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SOME MICRODIFFERENTIAL EQUATIONS FOR
MICROFUNCTIONS WITH A HOLOMORPHIC PARAMETER
AND THEIR FORMAL SYMBOL TYPE SOLUTIONS
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§1. Introduction

Let X be a complex manifold C, x C? aanc M be its submanifold
M = {(z,z) € X;Imz = 0} ~ M",

where M® is the underlying real structure of M. We denote by (z,x;(,&) the

0
coordinates of T*X. We use the notation D, = — and D, =

0z dx
Around a point (0,2°%;0,i7°) € T*(C x C*) with real 2° and n° # 0, we
construct a microfunction solution v(z, z) with a holomorphic parameter z of

ZAk(z,a:,DZ,D;E)D:’Z””“>U(Z,:c) =0 (1.1)

P(z,x,D,, D,)v(z,x) = (
k=0

with ramified singularities along {z — ¢(z,&) = 0}. Here p(z,§) is a holomorphic
function of homogenous degree 0 with respect to & defined in a neighbourhood of
(0,2°;0,in°) with

o(x°,in°) = 0.
We suppose that P(z,z,D,, D;) has Fuchsian singularities along {z = ¢(z,)};
that is each Ag(z,z,D,, D,) is a microdifferential operator with ord(Ay) < 0 and
satisfies

oo(A0)(z,2,0,§) = z—p(x,&) and 00(A1)(0,2°,0,in%) ¢ {0,-1,-2,...}. (1.2)

Definition 1.1

A Q(z,z,D,,D,) is called an m-th order microdifferential operator if there
exists a formal symbol {Q;(z, 7, (,§)}]L_o, such that

Q(z,2,D,,D:) = > Qy(z,3,D;,Dy). (1.3)

j=—00
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Here, there exists a neighbourhood W of (2°,2%;¢%,£%) in 7*X and a positive
constant C such that each Q;(z,z,¢,&) is holomorphic on W, and homogeous of
degree j with respect to ((,€) € C x C", and that we have

sup ’Qj(z7177C1§)| S (—J)‘CAJ (_] > 1) (14)
(z,2;0,8)eW

We denote by Ex the sheaf on T* X of microdifferential operators above.
Definition 1.2
We denote by COps a subsheaf of Cpym :

CON = {v(z,2) € Corm; 0, v(z, 1) = O} (1.5)
We call a section of COy a microfunction in (z,x) with a holomorphic parameter
z.

Before constructing the solutions of (1.1) we reduce P to a simpler microdif-
ferential operator by using some quantized contact transformation preserving sheaf
COys. By the implicit function theorem oo(Ao)(z, z, (,§) is written as follows:

O'()(A())(Z, z, C) é) = C]Z(Z, Zz, C» 5)(2 - (I)(:Ea C) 5))9
where o and ® are homogenous of degree 0 with respect to (¢, ) and satisfying
a(0,2°,0,i°) =1 and &(z,0,€) = ¢(z,£).

Therefore by applying «(z,x, D,, D,)"! to both sides of (1.1) we can reduce P to
the case that

UO(AO)(Z’ z, Caf) =z q)($7<a€)

with the same condition (1.2).

Proposition 1.3.

There exists a holomorphic contact transformation

2* =z—9(x,(§)
¥ =z*(z,x,(, &)
¢t =<

& =¢(2,08)

S:

satisfying
x*(z7‘,‘6707€) :x? 5*(2’ :1:7076) :g'

[Proof]
Solve the following Cauchy problem for ¢ = ¥(z,(*,£*)

{ 2L+ B(x,C*, 6"+ 52) =0,
blg-=0 =0
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Then a function

x(2,2,¢%, &%) =20 +z- & +y(z,(",87)
generates the desired contact transformation S. O

We note here that S preserves
TyX ={(z,2;¢,€)|¢ = 0,Imz = 0,Ref = 0}.
Hence there exists a quantized contact transformation
S:87ICO=CONy
such that

SoD,«0S8 =D,
Soz*oS8 ' =2—-®(x,D,,D,).

