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ON THE ANALYTICITY AND GEVREY REGULARITY OF SOLUTIONS
OF SEMILINEAR PARTIAL DIFFERENTIAL EQUATIONS WITH
MULTIPLE CHARACTERISTICS

Nguyen Minh Tri

Institute of Mathematics
P. O. Box 631, Boho 10000, Hanoi, Vietnam

The aim of this paper is to present new results on the analyticity and Gevrey regu-
larity of solutions of semilinear partial differential equations with multiple character-
istics. First let us recall some historical fact in question. The study of the analyticity
and Gevrey regularity of solutions of non-linear elliptic equations and systems was
initiated by a conjecture of Hilbert. The conjecture states that every solution of an
elliptic equation (non-linear) is analytic provided the data is analytic. This conjec-
ture was solved by Bernstein for second order equations in two variables [1], and then
generally by several other authors, see for example [2]. Let us mention that a func-
tion u is called s-Gevrey (s > 1), denoted by u € G*(Q), if u € C*°(Q2) and for every
compact subset K of Q there exists a constant C;(K) such that for all multi-indices
o we have supg |D%u| < CI*(K)(a!)*. Note that when s = 1 then G*(Q) is the
space of real analytic functions in  and G*(2) € G*'(Q) if s < s’. We will consider
the following equations: semilinear perturbation of power of the Mizohata operator
and semilinear perturbation of the Kohn-Laplacian on the Heisenberg group.

I. Semilinear perturbation of power of the Mizohata operator [3], [4].
For m € N* we define =, = {(a, 8,7) : a+ B8 <m,2km > v > a+ (2k+1)3 —m}.
For (z1,22) € R? we will write 6{’,85, ~0Oa,p, instead of 5%,5%, '{52—;;;—3. We
consider the following equation
(1) MBPu+ (1, 22,8, vy O, 3U) (a,8,7)eZ0_, =0 in €,

where k is a positive integer, Moy = 5‘2—1 + ix2k 5‘2—2, the Mizohata operator in R?,

see [5], and  is a bounded domain with piece-wise smooth boundary in R2. Put
h(2k + 1) = ro. For any integer r > 0 let I'; = I'L UT'Z where

Il ={(a,f):a<rg,2a+B<r}T2={(,B): a > 10,0+ B <1 —10}

For any non-negative integer r let us define the norm

u,Q, = max [0%8%4, Q)+ max maxl(?h(aalaﬁlu x )\,
|u, Q| (al,al)err| 1105w, Q| (o x| max|O7 (01" O (z)
0‘1217[3121

{1] S. Bernstein Math. Annal., 59, p.20-76, 1904.

[2] A. Friedman J. Math. Mech., 7, p. 43-59, 1958.

[3] N. M. Tri Comm. Partial Differential Equations, 24, p. 325-354, 1999.
[4] N. M. Tri To appear in Rend. Sem. Mat. Universita Politecnico Torino.
[5] S. Mizohata J. Math. Kyoto Univ., 1, p. 271-302, 1962.
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where |w, Q| = Z(a[i"y)e Sy MXzeq |y0a,sw(T)|.

For | € Nt let H!,_(2) denote the space of all u such that for any compact K of Q we
have 3, 5. ’Y)G:L lyOa,pull L2 (k) < 00. We note the following properties of H!__(Q2)
H;, () C H!,.(©) where H () stands for the standard Sobolev spaces,
H*+2(Q) c HZ (Q) C C(Q).

loc

Theorem 1. Let | > 4k® + 6k + h + 1. Assume that u is a H,_(Q) solution of the
equation (1) and ¢ € G*. Then u € G5(Q).

The proof of this theorem consists of Theorem 1.1 and Theorem 1.2.

Theorem 1.1. Letl > 4k* 4+ 6k +h+1. Assume that u is a H _(Q) solution of the
equation (1) and ¢ € C®. Then u is a C®(Q) function.

Proof of Theorem 1.1.

