

_ ¢ () ¢ NGO
= /Rnf-GsodA+<[% “]’%G“D>L2(aa) <71 G@a[’YOU]>L2(aQ)-
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This gives the representation formula
u@) = (GHE) + (706 )
- <’YltG(Ia ')7 [VOUDLQ(@Q)

= (G)@)+ /8 Gla)- b ) doty)

(69)

B / 17 (1)'G 2, y))-[roul (y) do (y)
N

for every z € R" \ 09
If g e L}OC(BQ;(C"), the simple layer potential Vg and the double layer
potential W,g generated by g are defined by

Vo(z) = /8 Gle. o) day), =€ R\ 00

and
Weg(x) = AQ(7§”’(uy)G(x,y))t.g(y)da(y), z € R"\ 9Q.

These functions always satisfy Pu = 0 in R™ \ 0.
For any ¢ € C°(R™ \ 9Q2), we get

/ Vgpdr = / [ cew dow o) iz

- / o). [ Gl y)oly) dedo(y)
N R™
= (9,7G¢) = (G ov9)(¥).

Hence V = G o~.

The first properties of these operators can be obtained as in [1]. Since
the trace map ~, maps H'(R";C") onto H'/2(§Q;C"), the transpose map
~§ maps H~1/2(9Q;C") into HZ ! (R* C"). Since G is a pseudodifferential
operator of order —2, it follows that V. = G o ~{ extends as a continuous
operator

vV H Y?2(8Q;C") — HL (R™;C").

Let S : HY/2(9Q;C") — H'(Q, P) be the operator solving the Dirichlet
problem for P. It follows from the representation formula that for any
g € H/2(9Q;C™) we have

Sg =V(T.Sg) — Wgy.

Hence W, = (VT, — I)S maps H'/2(8Q;C") on H(%, P).

;From the results of [3], we know that the non-tangential limits of W f
exist almost everywhere on 9Q for any f € L?(9Q;C"). If T; is a regular
family of interior cones for (), the boundary value of W, f is

1 .
ST+ K f(2) = y_m,l;rélri(x)wﬁf(y)

= 3@+ p [ ()G~ ) S ) doy)
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We have to change the sign of the first term if the exterior boundary value is
considered. Since W, f € H'(Q, P) for any f ¢ H'/2(9Q; C"), the operator
K, maps H'/2(9Q;C") on itself.

The following jump relations can be obtained as in [1]

V=0, [TVf]=-f,

[YoWkg]l =g, [TaWig] =0
for any f € H=1/2(9Q;C") and g € HY/2(8; C™).

3.3 Mapping properties

Let
p(A + p)

A+3p
The next result is proved in [3], lemma 3.3, for an open subset of R with
n > 3. We can follow almost verbatim the proof in this paper to obtain the
same result in R2. Another technique is used in [15] to study the Fredholm
property and the index of I — K|, in the spaces LP(9Q) for a curved polygon,
n =2 and k = 0, see also [5]. This method can also be used.

k=

Proposition 3.1 IfQ is a bounded Lipschitz domain of R™ with a connected
boundary then the operator I — K : L%(98; C*) — L?(9; C™) is invertible.

Let us explain why the special value % appears. For simplicity assume
that n = 2. An elementary computation shows that

TG -y = 5-(a-a (g ]
):L‘—y,:c—y()(a:—y).l/y)
e ) P

+i(m~y).ty 0 1
2 |z —y|? -1 0/

where ¢, = (- 2,1,1) is the unit tangent vector and

+2a

Atmlestp) _ wA+3p) —p(A+p)
2u(A+2p) T T 2u(X +2p)

The last term generates a singular operator of Cauchy’s type on the bound-
ary. It disappears exactly for . In this case the operator K is compact in
L? for smooth domains since it has a bounded kernel. The corresponding

value of ¢ is
A+

a= PP
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