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CRITICAL SOBOLEV INEQUALITY AND ITS APPLICATION TO
NONLINEAR EVOLUTION EQUATIONS IN THE FLUID MECHANICS
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1. INTRODUCTION

Our main concern, in this note, is to discuss on the unicqueness problem for the Navier-
1

stokes equation and the Euler equations.

We firstly consider the Navier-Stokes equation under auxiliary regularity assumption
to the solution.

u+u-Vu=—Vp+ Au+ f, t>0,x € R",
(1.1) div u =0, t>0,reR",
u(0,x) = up(x).

By virtue of the energy inequality associated with (1.1), i.e.

t
w3+ 2 / [Vu(r)[ldr < |luoll3.  ae. >0,
Jo

it is well known that there exists a global energy class weak solution (so called Lerey-
Hopf’s weak solution) u € L=([0,T]; L2(R™)) N L*(0, T; H'(R™)). The natural regularity
for Leray-Hopf weak solutions is then
2. n n 2n

o q 2 =4=0"y
The unicqueness problem is then considered under the auxiliary assumption on the one
of the weak solution. The condition suggested by Serrin is

(1.2) we Lo([0,T]; LY).

2 n
(1.3) u € LP([0,T]; L"), -(;-l-% =1, n<p.
See Ohyama [22], Serrin [28], Giga [15],

An interesting problem is to consider the corresponding condition for the vorticity

w = rot u. By the Sobolev embedding theorem, the corresponding condition to |V|*u is
. , 2 n :
(1.4) IV|"u e L([0,T); LP), Ggro=1+r
P

Those conditions, (1.3) and (1.4) are closely related to the estimate for the bi- hneal
form induced from the nonlincar term (- Vu,w). Recent research for estimating this
term develops both the regularity theory and decay problems for the Navier-Stokes sys-
tem. Among others, Chanillo considered the bi-linear estimate in [8] by a real analytical



100

argument. This result essentially extracted a better regularity from the noulinear cou-
pling, more precisely the estimate saves a logarithmic singularity for the solutions and in
fact, it was applied to the regularity problem to the harmonic map on the sphere (see
e.g., [12], [13]). By an elegant proof, Coifman-Lions-Mayer-Semmes [9] showed the H!
regularity of the nonlinear coupling u - Vu for the Leray-Hopf solution. This showed that
the nonlinear term has a better regularity because of its special algebraic structure by
divergence free - rotation free coupling. In fact. for the 2-dimensional case, « - Vu € H!
and since Leray-Hopf solution belong to H! and hence in BMO, the coupling (u - Vu,u)
makes its sense. Then it is developed to the regularity problem in a different setting in
the Besov spaces ([14], [6]) and to the decay problem in the Hardy space corresponding
to the L? where p < 1 by Miyakawa [21].

Our attention here is devoted to the uniqueness condition in terms of the vorticity.
In views of the above conditions, for example, Vu € L'([0,T]; L>) is considered as the
limiting case of the uniqueness condition. On the other hand, from the observation of the
break down condition to the Euler equation (1.5),

ou+u-Vu=-Vp+ f, t>0,reR"
(1.5) divu =0, t>0,2e€R",

u(0,z) = up(x).

it is meaningful to control the situation in terms of the vorticity of fluid, rot u(¢). In the
celebrated result by Beale-Kato-Majda [2], the solution of the 3D Euler equation is shown
to be regular under rot u(t) € L'([0,T]; L*). This result is extended into the slightly
larger class of condition by Kozono-Taniuichi [19]. The corresponding uniqueness result,
however, seems to have a difficulty, since || Vu||o, can not be controlled only by ||w]||s. We
introduce here a possible substitution |lw|| g0 to || Vul|w and generalize the situation in
terms of the Besov spaces.

2. UNIQUENESS FOR THE NAVIER-STOKES EQUATION

Before presenting our result, we recall some notations and definition of the Besov spaces
(c.f., [31]). Let ¢; j = 0,£1,42,43,--- be the Littlewood-Payley dvadic decomposition
i J y I

o
satisfying cﬁj(i) = ¢(277¢) and Z $;(€) =1 except & = 0. We put a smooth cut off to

j=—00

fill the origin v € S(R®) with v(§) € C3°(B;) such that ¢ + Z b;(€) = 1.