Lemma 1.1 (Grushin). Assume that u € D'(Q) and M} u € H (Q) then u €
]HIH_h(Q)_

loc

Lemma 1.2. Let! > 4k* + 6k + h+ 1. Assume that u € H! () and ¢ € C* then
O(T1, 2,y ooy O pu) € HE-PHL(Q),

loc

Proof of Lemma 1.2. 1t is sufficient to prove that

71 0a1,8,P(T1, T2, U, .. py On,pu) € L?OC(Q) for every (a1,B1,71) € Zi—ht1-

Let us denote (u, ...,y Oa,%)(a.8,y)e2s_, DY (w1, w2, ...,w,) with g < 2kh3. Since
| > 4k* + 6k + h + 1 it follows that wy,...,w, € C(Q). It is easy to verify that

8{“826 "o(x1,2,U, ...,y Oq,pu) is a linear combination with positive coefficients of
terms of the form

8’” ) ) ¢(a,j5,81,5)
I l l I (8?1,332/31,171)3,) T ,
Ox¥ Ozk? Bw...Owy+?

J=1(0u,5,61,5)

where k = k; + ks + ... + ky 0 < a1 + B1;{(a1,5, 81,;) may be multivalued functions
of ay j, B1,j; 1,5, B1,; may be multivalued functions of j, and

> ai-la,By) < a1, By Clar;, By) < Br
J J

Hence ] 8?135 Yo(x1, %2, U, ...sy O, pu) is a linear combination with positive coeffi-
cients of terms of the form

ok g \S(e1,5.81,5)
- - S: - ’71 H H (8;!1,3 Bgl,gwj) 3:P1,j '
O0x ' 0z Owy®...0w “*

J=1(o1,5,61,5)
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Therefore Lemma 1.2 is proved if we can show this general terms are in L2 (). If

. o . k
all ¢(ai.j,B1,;) vanish then it is immediate that /0 k2 owte ...0w, € C,
since ¢ € C®,wy, ..., w, € C(Q). Therefore we can assume that there exists at least
one of (a1 ,01,;) that differs from 0. Choose jo such that there exists a1 j,, 51,50
with (a1 jy,51,5,) = 1 and

aq,, + (2k + 1),81,1-0 = j:rlllaxn ay,; + (2]6 + 1)51,3'.
C(al,jybl,;')zl
Consider the following possibilities
1) ¢(a1jos Br,jo) = 2. We then have a;; + B1,; <1 - (h — 1) — (4k + 2). Indeed, if
j 7é j() and Qg + ,8173' > - (h - 1) - (4k’ + 2) then 1,5 + /Bl,jo Z 2k. Therefore
l—(h=1)—k+2)<ai;+pb1; <onj+2k+1)81; <
arjo + (2k + 1B, < (2k + 1) (1,5, + Brio) < 2k(2k +1).

Thus | < (2k + 2)(2k + 1) + (h — 1), a contradiction.
If j = jo and @y j, + B1,jo > | — (h — 1) — (4k + 2) then we have

l—(h— 1) >a1+ 5 > 2(011,3‘0 +ﬂ1,j0) > 2(l — (h - 1) — (4k + 2)).
Therefore | < (h + 1) + 4(2k + 1), a contradiction. |
Next define

’y(al,j, ﬂl’j) = max{O,al,j -+ (2’6 + 1)ﬂ1,j + (h, - 1) + (4]6 + 2) — l}.

We claim that y(ay;,01,;) < 2k(l — (h — 1) — (4k + 2)). Indeed, if j # jo and
v(on 4, B1,5) > 2k(l — (b — 1) — (4k + 2)) then

(2k+1)(I—(h—1)) > +(2k+ 1)1 2

> (C¥17j -+ 2a1,j0) + (2k -+ 1)(,31’3’0 -+ 2ﬁ1’j0) > 3(2]{3 + 1)(l — (h — 1) — (4k‘ + 2))

Thus I < (h — 1) + 3(2k + 1), a contradiction.
If j = jo and (a0, B1,jo) > 2k(l — (b — 1) — (4k + 2)) then it follows that

2k+1)(I-(h-1)) 201+ (2k + 1)B1 > 2(j, + (2K + 1)B1,40) >
22k + 1)(I — (h — 1) — (4k +2)).
Thus I < (h—1) +‘4(2k7 + 1), a contradiction.
From all above arguments we deduce that (ouj,B1,5,7(1;, B1,5))
€ El-—(h—l)‘(4k+2)' Next we claim that E'y(aw,ﬁl,j)C(al’j,ﬁLj) < Y- Indeed, if
S (1,4, B1,5)¢(a1,5,B1,5) > 71 then we deduce that
a1+ 2k+ 18 —2(1— (h—1) — (4k +2)) >

Z’Y(O‘Lj,ﬁl,j)((al,j,ﬁl,j) >y > o+ (2k+ 1)1 — (1= (R —1)).