Therefore S™! o P o S gives a desired reduction of P. That is, we have
Ao(z,2,D,,D;) = 2 (1.6)
under the same condition (1.2) with ¢ = 0. Hereafter we suppose this form (1.6) of

Ap.
We construct a solution v(z,z) € COps around {z = 0} of
P(z,z,D,,Dy)v(z,z) =0 _ (1.7)
of the form
v(z,2) = U(z,z, Dy) f(x). (1.8)
Here, f(x) is any microfunction in x , and

U(z,z,Dy) = Z u;(z,z, Dy) (1.9)

j=—00

is a microdifferential operator commuting with z with ramified singularities along
{z = 0} and satisfying the following equation as a microdifferential operator :

P(z,2,D,,D,)U(z,2,D;) =0 modEx - D,. (1.10)

Indeed, (1.10) is equivalent to some system of equations for formal symbols.
However, here we use the method of successive approximation.

Let us introduce a fundamental Fuchsian ordinary differential operator by

m

L:= Zak(z,w,f)({);n_k, (111)

k=0
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where ai(z,2,£) = ago(z,2,0,£) for the homogeous expansion

0
Ap(z,2,D;,D:) = Y apj(z,3,D,, D) (1.12)

j=—o00

of microdifferential operator Ay(z,z,D,,D,) in (1.1). Further we define an opera-
tion L and £ on formal symbols

Uz, z,§) = Z uj(z,z,&) (1.13)

by
LU(Z’:E;f) = Z (Luj)(za$7£) _ (1.14)

and

0
wero=-Y (% 1R O MO (2,2.6) ). (119

j=—00 N0<k<m, |rl+q=—j

Then, our successive approximation process is formulated as follows:

LUy =0
(1.16)
LU ={(L-L)— Ro}Ur (k=0,1,2,...).
Here each Uy is a formal symbol of the form
0
U = Z uf(z,x,8), (1.17)
j=—00

( u? (z,2,€) is the j-th degree homogeous part of Uy ) and R is a microdifferential
operator given by

m
R=>Ay(z=,D,,D;)D*, (1.18)

k=1

where
0
A (z,2,D,,D;) = Z ay, ; (2,2, D,, Dy)
Jj=—00

with

a;g’j(’z?x? Cvg) - (LkJ(Z,[L', 47 é) - 6]0 . CL)‘C,()(Z,IIJ,O,g).

Further Ro denotes the usual operator product mod &, - D,; that is,

RoU = 8(z,2,0,D;) when R(z,z,D,,D;)U(z,z,D;)=S(z,z,D,, D).
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It is easy to see that the sum
oo
U(z,2,Dy) = Y Uk(z, 2, Dx) (1.19)
k=0

formaHy satisfies (1.9).
Therefore our problem is reduced to the following:

(1) Can we find formal symbols Uy, around {z = 0} successively?
(2) Does > 72 o Ug(z,z, D) converge around {z = 0} as a series of microdiffer-
ential operators?
In §2, we get suitable estimations along {z = 0} for regular and ramified
solutions of L, which are important for the successive construction of formal symbols

{Uk}-

In §3, we introduce some formal norms with weight around {z = 0}, and obtain
some a’ pri-o’ri estimations for these formal norms.

In §4, we solve our reduced problems (1), (2) above. Therefore we succeed in
constructing one ramified and m — 1 regular independent solutions around {z = 0}.

§2. Preliminaries

Let L be an m-th order ordinary differential operator of the form

m

L=Y ar(2)d7 ",

k=0
where ag(z) = z and each ag(z) is holomorphic in a neighbourhood of
D={z€eC;lz| <1}
For an € > 0 we set
N={ze€C0<|z|] <1,|argz| <7 —¢€}.
We obtain estimations for solutions of
Lu=f (2.1)

for two cases: Holomorphic functions f(z) on D and also on 2.

Notation

For a holomorphic function v in a neighbourhood of D, we define two norms
as follows:

[[ull = sup ju(2)|



lul = sup  [u)(2)]
|z|<1,5=0,... ,m

and define another two norms with weight p € R

llull, = sup |z*|u(z)]
zeQ

lull, = sup [T (2))
2€Q,j=0,... , m

for a holomorphic function u(z) defined in a neighbourhood of € .

Theorem 2.1.

