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ABSTRACT. In this paper we consider the nonrelativistic limit of the nonlinear Klein—
Gordon equation. We study how the solutions of the nonlinear Klein—-Gordon equation
converge toward the corresponding solutions of the nonlinear Schrédinger equation when
the speed of light tends to infinity. Especially we consider the rate of Convergence We
use Strichartz’s estimate for the Klein—-Gordon equation.

1. INTRODUCTION

We consider the nonlinear (and linear) Klein—-Gordon equation in space-time R"*!

LAy L LS (W R", t € R
sl T u+——2——u—|— lu|"" u = z €R" t eR,
where 7 is the Planck constant, m is the mass of particle, ¢ is the speed of light, and u”
is the second time derivative, and A > 0. When n = 3 and y = 3, the equation (1.1) was
introduced by Schiff [1] as the equation of classical neutral scalar mesons. If A = 0, the
equation (1.1) is the linear Klein—-Gordon equation.

Substituting

(1.1)

—imc?
u = pe—tme t/ﬁ,

we obtain from (1.1) the following nonlinear Klein—-Gordon equation for v:

h
2mc?

o' — ik ——h—Av+)\| |"~lv = 0.

The aim of this paper is to study this equation, particularly in the limit ¢ — co. We
regard the procedure of taking limit ¢ — co as "nonrelativistic limit.” Formally, the limit
equation is

2
—ihv' — QH—AU + A" tv = 0.
m

This is the nonlinear Schrodinger equation. So we expect that solutions of the nonlin-
ear Klein—Gordon equation converge as ¢ — oo toward the corresponding solutions of
the nonlinear Schrodinger equation. We may think of the Klein—-Gordon equation as a
relativistic generalization for the Schrédinger equation. From this relation, we have a par-
ticular interest in the convergence of solutions of two equations. In this paper we study
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this problem in detail. For simplicity, we set A = —A, ¢ = 1/¢2, f(v) = A|Jv|""!v, and
h = 2m = 1. Given initial data, we rewrite the equations in question as

(1.2) ev” — ' 4+ Av+ f(v) =0, v(0) = vy, v'(0) = vy,
(1.3) —iv' + Av + f(v) =0, v(0) = vgo.

We denote by v, and vy the solution of (1.2) and (1.3), respectively.

We investigate how v, converges to vy as ¢ — 0. There are a few results on the problem.
The convergence in several modes has been proved, see [2] [3]. In [15], we have proved
the convergence in L*(0,T; L?). In this paper, we consider the rate of this convergence.
When ¢ tends to 0, how rapidly does v, converge toward vqg ? We show in Theorem 1 the
upper bound of the order for nonlinear case. For linear case, we give the upper bound as -
well as the lower bound in Theorem 2.

This paper is constructed as follows. In Section 2, we state the main theorem. In Section
3, we give Strichartz’s estimate for the Klein-Gordon equation. Using this estimate, we
prove the main theorem in Section 4.

We close this section by giving several notation. We abbrevitate L4(R™) to L? and
L"(I; LY(R™)) to L"LY , where I is a time interval. We denote by H*P? and B;, the
Sobolev space and Besov space of order s, respectively. For any p with 1 <p < oo, r
stands for its Holder conjugate, i.e. p' = p/ (p—1).

2. MAIN THEOREM

We state our main theorem.

Theorem 1. (Nonlinear Case)
Let n =3, A>0and 1 <y < 21/5. We assume that

(2.1) vo. € HY, v € L2,

(2.2) voo € H',

(2:3) sup(eaclm -+ oncl52) < oo
&

(24) ”’UOE — ’UO()”LZZ < 681/4.
Then for every T > 0, there exists ¢ such that
(25) ”’UE - UOHLO"(O,T;LQ) S (581/4.

Remark 1.

In [15], we have shown only convergence of the LHS of (2.5) without specific rate.
Theorem'1 gives an upper bound of the rate of this convergence.
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Theorem 2. (Linear Case)
Let A = 0. We assume (2.1),(2.2),(2.3), and (2.4).

Then for every T > 0, there exists ¢ such that

(2.6) l

Moreover, for any « > 1/4, § > 0, there exist v, and vgy such that

1/4
Ve — 'UO”LOO(O.,T;LL’) <ce /M,

(2.7) , llvoe — voo|ze < ce?,

(2.8) l[ve = voll poeqo, 2y > ce/ .