Therefore | < (h — 1) + 4(2k + 1), a contradiction.
Now we have

- a a1, aB. ¢(e1,5.81,5)
ST I (o8 6 ow;) =

J=1(ay,5,81.5)

W T v(a1,5,81,5) a01,5 ab1.; ¢(al,j,ﬂ1,j)
.’L"lYl H H (;1;1 ,3P1,5 61 ,982 ,J,wj) e C(Q)
3=1(a1,5,1.5)

since xz(al’j’ﬁl'j)é’fl’j 85” w; € HFM(Q) ¢ C(Q).

loc

IT) (0,50, P1,j0) = 1 and ((a1,5,51,5) = 0 for j # jo. We have

m
] ] $(o,5,81,5) ; i
117’171 H H (6?1,1851‘3 wj) J ’ = CET 8;1100 agﬁldo Wiy € L2 (Q)

loc
J=1(e1,5,61,5)
III) ¢(e1,5os P1,jo) = 1 and there exists ji # jo such that ({0 j,,B1,5,) # 0. Define
Ya,jo, Brgo) = max{0, aj, + (2k +1)B1,5, + (R —1) — 1}

As in part I) we can prove (au,j,B1,5,7(01,5,51,5)) € Eim(h—1)—(ak+2) for j # Jo
and (a1,jo, 51,50, ¥(1,50,B1,j0)) € Ei—(h—1). Therefore a:'{(a"j’ﬂl’j)ﬁfl‘jagl’jwj €
H{EF () © C(Q) for j # jo and &} ™50/ 50)gR 0 g oy, € L,,(Q). We also

loc loc
have Y7, 7015, 81,5)¢(en,5, B1,5) + F(@1,jo, B1,jo) < M as in part I). Now the de-
sired result follows from the decomposition of the general terms. [J
(End of the Proof of Theorem 1.1) u € H!_(Q),l > 4k* + 6k +h +1 =

loc

O(T1, T2, Uy oory On,pu) € H:-"+1(Q) (by Lemma 1.2). Therefore by Lemma 1.1

: loc
we have u € ]HI%;FCI(Q) Repeat the argument again and again we finally arrive at

w e HF™(Q) for any m € Nt i, e. u € NJH! _(Q) = C*(£2). Finally note that
loc

loc

weH (Q)=ueH ()0

loc loc

Theorem 1.2. Let u be a C™ solution of the equation (1) and ¢ € G*. Then
u € G°(). ’

Proof of Theorem 1.2. The proof of Theorem 1.2 will follow the line of [3]. Let us

define
1 (z1 —y1)" !

1\l 2RI 2k+1 . :
2n(h — 1)! 2] i 4 iz — y2)

thk(iﬂl,-%"za ?Jl,y2) =

For j =1,...,h — 1 we have

1 (z1 —y)h=971

W 2RI 2kt j
2mh —j—Die et T i(z2 — y2)

MghFQhk = and MélkF2hk = 6(x ~ y)-
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Lemma 1.3 (Green’ formula). If u,v € C'(Q2) where | is any positive integer,
then

/u]bfékfudmlda:g 2/(—1)lvMékud:v1da¢2+
Q Q

-1

+/ (Z(—l)ngkuMé;j_lv) (ny + iz%*ny)ds.

o\
7=0

where n = (ny,ng) is the outward unit normal vector to Q.

Lemma 1.4 (Representation formula). Assume that u € C"(QQ) then we have

u(z) = / (=1)" Ff (2, y) Mbu(y) dys dyo+

h—1
+/ (Z(—l)ngkquk_J—lehk(m,y)) (n1 + iy?*ny)ds.
o0

=0

Lemma 1.5 (Friedman). There exists a constant Cy such that if g(§) is a positive
monotone decreasing function, defined in the interval 0 < € <1 and satisfying

1 k C
9(§) < @_2—,99(5(1 - %)) + EN=ro—1 (N >ro+2,C>0),

then g(&) < CCyJeN—To~1,

Proposition 1.1. Assumg that ¢ € G?3. Then there exist constants ﬁo,ﬁl,Cg,Cg
such that for every Hy > Hy,Hy > H;,Hy > CQH3T0+3 if

lu,Ql, < HoH ™ D ((g=ro—2))*, 0<g<N+1,7+2<N
then

m§g|8?‘8gl<p(m1,m2,u, vy Oa,gu)l < CgHgH{VATO#l((N—TO—l)!)S; (a1,01) € 'nta

(Continuing the Proof of Theorem 1.2) It suffices to consider the case (0,0) € Q. Let
2k+1 2k+1

us define a distance p((y1,y2), (z1,%2)) = max(m—%:ryl;', |xe — ygl). For two sets