We suppose that a1(0) #0,—1,-2,... . Set
' m
M = max{1, sup Z lak(2)|} < +o0 (2.2)
zEDk:1
and v »
d =min{jp+a1(0));p=0,1,2,...} > 0. (2.3)

Then we have a positive constant C depending only on M and §, which satisfies the
following estimations:

(1) Regular case: For a holomorphic function f(z) in a neighbourhood of D any
holomorphic solution u(z) in a neighbourhood of D of (2.1) satisfies

lull” < CULAN+ [u(0)] + - - + [u™ =2 (0)]}. (2.4)

(2)Non-regular case : For a holomorphic function f(z) in a neighbourhood of Q any
holomorphic solution u(z) in a neighbourhood of Q of (2.1) satisfies

lully, < CUF Nl + (D) + -+ + [V ()]} - (25)
with Yu > M +m + 1.

Remark. It is well known by the theory of Fuchsian differential equations

that under the assumption a;(0) # 0,—1,—2,... there exists a unique solution for
any given (u(0),...,u™=2(0)) or (u(1),...,u™ V(1)) for both cases.
[Proof]

Put an m x m-matrix

0 z 0 0
A(z) = 0 )
0 0 z

31
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and two m-dimensional vectors

ul((Z)) 0
RZ_)) = . ) @ = 0
w1 (2) f(2)
Then, equation (2.1) reduces to
dz(;) - %A@)E(?) + %RZ) (2.6)
Hence,
() = ;2(70)#'/ %A(s)a?(s_)’dwr/ %b—(gﬁds. (2.7)

Here we introduce the following norms for m x m matrix X = (z;;){%_; and m-
—_ m ’
vector @ = (z;)i%:

|1 X| = max Z|:cm |Z|= max |z
1= 1=1,...,m

Then we have an estimation
|A(z)] <M onD.

We shall prove (1) after [Proof of (2)].
[Proof of (2)] ,
Firstly we put z = € and 29 = 1 in (2.7) and we get the following integral

inequality for 6 € [0, ™ — €
‘ / —b(s)ds
|

— i iy iso PRIV (Pt
= x(1)| + ‘/0 e A(e'?)x(e'?)ie dgp‘ + l/o i b(e'?)ie'Pdy
SN /N

—_— 0 . - »
< [z(1)] + / AE) (e dp + [ bl

|a:(e l)l + ‘/ A(s)x( s)ds

— 0 — 0 3
<G+ [ Mia@lde+ [ 15l

—

—_ 0 - :
< fz(D)| + [ flln + ) M|z (e*)|dep. (2.8)
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Secondly we put z = re’? and zy = €* and we get the following integral inequality
for |§| <7 —e and r € (0, 1]:

10 i0
TE Te 1
2(re?)] < [o(e)] + L As)a(s)ds| + / b(s)ds
R
—_—
= | Z9)|+ A(se® sezg)ewds |/ —b (se?)etds

—_—

< ()] + / SlAsella(eds + [ < b(seds
— 1 _ 1 9ei()

§|:z:(ew)|+/ —8—|:c(se’9)lds+/ Mds

<lo@l+ [ iaeas+ [ Mg,

ghtl

< |z(e¥?)| + L . +/ ?|$(3620)|d8. , (2.9)

We prepare next Lemma:

Lemma 2.2 (Gronwall).

Let f(t), g(t), h(t) be non-negative valued continuous functions defined on [a, b).

If they satisfy
t

£ < g(t) + / W(s)f(s)ds for Vit € [a,b],

a

then we have
£6) < g(t) + / tg(s)h(s)emp( / t h(r)dr)ds for i € [a, ).

[Proof of Lemmal]

We put
H(t) = / h(s)f(s)ds,
then we get
Wdzft) = h(t)f(t) < h(t){g(t) + H(t)} = h(t)g(t) + h(t)H ().
That is,
9’% ~ () H(t) < h(8)g(t).

Multiplying both sides by exp ( — f h(s)ds), we obtain

%[H(t) exp ( - / t h(s)ds)} < h(t)g(t) exp ( - / h(s)ds).
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Integrating both sides from a to t, we have

H(t) exp <f / t h(s)ds) < / * h(s)g(s) exp (— / ’ h(r)dr> ds.

Therefore,

Ht) < /a * h(s)g(s) exp ( / th(r)dr)ds.

