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A localization algorithm for D-modules and its
application
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Tokyo Woman’s Christian University
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First, we review the localization algorithm given in a joint paper with N. Takayama
(Kobe) and U. Walther (Minessota/MSRI) [6] with slightly different reasoning of the
correctness. The latter part applies this algorithm to the problem of finding the annihilator
ideal of some elementary functions. :

1 A localization algorithm

We work entirely in the algebraic category. Put X = C* and Y = {z = (21,...,%a) €
X | f(z) = 0} with a nonzero polynomial f € Clz]. We denote by Dx the sheaf
of algebraic differential operators on X. Let M be a coherent left Dx-module on X
such that M is holonomic on X \ Y. Then Kashiwara ([2]) proved that the localization
M[1/f] := M®o, Ox[1/f] of M by [ is a holonomic Dx-module on X, where O is the
sheaf of regular functions on X. (In fact he proved this fact in the analytic category, which
is a stronger statement.) Here we remark that starting from an algebraic (i.e., a Dx-)
module, the localization is the same both in the algebraic and in the analytic category.
More precisely, if we denote by O3 and D the sheaves of holomorphic functions and of
holomorphic differential operators on X respectively, then we have an isomorphism

OX[1/f] ®ow (DY @py M) =~ DY @p, M[1/f].

Our claim is that M[1/f] is computable if the input, i.e. both M and f are defined over
a computable subfield of C (e.g. over Q).
Now let us explain our algorithm. Introcducing an auxiliary variable ¢, put

W= {(t,z) e Cx X | tf(z) =1}

and let ¢ : W — C"*! be the natural embedding. Let p : W — X be the projection
p(t,z) =z and ¢ : X \ Y — W be the isomorphism defined by ¢(z) = (1/f(z),z). Let
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j: X \Y — X be the natural embedding. Thus we have a commutative diagram

W — 5 CxX

|
X\y ./ Xx

Then by using the integration functor (in the algebraic category) we get

M1/f] = fj M = /p / /w J M.

(See e.g. [7].) Our algorithm simply performs the rightmost successive integration step
by step. (For the sake of simplicity we describe the algorithm in the case where M is
generated by one element.) We denote by D, = D,(C) the Weyl algebra on n variables
x with coefficients in C. Then we can regard D, as the set of global sections I'(X, Dx)
of Dx. In general, for a left coherent Dx-module M, its global sections M := I'(X, M)
is a finitely generated left D,-module and its correspondence yields an equivalence of
the category of left coherent Dx-modules on X and that of finitely generated left D,-
modules since X is affine. The converse correspondence is given by the sheafification (or
the ‘localization’) M = Dx ®p, M.

Algorithm-Theorem 1
Input: A polynomial f € Q[z] and a finite subset {P, ..., P} of D,(Q) which generates
a left ideal I of D, such that the sheafification M of M := D, /I is holonomic on X \ Y.

(1) |

(a) Put ¢, := (21 — t2f,0, with f; ;= 8f [0z, 0; == %, and 9 == 2.

(b) Compute P; := Pi(z,91,...,9,). More precisely, Writing F; in the normal form
(i.e. make the derivations first and then multiply by polynomials) and substitute
¥; for 8; in P,. (Note that ¥;,...,¥, commute with one another.)

(c) Let J be the left ideal of D,i; generated by p,. ..,]ST and 1 — ¢f(z) and put
N :=Dp1/J ‘

(2) Compute N/O;N as left D,-module as follows:
(a) Let G be an involutive basis of J with respect to the weight vector

w=(1,0,...,0,-1,0,...,0)

for (t,x1,...,Zn; 0, 01y ..., 0n).
(b) Compute a generator b(s) of the ideal

{b(s) € C[s] | b(td:) + Q € J with some Q € Dp4; such that ord, (Q) < —1}
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of C[s], where ord,,(Q) denotes the maximum weight of the terms of ¢ with respect
to the weight w. b(s) can be computed by eliminating z and 81, ..., 0, from the
highest weight parts (w.r.t. w) of elements of G. Find the largest nonnegative
integer root k; of b(s) = 0. If there is no nonnegative integer root, then we have
M[1/f] =0.

(c) In general, for P € Dy, there exist unique @ € Dyy1 and R € Dj[t] such that

P=8Q+R.