51,52 the distance between them is defined as p(Si,S2) = infzes, yes, p(2,y). Let

VT be the closed cube with edges of size (in the p metric) 27", which are parallel to

the coordinate axes and centered at (0,0). Denote by V,I' the closed subcube which

is homothetic with V7 and such that the distance between its boundary and the
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boundary of VT is §. We shall prove by induction that if 7 is small enough then
there exist constants Hy, H; with H; > CQH§T0+3 such that

(2) |u, Vi |y < Hy for 0 <m < max{ro +2,6F + 1}
and

) H m—ro—2
(3)  |u, V{ | < Hy (—(&) ((m —ro —2))* for m > max{rg + 2,6* + 1}

and ¢ sufficiently small. Hence the Gevrey regularity of u follows. (2) follows easily
from the C*° smoothness assumption on u. Assume that (3) holds for m = N. We
shall prove it for m = N + 1. Fix (z1,22) € V' and then define o = p((z1, x2),0V7)
and ¢ = o/N. Let Vz denote the cube with center at (z1,z2) and edges of length 25
which are parallel to the coordinate axes. Differentiating 04 s the equation (1) and
then using Lemma 1.4 with 2 = V;, Proposition 1.1 and the inductive assumptions
we can prove

Lemma 1.6. Assume that (o, 3,7) € Ep-1 and (a1,31) € Uny1. Then if a; >
1,061 > 1 there exists a constant Cy such that

max | a, (87" 95 u(x))| < C4 <T”‘lﬁ||“, Vsa-1m ||yt

zeVT
N——T‘o—-l
1
+ Hp (516—1-) (N — Ty — 1)!(T2’“1+1 + E))

Lemma 1.7. Assume that (o, 3,77) € Ep_1. Then there exists a constant Cs such
that

vt

N——To—l
L1
+ Hy (%1-) (N—ro—l)!(Tm+F)).

rE€ V(ST

max [ ~Oa.8 (8év+lu(tr))| <Cs (Tﬁ ||U> V5’1(11—6k/N)

1

Lemma 1.8. Assume that (a, 3,77) € ZEp_1. Then there exists a constant Cg such
that

max | Wﬁa,@(afv_m"’lu(m)ﬂ < Cs (TTlH %, ng(ﬂ1_1/N)||N+l+

zeVE
H N—rg—1. e 1
+ Hy (—5—1~> (N—ro—l)!(T%lH +E)>.
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Lemma 1.9. Assume that (a1,$1) € Tnti\Ln,a1 > 1,81 > 1. Then there exists a
constant C; such that

max! dh 80‘1(92IU(£C))| < Cr (Tz’““ ”“ Va(l 6k/N)|lN+1

zeVg"
_H]_ N—’)”o—l | 1 1
+H0<6) (N—To—l)-(T2k+l+E) .

(End of the Proof of Theorem 1.2) Put |u, Vi |n41 = g(6). Using Lemmas 1.6-1.9 we
can show that there exists a constant Cg such that

g(8(1-6"/N)) +Ho (?)N‘”‘l (N =ro=1)1)* (T 75 *’f}rl))

g(6) < Cy (T2

8)2k:+1

Choosing T < (1/ 812, then by Lemma 1.5 we deduce that

H,

: )N_TO-l (N =7 — 1)!)S(Tw§+—z + %)

g@<%m(
Choosing T < (1/2(3’9)%+1 and H; > 2Cy (in addition to Hy > CQH§T°+3 ) we have

. HNT‘Q].
m&=mwﬂMHsm(3g (N — 7o — 1.0

Example. If h = 3 we have the following statement : if uis a H?fc +6k+4()) solution
2k—1 Bu
of the equation M3, u + (x‘l*kg ‘2‘) ¥ B cos(g u) = 0, then u is analytic in Q.

I1. Semilinear perturbation of Kohn-Laplacian on the Heisenberg Group [6].