Combining these inequalities, we get
t t
() < g(t) +/ h(s)g(s) exp (/ h(r)dr)ds. O
a S
Applying Lemma 2.2 to (2.8), we obtain

— — & __ 0
()] < Ix(l)l+7r\lf||u+/0 {Ix(1)|+7r||f||u}MeXp(/ MdT')dw

—_— —

g
— 2 (0] + 7l + (2] + e} / MeMO—2)dg

— (2] + 7l + (O] + 7l fyeMO(—e M0 + 1)
< M (| (V)] + 7| fllu}- (2.10)

It is easy to see that the conclusion of (2.10) is valid also for 6 € [~m +¢,0].
Applying Lemma 2.2 to (2.9) for p > M +m + 1, we obtain
rr'—p‘

— 1 _ - M tM
- 1Hf|lu+/T (lz(e®) + . 1l|f||u}Texp</r —S—ds)dt

L s ' M 0\ M~ f —p—
<@+ T s [ B la(e e+ ety

2(re?)] < |2(e)] +

M i0 T
<r Mz(e”)| +

p —
Ml < r~ Mz ()] + 7 fllu- (2.11)

H—
Combining (2.11) with (2.10), we have

W™ (2)] = 2]} = a1 (2)ul™ D (2) = - — am(2)u(z) + £(2)]
< 2P + e (]l + [2(1)-

Further . N
™ V()] < Jo(2)] <l (1 + 7™ ™) (£ 1]+ 2(D)]),
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and so
. 1 .
WD) < WD)+ [ D selds
- ey rl=w 1
< (14w (Ul + ) (1425
<R e (1l + |z(1)]).
Since p > m + 1, we can repeat this process m — 1 times. Therefore we have
@ ()] < [z I M (1L + 7eM ) (|l + |2(D]) forj=0,...,m

Hence the inequality (2.5) holds for C = M (1 + meM™).
[Proof of (1)]

In equation (2.6), we expand all the functions into power series with center 0:

D=3 A W =Y b W =) 5
p=0 p=0 p=0

Hence we have the following equations for the coefficients:
P —
(p— Ao)zp = ZAqxp—q + bp (2.12)

for Vp =0,1,2,... . Here we note that

det(p — Ao) = p™ (p + a1(0)) #0

for Vp > 1 . Therefore we get for Vp > 1 that

1xp|—|p o) (ZA:C,, 145 sl(p—Ao)“l(Zp:lAqllﬁs‘p‘?H!?;I)-

g=1

Since A, is written as integration of z~9 ' A(2) on the unit circle, we have estima-
tions
—
|Aql < sup |A(2)] <M, |bg| <[]l
z€D

for every q. Therefore we obtain

1< - Ao>-11(ZM|m| T nfu) (¥p = 1). (2.13)

g=1
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On the other hand (p — Ag) ! is given by

p+ai(0) 0 .- 0
1 0 ' :
(p— Ag)™ " TEPNO) : . N :
: 0 p+ai(0) O
_a,m(O) —az(O) D
for p > 1, and so
(p— A0)” 1|<max{11) p+la2p|p+a1<$|'am(0)'}
p+M
=m X{1’|p+a1 0)1}
3M p+M
<mec{1. %5, o 257
< max { 5 3} 3(1—!—%)::}(.
Hence,
p—1
'@‘SK(MZW;HW“) (¥p > 1) (2.14)
q=0

Therefore, putting

P
=D 1z

q=0
we have an estimation
o < (M + -+ K < EEE =2 (0 + 17
for Vp > 1, and so
|z, <yp < (KM +1)P (%\J—t} + |53|) for Vp > 1. (2.15)
Further from _
' —AoTo = bo

we obtain that A
@) < 1O+ M(uO] + -+ ™20 |

Hence
@1 < 171+ K ()] + -+ [ D)),
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Consequently

ol < 1 17{ g + DA+ KO+ + 20}

for Vp > 0, and so we have

sup {21 < sy < 2(K ) (MI+ RO+ 2 0)).
(2.16)

Putting 0 = 1/{2(M K + 1)} < 1, we get an integral inequality similar to (2.9):

lz(re'?)| < |z(ce)| + /T —]Y—[»Ia:(sewﬂds + /T H]Sil—[ds

o S

for any r € [0,1]. By Gronwall’s inequality and (2.16) we get
M ‘ N
it < (T 1,1 1
el < (2) {2t + g+ 3+ 10w
< (IA1+ 1 -+ + u™=20))

for any r € [0, 1]. Therefore

< (1) ot L+ by o2 L (1 ) £+ 20
ren V=G Y u u™=2(0)] ).
Note that

—a1(2)u™ D (2) = - — am(2)u(z)

z

—_—
< M sup |z(z)].
zeD

sup [u(™(z)| = sup
z€D |z]=1

Therefore since M > 1,
—_—

lul/" < M sup |z(2)| < C(Hfll +uO) + - + lu(m‘z)(O)l)
zeD

with

M 4

) M
K—S(l—l—*{s—).