Let us denote this R by R = p(P). Then R can be regarded as a relation among
the residue classes 1,%,t2,...in N /O;N. Let L be the left D,-submodule of D, +
tDp + .-+t D, ~ DM+ generated by '

{p(#P) | P € G, ordy,(P) +j < k1}.

Then L defines a system of linear differentieal equations for 1, - - .tk in N /O:N.
(d) Eliminate 1,%,---t*1~! from L and obtain an ideal Lo of D, which annihilates t#1.

Output: M][1/f] is isomorphic to the sheafification of Dy /Lg. More precisely the ideal
Lo is the annihilator ideal of f~%1=2u, which generates M[1/f] (here u is the residue class
of 1in M). .

Proof: First we have

7'M =Dx[1/f]/ (Dx[1/fIP1 +--- + Dx[1/ fIP2),

which is a holonomic Dx[1/f]-module. Let Aw be the subring of Dp,; generated by
Clt,z] and ¥,...,9,. Then Aw(tf(z) — 1) is a two-sided ideal of Ay and Dw :=
Aw/Aw (1 — tf(z)) is the set of global sections of the sheaf Dx of algebraic differential
operators on W (note that W is affine). Then we have an isomorphism (see [4])

/}”A4:DWADWE+~~+DWﬁ)
(7]

Next, the integration along ¢ is nothing but the so-called Kashiwara equivalence and in
view of Proposition A.1 of [4] we have

//j_lM = DCXX ®Dn+1 Na
v

which is a holonomic D¢y x-module. Next by the definition of the integration we have

/N:N@N
p
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Let F(J) be the partial Fourier transform of J with respect to ¢, which is the ring
isomorphism of D,,; that sends t to —30;, d; to t, and leaves z;, 0; unchanged. Put
F(N) := Dpy1/F(J). Then we have

N/&,N ~ F(N)/tF(N)

and the step (2) is nothing but (the Fourier transform of) the restriction algorithm (The-
orem 5.7) of [5]. Note that N/O;N is a holonomic D,-module since N is holonomic on
C x X. Thus we have proved that

M1/ f] = N/ON = (Dp)"*/L. (1)
Let us describe the first isomorphism of (1) more explicitly. First note the isomorphism
N/OyN =~ Dpy1/(J + 0;Dny1).
For an arbitrary P € D, 1, there exist unique Ry, Ry, ... € D, and S € Dy, such that

P =Y t/Ri(z,%,...,0n) + 8;3. (2)

720

Then we define

W(P) = > fIRi(z,04,...,0)u

>0
ZR (:1; 81+(j+2) .y On +(]+2)J;?>f_j”2u € M[1/f].
520

Note that since the commutation relation of z; and ¥; is the same as that of z; and 0;, the
above (non-commutative) substitution makes sense irrespective of the actual expression
of R;. This defines a left Dp-homomorphism 9 : Dpy1 — M([1/f]. In fact, we have

¥(0;P) = 0;9(P) since

w(aithj(f,ﬁl,...,ﬂn)) = ’I,b(t](ﬁz-f—tzfzat) (I’ 191,... ﬁn))
= v,b(tj(f«?' - (] + 2)tfi) + O f)R;(z, V1, - - ., )

= fJQBiR(:E o1, .., )u—(g—{—Q)f’?’fZ i(z,01,...,0n)
= 8if_j—2R (.I‘ 81, ceey )u
Since P, ..., P, annihilate u, we get

w(tjé) = fI72P(x,8,...,0,)u=0.
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It is easy to see that ¥(t/(1 — tf(z)) = 0. Hence J + 0;Dy41 is contained in the kernel of
.

Conversely, suppose that P of the form (2) is contained in the kernel of 7). Then there
exist Q1(t,z,0),...,Q.(t,x,d) € Dy,[t] such that

> fIRi(2,01,-,0,) =Y FPQu(1/f, 2,01, .., ) Fi(w, 0y, ..., 0n)
i=1

>0

holds in D,[1/f]. Then the Hilbert Nullstellensatz assures that

Y URi(z, 01, 0) = Y FPQilt, 3,0, )P, B, Fn) € (1= tf(2)) D
>0 i=1
since 1 — tf(z) is irreducible. Noting (1 — tf(z))d¥; € Dpy1(1 —tf(x)), we conclude that
P € J+ 8Dy 1. Thus v gives the first isomorphism of (1). This implies that M[1/f] is
generated by f~%u,..., f7% 7%y, and hence only by f~*~?u. This completes the proof.