First let us recall some basic facts about the Kohn-Laplacian [, on the Heisenberg
group. Let (z,y,t) = (Z1,--.,Tn,Y1s-- -, Yn,t) € R2"F1. The Heisenberg group (of
degree n) H” is the space R?"*! endowed with the following group action

(z,y,t) 0 (2,9 ,t") = (z+2',y+y, t +t +2(yz' —zy')).

Let us define the following vector fields

0 0 0 0 0
Xi = g, T Wiy Yi= 5y, %Gt’T gl T

1 8 0 B 0
Z; = §(XJ iY;) = +zzg 5% Z; = (X +1iY;) = ZZJBt'

[6] N. M. Tri Math. Note Inst. Math., Univ. Tsukuba.
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Then the subbundle Tj o of CTH™ spanned by Zi,...,Z, define a CR structure
on H™. We will use the volume element on H" as dxdydt, which differs from that
of [7] by a factor 27". Now on H" with the above CR structure and metric we
can define the 8,—complex: 8, : C®(AP9) — C°°(AP9*1) and its formal adjoint
By : C®(AP9) — C°(AP4=1), where AP = (APT} ) ® (APT},). Finally the Kohn-
Laplacian can be defined as [y = Oy + 90y : C®(AP?) — C°(AP9). In specific
basis [, can be diagonalized with elements £, » on the diagonal. Here Lnis a
second order differential operator of the form

n

I~ 5 5 . 1 ,
Loy =—3 > (2,2 + Z;Z;) +iXT = —31 S (XF+Y))+idT;xeC.

j=1 Jj=1

When 4\ # n,n+ 2,n +4,... we say that X is admissible. Now we would like to
investigate the Gevrey regularity of solutions of the following equation

(4) Loau+¥(z,y,t,u, Z1u,..., Zpu, Zity .y Zpu) =0 in  Q,

where, in this part, Q denotes a bounded domain in H" with piece-wise smooth
boundary. For I € N* let S, (£2) denote the space of all u such that for any compact
K of Q we have 3, || Ls, - - - Li,ullL2(k) < 00, where each of L, ..., L;, is one of
Zyvo 7y Z1s .., Zn. We will use the following property S},.(Q2) € C(Q) provided
] > n+1. In the future we will need to work on the double H™ x H". Assume that we

have a differential operator P(z,y,t, Dy, Dy, D) = Z(al+|ﬂl+7<m Ao, p,(2, Y, t)Di’f’f,

then we write P’ for the operator ), 1 15/4+y<m a2 Y, t')Dgi’By’,'ft,. If u(z,y,t) is
a function on H™ then P’ acts on u as P'u(z’,y,t'). If F(z,y,t,2’,y,t’) is a function

on the double H"® x H" then P’ acts on F as P'F(x,y,t,z',y,t').

Theorem 2. Let [ > 2n+4 and X be admissible. Assume that u is a Si,.(Q) solution
of the equation (4) and 1 € G, s > 2 then u € G*(Q).

The proof of this theorem follows the line of the proof of Theorem 1.

Theorem 2.1. Let | > 2n + 4 and ) be admissible. Assume that u is a St (S
solution of the equation (4) and 1 € C*°. Then u is a C*°(Q) function.

Proof of Theorem 2.1.

Lemma 2.1 (Folland-Stein). Assume that u € D'(2), X is admissible and Ly xu €
St () then u € SIH2(Q).

loc

[7] G. B. Folland, E. M. Stein Comm. Pure Appl. Math., 27, p. 429-522, 1974.



70

Lemma 2.2. Let | > 2n + 4. Assume that u € S},.(Q) and ¥ € C®. Then
Yz, y,t,u, Zyu, ..., Zow, Z14, ..., Zpu) € Sll_l(ﬂ).

oc
Proof of Lemma 2.2. 1t suffices to prove that
Zi Ziy ... Ziy(x, y, t,u, Zyu, ..., Zntsy Zi, ..., Znu) € L2 (Q) for every I <1—1.

loc

Using the fact that | > 2n 4 4 we deduce that u, Z1u, ..., Znu, Z1u, ..., Znu € C(Q).
We have Z; Z;, ... Z;, ¥(x,y, t,u, Z1u, ..., Znu, Z1u, ..., Zpu) is a linear combination
with positive coeflicients of terms of the form

2n+1 7;)