This completes the proof of Theorem 2.1 .

C = M{2(KM+1)}M[2(K+i+1) +log{2(KM+1)}] (2.17)

and
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§3. Estimations of Formal Symbols

We take U, L, L, R defined in §1 . Hereafter considering a suitable scale trans-
formation in z, we may assume that each A(z,z,D,,D,) is defined in a conic

neighbourhood of
{z€C;lz| <1} x (z°,in°).
To show the convergence of series of formal symbols Z,fio Uk (z,z, &), we introduce

2 types of formal norms, which are similar to Boutet-de-Monvel and Kree’s one.

(1) Regular type: When each component u;(z,z,§) of U is holomorphic in a neigh-
bourhood of {|z| < 1}, we define a formal power series Ny, (U; X) in X with param-
eters z, £ by

No(U; X) = ) P

P, 8,1

Crtitla+Bl x2p+i+|atp]

a7 a nB
EEERT IR A S

(2) Non-regular type: When each component u;(z,z,£) of U is holomorphic in a
neighbourhood of

N={2€C;0< |z| <1,|argz| <7 —¢},

we define a formal power series N (U; X) in X with parameters x, § by

NH(U; X) =
p!Cp+l+Ia+ﬁIX2p+l+la+ﬂi j+laa B .
2, GRG0, 10707 O wpllytj+itiatBirp-mir (M 2>1)
1cptitlats] x2p+itiatsl l 3
P T 1020 8¢ u—plluti+iatp+p (M =0).

p7a7 b

| (3:2)

Further, when each component u;(z,£) is not depending on 2, we define
B plCPtlatBl x2ptiatf| P
K(U;X)= )| |02 0Fu_p|. (3.3)

= (p+la))i(e+18))

In the approximation process (1.15), we need an a’pri - o’ri estimation for N, (Ug; X)
or N¥ (Uy; X). For this purpose, in the symbol equation

LU=F=) f, (3.4)
p=0

m—2 )
we estimate Np,(U; X) by No(F;X) and ) K(0JU(0,z,£); X); or we estimate
j=0
m—1 )
NA(U: X) by Ni(F; X) and 'S K(B2U(1,2,€); X).
J=0
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To derive such estimations we apply 8@0;}8? to both sides of Lu_, = f_,.
Then we obtain

L(0L020u_yp) = 80202 f—p
ﬂ o 144 " 7
- > Z(w)( )( oL o2 of ay, - 0"k a2 0F u_yp
l/ l// al al/ /8/ ﬁ// k 0
(l — ll _+_ l/l’a — al +O{”7,8 — ﬂl _|_/6/I’ (l/)a/’ﬁl) # O) .
Here we employ Theorem 2.1. For a sufficiently small € > 0 we set
Mszmax{l sup Z]akzx,§ }<+oo
|z|<1+e,(2,8)EVe

and
b = inf{|lp+a1(0,z,8)|;p=0,1,2,... ,(z,€) € V.} >0
with
Ve ={(2,€) € C" x C™s |z — 2°| <&, [€/1€] —in®/1n°[] < e}
Then there exists a positive constant Cy depending only on M, and J., which
satisfies some estimations (2.4), (2.5) for

L= Zak(z>x7£)8;n_k‘

k=0

In particular we have the following estimation on |£| = 1:

I+]al+]8]
pazefaedl <ta(2) M (<1 @O V).