2 An application to holonomic functions

Let u be a (possibly multivalued) analytic function defined on C" minus an algebraic
set. Supppose that u is hyperexponential ([1]); i.e., g; := G;u/u is a rational function for
any i = 1,...,n. For example, if fi,..., fm, g are rational functions and a;,...,on, are
complex numbers, then

u=f* fu" exp(g(z))

is a hyperexponential function. Then we can find the annihilator ideal
Ann(u) := {P € D, | Pu=0}
of u exactly by applying the localization algorithm.

Algorithm-Theorem 2
Input: Let u be a (possibly) multi-valued analytic function such that g; := diu/u € Q(z)
foranyi=1,...,n.

(1) Let g € Q[z] be the least common multiple of the denominators of gi,...,g,. Let
f(z) be the square-free part of g.

(2) Put I := Dy (901 — gg1) + - -+ + Dn(g0n — ggn).

(3) Apply Algorithm-Theorem 1 with input D, /I and f, and let Ly be the output ideal
with the integer k.
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(4) Compute the ideal quotient
Ly:=Lo: (ff**) ={Pec D, | Pfa*? ¢ Ly}
by syzygy computation through Grobner basis.

Output: L; = Ann(u). In particular, u is a holonomic function, i.e., D,/Ann(u) is a
holonomic system.

Proof: Put L := Dxu, which is a sheaf of multivalued analytic functions, and define
the sheaf

‘ Ann(u) := {P € Dx | Pu=0},
which is the sheafification of Ann(u). Then we have £ ~ Dx/Ann(u). Let M be the
sheafification of M = D, /1. Tt is easy to see that M is a holonomic system of rank one
outside of Y := {x € X = C" | f(z) = 0}. This implies that the two sheaves M and L
coincide on X \ Y. Hence in view of the Hilbert Nullstellensatz, we have :

M1/ f] = LI/ 1] (3)

By Algorithm-Theorem 1, M|[1/f] is generated by f~*1~21 whose annihilator ideal is Lq.
Hence L, is the annihilator ideal of 1 in M[1/f].
On the other hand, since L is a set of analytic functions, the natural homomorphism

L — L1/ fl = Ox[1/f] ®ox L

induced by the embbeding of Ox to Ox[1/f] is injective. In fact, this follows from the
fact that f- : £ — L is injective. By the isomorphism (3), 1 € M[1/f] corresponds
to u € L, and its annihilator ideal in £[1/f] is given by L;. Since L is a submodule of
L[1/f], the annihilator ideal of w in £[1/f] coincides with that in £. This implies that
L; = Ann(u). This completes the proof.

Example 1 Put X := {(z,y,2) € C*} and f(z,y,2) := 2® — y?2%. Let us find the
annihilator ideal of the function w := exp(1/f(z)). The following computations were
performed by computer algebra systems kan/sm1 [9] and Risa/Asir [8] which are connected
via open xxx protocol [10]. First let I be the left ideal of D; generated by

fQBz “fm’ fzay "fyy fzaz '_fz

with 9, = 0/0x, f, = 0f/Jz, and so on. By computing the characteristic variety Char(M)
of M := D3/I (see [3] for an algorithm) and by decomposing it to prime (or primary)
factors, we know that

Char(M) D {(z,y,2;6,1,{) € T*C? |z =y =0} U {z = 2 = 0}
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In particular, M is not holonomic on C3. Next by using Algorithm-Theorem 1 with I and
f as input, we know that Ann(u) is generated by the following eight operators:

36y0, — 3620,,

—24y228, — 362%0,,

—241220, — 36x20,,

—24236,0, — 36m28y2 — 242%0,,

247402 + 722°20,0, + 54222202 + 96230, + 1622220, + 720,,
3642230, — 24140, — 722320, — T2,

—36y2*0?% + 24240,0, + 721°20,0, — 108yz30, + 720,,
362°0% — 24z40,02 — 72x°2020, + 2162*0?2 + 2162°0, — 720;.

We can verify that Dsz/Ann(u) is in fact holonomic and that I is contained in Ann(u).
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