3. STRICHARTZ’S TYPE ESTIMATE FOR THE KLEIN-GORDON EQUATION

In this section we study the space-time integrability properties of solutions of the free
Klein—Gordon equation for the proof of Theorem 1. To this end we construct Strichartz’s
estimate involving the parameter ¢ for equation (1.2). From Duhamel principle, the
solution v, of (1.2) satisfies the integral equation,

(3.1) v (t) = I(t)voe + Je(t)v1e — é/ot Je(t — s) f(ve(s))ds,

<

where
I.(t) = e (costA, — —2—;4;1 sintA,),

Je(t) = e A;l sintA,,
1

A, = —i_—(cfA + Z) 1/2.

We investigate the operator J.(t).

Proposition 3. For any interval I C R with 0 € I, u € Co(I x R") and pair (¢',r') such
that

1 n,/1 1 1 1 1 2
(32) 5=l 0 3y tane
the following estimate holds :
o t]
(3.3) “/0 ng(t — s)u(s)ds”LooU;LQ) < cllull g 1,0ty

where c¢ is independent of u, I, and ¢.

Proof of Proposition 3.
We introduce the results on decay of solution of Klein-Gordon equation, (see [13]). For
any 1 < ¢ <2 < ¢ < o0, the following inequality holds :

(3.4) | sin((I — A)l/gt)u”[,q(pn) < ct_”(lﬂ—l/q)“U”H(n+2>(1/2—1/q),q'(Rn)-
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e investigate the operator Kg t) = €it € ﬁI‘St, and then the operator JE t). e define
W g 4 W
Ro(t) = etA+e))?,

For 8 > 0, we define (Ugf)(z) = f(Bz) and we use the facts that Uﬂ—1 = Uyg, that f"/?Us

is an isometry on L? and that
Ba(t) = Uppfi(a' PYUL,.
Therefore we have

f(g(t) = 5%1/45(t/€1/2)
= U(4€) 1/2.@1 t/(28)) (4¢ )_1/2.

From this identity and (3.4), we obtain,

(3.5)
| Ke(8)ull e = U1 Rt/ (26) U (45) et o
= s/ & (t/(2¢) U ( ) 1720 2o
ce™PD(t/(2e))™ 1/2 I/Q)IIU45)*1/2UI1H(1.+2)<1/2 o

= ™D (t/(2))/2-D||(T — AYL/DFDA/2-1/0)

)

= ce™PD(t)(2)) YD)\ U~ (4) iy
)
(

IN

(4 ) 1720 Lo
(I — 4eAY /D021y

= ce™PD(t/(2e))” n(1/2-1/q) —n/(2q)“(4€A+ 1)(1/2) n+2)(1/2— 1/q)u”
= (/2= l/q)” de A+ 1)(1/2)(n+2)(1/2 1/q) u||

Thus

“/K (t—s)u )ds

The Hardy-Littlewood-Sobolev inequality in time implies

< C/ It — 5| (/2719)|| (4 A + 1)(1/2)(n+2)(1/2 YDy]|,

< cf|(4eA + 1)(1/2)(n+2)(1/2_1/q)u”L"'L‘l'7
LT L%

(3.7) ”/(;[ K (t — s)u(s)ds

with

2/r=n(1/2-1/q).
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We denote by (, ) the L? scalar product and estimate
(3.8)

/ Kot — s)u(s)ds|
Lo L2
t ¢,
= sup (/ el(t=9) ey (5)ds ,/e’(t_s )Asu(s')ds')
0

= sup / ds’ < / (5= (4o A 4 1)~ WOHDA2-1Dy()ds | (4e A+1)(1/4><n+2>(1/2—1/q)u(5f>)

< / K (s — s)(4dc A+ 1)—(1/4)(”+2)(1/2_1/q)u(s)ds

< cf|(4eA + )OO DT,

(de A + 1)OEHD/2-1/0),,

LrLe ” L' Ld

We used the Holder inequality in space and time at third inequality. Last inequality is
from (3.7). We consider the operator J,. We know

1
ZJ(t
B

=l (deA+ 1)K (1)l 2.

L

Therefore we have from (3.8)
t1
(3.9) ‘/0 gjs(t — s)u(s)ds b < c||(4eA + 1)(1/4)(n+2)(1/2—1/q)—1/2u”Lr,Lq,

The following inequality holds for any a >0, 1 < p < oo,
(3.10) [(4eA + 1) %ul|z» < cffu] r,

here ¢ is independent of v and €.
Therefore we have

(3.11) H/ (t — 8)u(s)ds

with

< clju
LeL?

L' L'

(1/49)(n+2)(1/2-1/¢) —1/2<0.
This is expected estimate.

4. PROOF OF THE MAIN THEOREM

At first, we recall some properties of the solutions of nonlinear Klein—Gordon equation
and nonlinear Schrédinger equation. From the assumption (2.1), there exists a unique
solution v, of (1.2) such that (see [14])

ve € L®(0,T; HY) n L"9(0,T; B,3""),

with
20(q) 2 11
n+l r(g)(n-1) 2 ¢ ’
Moreover by the assumption (2.3) and the energy conservation for (1.2), we obtain

2<g<oo, n<3.