Hereafter we fix a (z,£) € V., and set

2
Cy = max{ M, E}

(1) Regular type case:

m—2
max (070707 u || < CO(Hfﬂaaaﬁf pl + > 10270208 u_p (0,2, )|

0<5<
7=0

[ (6 o ” a. 7
+(m+1) Z (l’) (a’) (5)1’! "ﬂ"Cl +a | +18'|+1 Jmax ||8J+l 8o ()ﬁ U—p”)-

(I",2/,8")#0

Then, we obtain
m—2
N (U3 X) < CO{NO(F§ X)+ 3 K(@IU(0,2,6); X) + C(m — 1)X - N(U; X)
j=0 |
+(m+1)CiNa(U; X)) (CloX)l’Ha’W’l}.
(V,a’,8")#£0
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That is, letting
PX)= Y (CieX)HEHA (3.5)
(Vo B')70

and

_ Co _
T 1— (m+1)CoCr¥(X) — (m — 1)CoCX’

we get the following proposition:

B(X) (3.6)

Proposition 3.1. If each component of F and U is holomorphic on a neighbour-
- hood of {|z| < 1}, we have on || =1

m—2
N (U ) < 20 { No(Fi )+ 3 KOUO290} (67
j=0
(2) Non-regular type case:
For m > 1, we obtain

j+1
max [|62" 3;15?“—13||u+j+l+p+|a+ﬁ|—m+1

0<j<m
m—1
< Co{llaiai‘@f Fovllptiviarsiep + O 1010207 u_p(1,2,6)]
3=0
l I ! Vs
e, ()G

(l",a’,p")#0

j+l” a// ﬁ”
Xo%a&"m”az 0z Of u—pllutitiotpls (-

Since p+1+|a+Bl+p>p+j+1" 4" +5"|+p—m+1, we obtain

lll

max |!8j+l"3°‘”8ﬁ"u I < max |&7F 82" 9" u s
2 xz Yg Y—p u+l+|a+ﬁl+p—j:0m z z Ye¢ U—pllpt+j+l"+la”+B" |[+p—m-+1-

7=0,...,m ,

In the same way as the regular type case, we obtain the following proposition:

Proposition 3.2. If each component of F and U is holomorphic on a neighbour-
hood of Q, we have on |£] =1

NT%(U;X)<<<I>(X){N6‘(F;X)+7§ K(aﬁU(l,ﬂ:,é);X)} (3.8)

j=0
with Vu > M +m + 1.
In the last part of this section we estimate the formal norms of the remaining terms
(L—L)U and RoU
by those of U.
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Proposition 3.3.
Set

P (X) = i(cclxy’ > (cCix) Z (20C; X)1P'l Z ci (20 X)L (3.9)

1'=0 a lr|>1

(1) Regular type case: If each component of U is holomorphic on a neighbourhood
of {|z| < 1}, we have on |§] =1

No((£ — L)U; X) < 9h1(X) N (U; X). (3.10)

(2) Non-regular type case: If each component of U is holomorphic on a neighbour-
hood of Q, we have on €| =1

NE (L~ L)U; X) < $u(X)NE(U; X) @)
with Vpu > M, +m + 1.

[Proof]
(1) Regular type case:

pgcp+l+|a+[3lX2p+l+|a+ﬂl
(p+1+ o)l + 16!

No((L - L)U; X)=

p.a,0,1
; 1 T mn— '
X Hagagdf( > — Ok - 0 kamuﬁq) I
p=|r|+q,|r|>0,k=0,...,m ’
1CpHi+atBl x2p+Hi+latBl 1 /] ‘
< > p( T el T ;;,(l,) (2‘,) (§,>l’!a'!(ﬁ’ +7)!
l/ l// al all [3! ,8” | |>0 p p ©
« Cia +6" |+ +1 . I(glaX ”83+l da"—l—raﬂ u~ql|
7=0,....m
<+ < N (U3 X) {Z (CC1X)" > (CCyz) "*'Z 2001 X)71 3 cy(201X )l’"l}
I’=0 o' lr|>1

= N (U; X )1 (X).