Oap H H(Zilziz---ZiJjwj)C‘ |

k1 ok ka £ k4 k2n+4
Ox*19yr2 0tk Qwy*...0wy, Yy j57 T

where (wy,ws, ..., wan 1) denotes (u, Z1u,. .., Zpu, Ziu, . .., Zyu), k = |k1| + |k2| +
-+ 4+ kgnya < I;J; may be multivalued functions of j;{(J;) may be multivalued
functions of J; , and 3, J;¢(J;) < I <1—1. Therefore Lemma 2.2 is proved if we can

show this general terms are in LZ (). If all {(J;) vanish then it is immediate that

(f)"”(/:/&l:’”’l8yk28tk33wf4...6w§fljfl4 € C(Q), since v € C®,wy,...,wap+1 € C(Q).
Therefore we can assume that there exists at least one of {(J;) that differs from 0.
Choose jo such that there exists J;, with {(J;,) > 1 and Jj, = max;=1,... 2n+1 J;.
J;)>1
Consider the following possibilities =
I) ¢((Jj,) = 2. We then have J; < [(I — 1)/2] for every j, here [.] denotes the integer
part of the argument. Indeed, if j # jo and J; > [(l — 1)/2] then J;, > [(I — 1)/2].
Therefore J; + J;, > 1 — 1, a contradiction. If j = jo and Jj, > [(I — 1)/2] then
we have ((Jj,)Jj, > | — 1, a contradiction. Hence we have Z;, Z;, ... Z;, w; €

. ¢(J3)
SPH2(Q) € C(Q) for every j. It follows that H?’__hfl I1,, (Z,-lZi2 o Ziy, wj) €
C(Q) c L} ().

IT) ¢(J;,) =1 and {(J;) = 0 for j # jo. We have
2n+1 ¢(J5) )
11 11 (Z,-IZ,-Z 7, wj) = ZiZiy - Zay, Wiy € Lo(9).
J=1 (J;)

II) ¢(J;,) = 1 and there exists ji # jo such that {(J;) # 0. As in part I) we
can prove J; < [(I — 1)/2] and therefore Z;, Z;, iy wy € SM2(Q) ¢ C(Q) for

loc

J # jo.¢(J;) < 1and Z;,Z;, ... Z"J:‘o wj, € L2 (). Now the desired result follows.
O

(End of the Proof of Theorem 2.1) By Lemma 2.2 from u € S} (), > 2n + 4 we
deduce that ¢(z,y,t,u, Z1u, ..., Znt, Z1u, ..., Zpu) € S'-1(Q). Therefore by Lemma

loc
2.1 we deduce that u € Sll:'cl (©?). Repeat the argument again and again we finally
(Q) =C>(Q).0

arrive at u € SI™(Q) for every positive m, i. e. u € NSt
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Theorem 2.2. Let A\ be admissible and u be a C>®°(Q) solution of the equation (4),
€ G% s> 2. Then u € G*(Q).

n—X
Proof of Theorem 2.2. Denote T'(ZE(252)A°"2 AL % /(22 "a™tl) by Fya,

where

A_=lz—2'P+|y—9 | —i(t —t' + 2y’ — 2¢/x),
Ay =z -2’ P+ ly—v P +i(t —t + 2y’ — 2/).

If X is admissible then we have L, xF,, x(z,y,t,2', ¢/, t') =6(x — ',y — ¢/, t — ).

Let (vi,...,vt,v2,...,v2,7) be the unit outward normal to Q. Define the complex

outward normal vector (v,7,7) to Q with components v; = (vj —iv})/2,0; = (v +
.2
w3)/2.

i

Lemma 2.3 (Green’s formula). If u,v € C?(Q2) N CY(Q), then
1
/ vLy, zudrdydt = / uly, —xvdzrdydt + - / (uBov — vB)yu) dS,
Q Q 2 Jon
where By = Z;L=1 ((vj +iz;7)Z; + (0; — i2;7)Z;) — 2iA7 is an operator defined on
o0.
Lemma 2.4 (Representation Formula). Ifu € C?(Q)NCY(Q) and X is admissible
then we have ’

1
u(z,y,t) = /QFn,)\ﬁjl’,\u(x’,y',t')da:’dy’dt’ +3 . (Fp2Bj\u — uB{F, ) dS’,

where By =370y ((v; +14257) 25 + (75 — i25T)Z}) — 20\

For any non-negative integer 7 and a function v € C*®(Q) let us define the norm

||, Q| = Z max |Z%ZPT"u(z,y,t)],
o+ 1Bl ry<r1 VL
<

where Z*ZPTu(x,y,t) stands for 22 ZPt .. Zon ZB TV u(z, y, t).