(41) Ssg%)(”U&”L""(O,T;HI) + ”U5”LT(‘I)(O,T;B;;"(‘”)) < 0.



For the case of equation (1.3) , there exists a unique solution (see [8])
vy € L®(0,T; HY) N L*P(0,T; W'?P),

with

2 1 1 9<p< 2n
—=nl-—— ] .
s(p) 2 p)’ PS5
From the conservation laws of energy and charge for (1.3) , we obtain

(4.2) II’U()”LOO(O’T;HI) + ||UO||Ls(p)(O’T;W1,p) < 00.

Proof of Theorem 1.

We consider the case of space dimension 3. The solution v, of (1.2) satisfies (3.1) .

solution vy of (1.3) satisfies

t ,
(43) volt) = Tolt)ooo = i [ To(t = 5)f(vo(s))ds,
with .
Io(t) = e——zAt.
We study v, — vg. Subtracting (4.3) from (3.1) yields
5
(4.4) ve(t) —wo(t) = Y PO(8),
i=1

with
(4.5) PO(t) = (I.(t) — Io(t))voo,
(4.6) P(t) = L(t)(voe — voo),
(4.7) Ps(3)(t) = Je(t)vie,

L 1
(4.8) PO(t) = /0 (ilo(t = 5) = ZJe(t = 9)) f(vo(s))ds,

. 1t
(4.9) PO = = [ Jelt = $)(fluols)) = Flue(s)))ds.
We investigate ||ve — vo|| ee(o,r;12) 5
5
(4.10) l|ve — ""OHLOC’(O,T;L'-’) < Z ||PE(’)| L>=(0,T;L?)-
=1

With respect to PE(5) , we use Proposition 3 to have

(4.11) 1P| 1 0,7:02) < el f (ve) = F(vo)ll ot 0.0t

where
_l_3(11y 11 9
o 2\¢ 2 274 710

The Hoélder inequality implies

(4.12) I| fve) — f(vd)”,,r L S c(]|ve

T+ lvoll T po)llve = voll o 12,

85

The
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where
1 ~v-1 1 1 -1
(4.13) ¢ b + 2 ' M e
We use the following embedding results,
1 1 1-o
Bl_—(r Lb Iz _ :
02 55 b ¢ n
1 1 1
whicrt —=--2
b ¢ n

From this results and (4.1),(4.2), we estimate
(4.14) sup ||vellzezs + ||vol| Lere < o0
e>0
Considering (4.13), if v < 21/5, we can take a < 8 , and
(4.15) oullzese + ool iee < T8 (ol gs s + ol o).

Thus we obtain

1P
We have from (4.10),

peoorizzy < TRy, — vy poogorsy.-

(4.16) (1 = ¢TG4, — wy

4
Lo=(0,T;L2) < Z |P( L°°(0,T;L‘~’)

For sufficiently small T, we have

4
Leo0,512) < € 9 [P poeorriney.
=1

(4.17) l|lve — wol

So we have to study the rate of convergence for PV, i = 1,2,3, 4.
For PV, we rewrite costA,,sintA, with ¢4 e “itA. and rearrange,

I(Z(t) = To(t))vooll cooze < {(1/2)(1 + (deA + 1)72)esimite — =tA}yoo|l oo
(4.18) +[1(1/2)(1 — (deA + 1) 7 2)ede A pgy | oo o

< [[(e3e 44 — g oo

+ (1 = (4eA + 1)7%)gol| 2

=||(e"* — 1)vgol| poe 12

here we have set
a. =1/(2¢) — A, + A,
be =1 — (4deA+1)712
We study the operator a.,b. . From the Parseval relation, we have -

I

| 2.
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We set @ = 1/(2) — 1/(2¢)(4¢|€]? + 1)1/2 + |¢]? and estimate
et — 1] < 2,
le'tée — 1| = i /Ot €% ds|
< laet]
= t[ale]"/((elé + Y2 + 17
< dte|g]*.

Thus
eztas _ 1‘ S 21_0(4t5|€|4>6, 0 S 0 < 1.

Considering assumption (2.2) , we set § = 1/4,

I(e™® — 1)wool|zoer2 < clt" e[ voo]l poor2
(4.19) < T e [[€ wgol| 12
< cel/d,
Similarly, we have
|1 — (4elé+)7? < 2,
|1 — (4el€]” + 1)7%) = |4el€]/((4el€]” +1)72 + 1)(4elé]* + 1)
< 4el¢)?,

then ~
10| = 11 = (4el€]” +1)71/7] < (4eg]?) /2212,
From this, we have
(4.20) l|bevool| 2 < ce'/?.
Thus we have from (4.18),(4.19) and (4.20),

(421) ”P;l)”Loo]} < 061/4.