(2) Non-regular type case:
, 1O Hitlatp] x2p+itlatBl 1 /]
Ny (£ = L)U; X) < ) p(p+l+la|) I(p +18])! %‘v(l') (s) (g')
vl ,a,B,8",q,|r1>0 '

n_ ot 1+ 4+’ + 8 +r| j+1" qa’ +r a8
x 'a’l(B" + r)ICy jzoma}fn_l 1637 63 05 Ugll gt pt-t o615

where we use the fact that dfao = 0 for any |r| > 0.
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Since p+p+l+|a+8]>p+ji+1"+]"+7|+|6"| +q—m+ 1, we have

joghax I lurptiviare < max I Nt g0 10 4714187 1 +q— (m—1)-

Therefore the same argument as in the regular type case leads to the conclusion

NE((L = D)U; X) < 1 (X)NE(U; X). O

Note that .
RoU =Y Ao (0*U), (3.12)
k=1
where o
p=a _y(2,2,(,8) (3.13)
p=0

are microdifferential operators of ord(Aj}) < 0 defined in a neighbourhood of {|z| <
1} x (29 in°) satisfying
ayo(z,2,0,€) =0 Vk.

Moreover, there exists a constant Cy > 0 such that on

{lzl <1, |z —2° < e, |¢| < elg], [€/1€] — i’/ 1n°]| < e} n{j¢l =1}
we have
104020202 af, _, (2,2, ¢, )] < el BIsICy T IOHAITE, (3.14)

By the similar argument due to Boutet-de-Monvel and Kree we get the following
estimation

Lemma 3.4.

There ezists a convergent majorant series o(X) with ¥2(0) = 0 depending
only on C,Cy and n such that on |§] =1
(1) Regular type case:

No(Af o U; X) < 2(X)No(U; X), (3.15)
(2) Non-regular type case:
NE(A; o U; X) < o X)NY(U; X) (3.16)

with Yu > M, +m + 1.

Proposition 3.5.

We have the following estimation on || = 1:
(1) Regular type case:

No(RoU; X) < mipa(X)Np(U; X)), (3.17)
(2) Non-regqular type case:
NE(RoU; X) < mipo(X)NE(U; X) (3.18)

with Vu > M, +m + 1.
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84. Construction of Solutions

We consider the following relation:

{ LUy =0
LUk_H (L ﬁ)Uk —Ro Uk (k = 0,1,2,...).

(1) Regular solution

We obtain
m—2 .
Np(Ugy1; X) < O(X) {No( (L—-L)Up —RoUi; X) + Z K(@;UkH(O,x,f);X)}
=0

m—2

No(RoUi; X) + No((£ — L)Uk; X) + > K(3Uk41(0,,6); X)}
7=0

< P(X

< @(X){mwz N U4 )+ 10N (U X) ¢ > K (@2 (0,2,6):) |

§=0
m-—2
= 800 (1 (X) + (XN (U X) + Y K@i (0.2, )}
7=0
With the condition Ug4+1(0) = U,ng 2) (0) = 0, we obtain

N (Ugy1; X) < {®(X) (901 (X) + mpa (X))} Now (Ui; X)
< o L AB(X) (W1(X) + mipa (X)) TN, (Uo; X).

That is,
N3 Ui X) € 3 Non(Uii X) <€ S {R(X) W1 (X) + map (X))} Non (U X).
k=0 k=0 k=0

Since LUy = 0, we obtain

- <I>(X){0 +mi: K(agUO(o,m,g);X)} < +00.
§=0

Therefore, we get

N3 Uiy X) < 3 {@(X) (@1(X) + mapa (X))} Non(Ug; X) < +o00,
k=0 k=0
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(o, @]

that is, ) Uy is convergent in Ny, norm.
k=0

(2) Non-regular solution

As the same as regular’s case, we obtain

m-—1

NE (Uks1; X) < ®(X){(¥1 (X>+mw2(X))N$(Uk;X)+Z K(&Uk+1(1,2,8); X)}.

Let Uy be non-regular function and homogeous of degree 0 with respect to &.
From now, we solve a Cauchy problem;

{ LUk-H == (L - E)Uk — ROUk
MHUk1(1,2,8) =0 (j=0,1,...,m—1).

Then, we obtain

NE (Ugs1; X) < {BX) (@1 (X) + mapa (X)) }NE (Ug; X)
< - < {R(X) (1 (X) + mapa (X))} T NE (Ug; X).

As same as the regular case, we obtain

NE(S Uk X) < 3 {@(X) (1(X) + map (X))} N2 (Uos X) < oo,
k=0 k=0

o0
that is, > Uy is convergent in N4 norm.
k=0
Thus we obtained m — 1 regular solutions and a non-regular solution, which
span the full solutions of (£ + Ro)U = 0.
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