Lemma 2.5 (Tartakoff [8]). A function u € C*™(Q) will belong to G*(Q?) if for
every compact subset K of Q) there exist constants Co(K),C3(K) such that, for all
positive integer r we have

[u, K|l < C2(K)C3(K)(r!)°.

Now we would like to recall the following version of lemma of Friedman.

[8] D. Tartakoff Acta. Math., 145, p. 177-204, 1980.
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Lemma 2.6. There exists a constant C1g such that if g(§) is a positive monotone
decreasing function, defined in the interval 0 < £ < 1 and satisfying

g@k_mg(dl—%ﬁ)+§%3-Uvza0>0x

then g(€) < CCho/E2N 2.

Proposition 2.1. Assume that ¢(z,y,t,u, Z14, ..., ZnU, Zyu, ..., Zyu) € G%,s > 1.
Then there exist constants H()*,H1*,Cll,012 such that for every Hy > Ho*,Hl >
H.,H, > C\Hy if

llu, Qlly < HoH2 *((g—2)1)°, 2<qg<N+1

then

mw|wz%wwqhmﬂW2«N—mf
(z,y,t)EN

for every (a, B3,7) such that |a| + |8 +v= N + 1.
(Continuing the Proof of Theorem 2.2) Let us define a distance d ((z, y, t), (z', ', t’ )) =

maX;=1i,..., n(lmj - $3|,|y3 - y;|,|t - tli/4\/7_l>- d(51,52) = inf(zy,t)es,@ v t)es:

d((z,y,t),(z',y',t')) is the distance between two sets S1, S2. Let VR(R < 1/v2n),VE
be the closed cube and subcube defined in the same maner (in the metric d) as in part
I. We shall prove by induction that if R is small enough then there exist constants
Hy, H; with H; > C11Hj such that

(5) lu, Vi llm < Hy for 0<m <4
and ‘
H 4
(6) |m%wm5H<60 ((m—2)1)* for m >5,

and 6 small. For a technical reason, together with (5), (6) we will also need to prove
a little better estimate than (6) for 7™u, namely

(7) max_ |T™u| < — 9 1 (—6—1> ((m —2)1)" ;m > 5.
(x,y,t)€V5 -

Again, (5) follows easily from the C* smoothness assumption on u. Assume (6), (7)
hold for m = N. We shall prove them for m = N + 1. Let us fix (x,y,t) € V5 and
then define o = d((z,y,t),0VE) and & = 0 /N. Let V; denote the closed cube with
center at (z,y,t) and edges of length 26 which are perpendicular to the coordinate
axes. Differentiating Z*Z” the equation (4) and then using Lemma 2.4 with Q = Vs,
Proposition 2.1 and the inductive assumptions we can prove
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Lemma 2.7. Assume that |a|+|B]|+v = N+2 and |a|+|8| > 2. Then there exists
a constant Cy3 such that

-max |Z°‘ZﬂT’7u| < Ci3 (R[

(z,y,t)eV

H, H 2N -2
R 0 1 s
Vo' || yyr + I, (—5—) (N =11 )

Lemma 2.8. There exist constants Ci4,C15 such that

max {|Z1TN+1u|, ceey ZnTNHu‘, |21TN+1U,|, RN |ZnTN+1u|} <
(x,y,t)eVF
Ho / H.\2N—2
< Ci4 <R||u, Vil was + —I—{—? (—5—1> ((N — 1);)8)7

H,

u, Vo | jar + HO(—(S—)”"Q((N - 1)!)S>.

max [TN“UI < —C—’leg’-(g (|

(z,y,t)eV§F

(End of the proof of Theorem 2.2) Put ||u, V|| n41 = ¢*(6). Using Lemmas 2.7 and
2.8 we can show that there exists a constant Cig such that

97 (6) < Cie (Rg* (5(1 — 1/N)) + %(1] (%)QN—Q ((N — 1)!)s> '

~ Choosing R < 1 /100C46 then by Lemma 2.6 we deduce that

(]*((5) S CI7HO (&

2N -2
T, 5 ) (N =1)H°.

If H, is chosen to be big enough such that H; > Ci7 (in addition to Hy > Cy1Hp )
we arrive at

. H 2N -2 ,
) =l Vs < Ho (1) (@ -1y

Finally we complete the p‘roof of Theorem 2.2 by using Lemma 2.5.0