J=0
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Definition The homogeneous Besov space BS , = {f € S; ||| By, < oo} is introduced
by the norm

£, = (3 1127, x £

for s € R, 1 < p,p < 0o and the inhomogeneous Besov space similarly defined by

oo
5y, = (105 Fllg + D120+ S

j=0

/1

Theorem 2.1 (Uniqueness for Navier-Stokes [24]). Let w and @ be the Leray-Hopf weak
solutions for the Navier-Stokes system with the same initial data ug with the same ini-
tial data uy. Suppose that the vorticity w for one of the solution satisfies rot © = w €
L(log L)V*'([0.T7; Bgo 2)» 1< p < oo and the other solution @ satisfies the energy inequal-
ity

{
a2 + 2 / IVa(r) 2 < luoll.
0

Then u = 1.

Recalling the embedding relation BA/O(R") ¢ BY, (R"), we have;

Corollary 2.2 (limiting vorticity condition). Let w and @ be the Leray-Hopf weak solu-
tions for the Navier-Stokes system with the same initial data uy. Suppose that the vorticity
of the one of the solution w satisfies rot u = w € L(log L)Y*' ([0, T); B ) with s = n/p
and 1 <p.p < oo. and the other solution @ satisfies the energy inequality

ot
01 +2 | 19a(r)dr < aola
J )
Then u = a. Especially, if rot w € L(log L)([0,T); BMO) then u = .

In fact. for the partial regularity problem, Beale-Kato-Majda [2] showed that the so-
lution of Euler equation is regular if rot u € L'([0,T]; L®). In this case, the vorticity
rot u = w can dominate ||Vu|lo via the Bio-Savart law with aid of extra regularity as-
sumption. ( sce also Ponce [27] and Kozono-Taniuchi [19] and Vishik [32]). In our case,
however the regularity can be covered by the viscosity of the equation.

3. THE EUVLER EQUATION

The global existence in time solution for the Euler equation (1.5) in R? is known by the
result of Yudovich [33] for w € L' N L, Diperna-Majda[10] for wy € L' N L? and Chae
[7] for wy € L' N Llog L. In particular, by the a priori estimate for rot w(t) in L2 N L%, it
is known that the solution in the class w(t) € L' N L™ is unique ([33]). This uniqueness
result was extended into the case when the unbounded vorticity case in [34] in the case
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of bounded domain. We present here a slightly different uniqueness result than the result
in [34].

Theorem 3.1 (Uniqueness for Euler [24]). Let u and @ be a weak solutions for the Euler
equation in L>(0,T; H}). Suppose that one of the solutions satisfies rot u €

L(log L)'72(0,T; BY., ), then u = 1.

The condition of the above theorem is realizable if we assume that Vw, € L*(R?).
Note that this condition does not necessarily implies wy € L which is the uniqueness
condition obtained by Yudovich [33]. The result has a slight difference on the regularity
asstmption on the generalized solution of the Euler equations. Since Yudovich employ the
variant of the argument of the Perron-Nagumo criterion to the uniqueness on the ordinary
differential inequality, it is required the continuity for the solution in L?. Allowing this
extra regularity, it is also possible to sec the weaker regularity assumption like in [34] in
terms of a generalization of the Besov spaces (c.f. [25]).

4. CRITICAL SOBOLEV INEQUALITY

It is well known that the critical case of the Sobolev imbedding theorem is involving the
certain kind of special feature when the relation between the integrability exponent p and
regularity s satisfies s = n/p. For example, when n = 2, W'?(R?) can not be embedded
into L.

Here we give some generalization of the logarithmic Sobolev inequality originally due
to Brezis-Gallouet [4], Brezis-Wainger[5] and Beale-Kato-Majda [2] (sce for some gener-
alization [11], [30]. [26], [19], [17])).

1/q = 1/p—s/n, 1/r1 —s1/n < 1/q < 1/ry — so/n, there exists a constant C' which is

only depending on n, p and q such that for f € B!, N B2 . we have For , we have

I g, + 1 llszz,, ) l//v’~1/v’>
115 7

p.p

where k= min(n(1/q — 1/r1) + si,n(1/re — 1/q) — s2).

Theorem 4.1 ([17]). For anyp, p,q,v € [1,00], 71,79,01.02 € [1,00), v < min(p,0,.03).