From (2.4) and  sup ||I.(t)||gz2) < o0, we have
t€[0,T],e>0

(4.22) ”P5(2)”L°°L2 < C|voe — vool| 2
< cellt,

The assumption (2.3) especially for vy, implies

(4.23) | PO ooz = ||2¢7 sintA, e(deA +1)7 20 || oo 2
= ||2¢(4e A + 1)V 20y || 2
< cgl|viel| 2
< 051/2.

In order to estimate P4 | we show that f(vo) = Alvg|""'vg € L'H' .
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From |V f(vo)| < c|vo|""!|Vug| , we have
(4.24) 1 (wo)llmrs < e(llf (vo)llzz + IV £ (wo)ll 2)
< e(llvoll 2 + IV vollz2) Ilwoll3="
From (4.2), vy satifies
(4.25) vo € L"OWY ¢ L op® >3

We continue the estimate as

(4:26) 1 (el < ¢ / Uvollze + [V eo]z2) eol3="ds

(ol + [V oolliz2) [ Juolli=ds
< cllollzss + 90ll=22) Tollirze

provided
v—1<r=4¢/(3q—6).

Considering g > 3, we have for 1 <~ <3,
(4.27) I1f (woll L ar < oo
We rewrite P

t . 1
(4.28) P® = / (e~ 409 _ j(de A + 1)72ei =49 £y (5))ds
0
t o
+ i/o (4eA 4 1)712e G+ A)1=9) £(40(5))ds

Regarding I; , the same arguement with P() and (4.27) proves
(4.30) 1)) poor2 < ce'/4,

The convergence of ||I;||z=~z2 is obtained by a technique from the Riemann—Lebesgue
Theorem. We define, with the characteristic function X (s),

9(s) = Xpog(s)(4eA + 1)71/2e a4 f(yq(5)).
We have
(4.31) L= /°° ~i(3HADS o (6)ds

= / (2 +4e) e+ (s 4 7e)ds
/ () + g(s + me)e Gt AT il +A0s g
5 /°° (g(s) — g(s + me))e {43 s
+/ (s 4 me)(1 + e~ilzetAdTe)o=ilzc +A Sds)

= ([ Ir5).
2( 21+ 2,2)
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For I, we have

‘1 + e~ Gt e e+ 2)me| ce|€]?,

then
(4.32) L2zl Loz < ce'/2.
We utilize Proposition 3 for Iy,

(4.33)
1 12,1]| Lo 22

= /0-:6(45‘4 +1)7M 2 G A (X0 0(5) F(v0(s)) = Xio,q(s + 7€) f(vo(s + me))) ds|
< CHX[O,ﬂ(s) F(vo(s)) = Xjou(s + 7€) f(vo(s + &)

= || f(vo(s)) — f(vo(s + 7))
=Ir11+ 121

L>[?

L' (0,T;L7")

L (04—me;Le'y T C”JC(UO(S))”Lv"(t—vrs,t;m’)

Concerning I 2, we estimate

i 1/
Baa= ([ Iw)l5)"
t—7me

< ¢]|vol| , et

~
Lee Lve

Considering (3.2), we have 1/r' > 1/4. For arbitrary 1 < v < 5, there exists ¢’ such that
2 < v¢' < 6. Therefore we obtain

(4.34) Ipyo < ce'.
By the Holder inequality, we have
(4.35) L1 < cll|uo(s) g0 + llvo(s + 7&) | T o) llvo(s) = vols + me)l| o,
where
1 v-1 1 1 ~4-1 1
4.36 _——_1 —— —_ —_— —_—
(4.36) ' q 10 + b’ 7! 10 + a’

with « = 4(y+1)/(y —1), b =3(y+ 1)/(y + 2). Investigating under (3.2), there exist
(¢',r"), for 1 <~y < 5, satisfying (4.36). From (4.2) and embedding results, we have

(4.37) Ly < cllvo(s) — vo(s + me)||pare-

We now introduce another property of the solution of the nonlinear Schrondinger equation
(see [12])

(4.38) v € BY>(I. LY).
An cquivalent norm of the space is

_X/QH’U.(S) — U(S -+ T)”L’"(I;,p;L”)v

(4.39) Wl pis2e,y 70y = sUp T
Boo ™ (1Y) 0<T<é
where 6 and ¢ are sufficiently small and

Ig = {s| s,s+ 7€ I}.



90

Therefore we have obtained

(4.40) ~ Ly < ce'l?,

and therefore

(4.41) | PO oo 2 < e/,
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