. 1
A0 Wl < Ol (14 (o

The above inequality is a sort of the interpolation inequality for functions in the Besov
space. In fact the embedding

B((]J.l/ C Blbllo'l n Bf;,d?
is well known. The advantage of the above inequality is at the logarithmic order from
the higher order norms. If v < p, then the inequality always holds without the extra
logarithmic term. To compensate the deficiency for the seccond summability exponent v

to p, we need a higher regularity of order given by the logarithim. The extra regularity
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fe B, o, s devoted for the regularity of f around the low frequency and f € BTl s, for
high frequency. The proof follows belows shows

1 % fllgss (1 =) * fllgsz \ve-17
oo | 1+ (—log® 101 2,02 )
( 5 1715, )

This is a generalization to the known logarithmic inequalities in [4], [5], [2], [30] and [18]
mentioned above (see more detailed discussions [17]).
REMARK We may also have by the different choice of N that

1/p =1/v'
@3 Wl = Ty, (e (s, +10z.0)" |

under the same conditions.

(4.2) ||f||39 =

5. PROOF OF THE UNIQUENESS

Proof of Theorem 2.1 . Set w = u — %. We note that w € L°‘5([O, T);L2 N HY) N
L2([0,T); HY). Since w satisfies

Ow+ Aw —w-Vw+w-Vu+u-Vw+ V(p—q) =0, t>0,z R
(5.1) div w = 0, t>0,r€R",
w(t,0) =0,
in the sense of distribution, we have the following weak form

d

(5.2) o
This process is in fact justified by the following argument. ‘

Under the assumption w = rot u € Llog L([0,T}; B; ,), it is possible to show that u

belongs to C'((0,T]; H®) for any s > 0, i,e, u is smooth except t = 0, and hence satisfies

the energy equality:

—lw(t)||2 + 2| Vw3 = (w - Vu, w).

)
(5.3) ()| + 2 / V()T = [luol3
J0O

(see Kozono-Taniuchi [18] and Kozono-Ogawa-Taniuchi [17]).
We note that the energy equality guarantees strong continuity of u(t) for ¢ in L? on
[0,T]. On the other hand, by assumption, 7 satisfies the energy inequality:

(5.4) ) +2 / IVa()|dr < fuoll3:

Hence we have the energy inequality for the difference w(t);

¢ 't
(5.5) lw(®)||5 + 2 / | Vaw(7)||3dT < 2/ (w - Vu,w)|dr
Jo 0
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Now we decompose the smoother solution u into the three parts in the phase variables
such as

u(z) =v_n xu(x) + Z &; *u(z) + Z ¢; * u(z)

(5.6) ljl<N i>N
=w(z) + U (z) + up(z)
Then by the Hausdorff-Young inequality, the low frequency part is estimated as
(w - Vuy, w)| =|(w - Vw, )|
(5.7) <|w-n * V(w & w)||2|lul2
<C2 VD2 w3l

The second term giving a core part of the solutions, can be bound by the logarithmic
Sobolev inequality that for small € > 0 and s = n/p with s+ = s+ ¢ and s— = s — ¢,

(- V)] < oo BVt

) 1 " QENHV’U,;H
(5.8) <Cllwl3Vuls;, {1+ (< log

By, T QENHVU;L“BI‘;W)I//J’}
HV“HB;J,
<ONY Jw|Yirot ull,
where we decompose u,, = u), +u,, = Z G * Um + Z ¢; * Up. While the last term is
simply estimated by the Hausdorff—Yourig—Oinequality t]11<a(1r
|(w - Vuy, w)| =|(w - Vw, up)|
<wllo||[Vwlla||(=A) trot FH1 — ihy) = Z ¢; * 1ot U)o

(5.9) | ) >N
<|lwllol|Vwllo | (—A) TV FH(L - wN)”B;,fp, [[rot ull s

<C27V|w|l5l|Vewl|zffrot ull 5,

Gathering the estimates (5.7)-(5.9) with (5.6) and choosing N properly large satistying
27N |ully < 1 ,27V]jrot ullgy =~ 1, we see that

(510)  I(w- Vu,w)| < Clul1 + frot ullg, (1+ (log* ot ull, )77) + [Val
Hence we obtain from (5.5) and (5.10) that
(5.11)

I +2 [ 19ul <0 [ {lul -+ ot u(r)
+ |Vw(7)||3 }dr

)7

5y, (1 + (log™ [[rot u(r)|

S
p-p
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and

ww>IW@%SCAﬂmv%u+mmMﬂ%m0+®€mmwﬂMmWﬂMT

Now the Gronwall argument gives

513) (0l < OOl exp( | {(lot u(r)l, log" ot u(r)lg;,)"#) yar)

The right hand side is 0 under the condition rot u € L(log L)"/ ([0, T); B; )
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