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ARGUMENT ESTIMATES OF CERTAIN
MEROMORPHIC FUNCTIONS

‘Nak Eun Cho, Soon Young Woo and Shigeyoshi Owa

Abstract. The object of the present paper is to derive some argument properties of certain mero-
morphic functions in the punctured open unit disk. Furthermore, we investigate their integral-

preserving property in a sector.

1. Introduction

Let ¥ denote the class of functions of the form

which are analytic in the punctured open unit disk D= {2:2€ C and 0 < |z| <
1}. We denote by £*(y) the subclasses of ¥ consisting of all functions which is
meromorphic starlike order vy in Y = DU {0} (0< vy < 1).

For analytic functions g and h with g(0) = h(0), g is said to be subordinate to
h if there exists an analytic function w such that w(0) = 0,|w(z)| <1 (z € U),
and g(z) = h(w(z)). We denote this subordination by g < h or g(z) < h(z).
Let

zf'(z) 1+ Az
f(2) = 1+ Bz

E*[A,B]:{fEA: (z€L[;—1§B<A§1)}. (1.1)

In particular, we note that X*[1 — 2y, -1] = £*(y) (0 < v < 1). Furthermore,
from (1.1), we observe [5] that a function f is in $*[A, B] if and only if

A-B

zf'(z) 1-—AB
+
1- B2

f(z) = 1-B2 (;1<B<A51; z € U). (1.2)
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A function f € ¥ is said to be in the class 3.(v,B) if there is a meromorphic
starlike function g of order v such that

[ .
Re{g(z)}>ﬁ 0<pB<1l;zel).

Libera and Robertson {2] showed that ¥.(0,0), the class of meromorphic close-
to-convex functions, is not univalent. Also, ¥.(y,3) provides an interesting gen-
eralization of the class of meromorphic close-to-convex functions [6].

In the present paper, we give some argument properties of the aforementioned
classes of meromorphic functions in the open unit disk. An application of a certain
integral operator is also considered.

2. Main Results

In proving our main results, we need the following lemmas.

Lemma 2.1 [1]. Let h be convez univalent in U with h(0) = 1 and Re (Bh(z)+
v) > 0(8,v € C). If q is analytic in U with q(0) =1, then

4@ (o
1)+ gy 7 <M (et

implies

q(z) < h(z) (z €elU).

Lemma 2.2 [3]. Let h be convex univalent in U and X be analytic in U with
Re A(z) > 0. If q is analytic in U and ¢(0) = h(0), then

q(z) + M2)z¢'(z) < h(z) (z€U)

implies
q(z) < h(z) (z€lU).

Lemma 2.3 [4]. Let g be analytic in U with ¢(0) = 1 and q(z) # 0 in U.
Suppose that there exists a point zg € U such that

|arg a(2)| < Zn for I2s| < |l (2.1)
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and -
l arg q(zo)i = 3" (0<n<1). _ (2.2)
Then we have ( )
209 \Z0 .
= ’Lk‘ y 2.3
q(20) 7 23)
where
k>l a+l when arg q( )—E (24)
=5 a g g\zo0) = 277 .
1 1 T
< - —_ LI —— f
k< 5 (a—l— a,) when arg q(zo) 57 (2.5)
and . .
q(z0)" = %ia (a > 0). (2.6)

By using above lemmas, we now derive

Theorem 2.1. Let f € ¥ and suppose that

(1+B)>a(2+A+B) (-1<B<A<1; O<a<%).

If

g (LN (ol )

s
azg'(z) + (1 — a)g(z) ﬁ>l<§5 (QSﬂ<1,0<551)

for some g € £*[A, B], then

s (-5 -5)

where n (0 < n < 1) is the solution of the equation :

< ™
2777

N nsin[Z{1 - t(4, B,a)}] 2.7)
™ (H‘% +1- 1) +ncos[Z{1 —t(4, B,a)}]

and
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2 i A-B
t(A,B,a)z;T—sm 1((%_1)(1_32)_(1_143))- (2.8)
Proof. Let
1 zf'(2) and  (z :_zg’(z)
=125 (G ) ma =7

Then, by a simple calculation, we have
__1 (az@fTﬂY-FUf—aka@_+ﬁ>
1-8\  azg'(z) +(1-a)g(2)

— o(z 2q ()
= Ty

Since g € X*[A, B] , from (1.2), we have

1+ Az
1+ Bz

r(z) < (zel).

If we let
(@) + (- 1) =pe ¥ (s,

then it follows from (1.1) and (1.2) that

iTB <p< B

1_1)(1+B)—(1+A4) (1-1)(1-B)-(1-A)
{—t(A,B,a) < ¢ < t(A,B,a).

where t(A, B, ) is defined by (2.8).

Let h be a function which maps U onto the angular domain {w : |argw| < 34}
with h(0) = 1. Applying Lemma 2.2 for this h with A(z) = —_7(;51—_017?1, we see
that Re q(z) > 0 in U/ and hence g(z) # 0 in U.

If there exists a point zp € U such that the conditions (2.1) and (2.2) are

satisfied, then (by Lemma 1) we obtain (2.3) under the restrictions (2.4), (2.5)
and (2.6).

At first, we suppose that

{ﬂm»%;m (a > 0).
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Then we obtain

_a20(20/'(20))" + (1 — )20 f'(20)
e ( azg (z0) + (L= a)glzo)  © )
ZoQ’(Zo) )
—T(Zo) + (é‘ - )

= arg {q(ZO) (1 + z(;q(,z(:)o) —r(zo) i (L- 1)>}

= axg {q(z0)} +arg (1+ink(pe'¥) 1)

= arg (q(ZO) +

Do (S0 )
— gnttan (p+nkcos[-§(1—¢)1
- ~ nsin[Z{1 — t(4, B,a)}]
> on+tan [ 2 *
2 ((Lx 1)(11_33) @ A)) +ncos[§{1-—t(A,B,a)}])
_Ts
5 ’

where ¢ and t(A, B, ) are given by (2.7) and (2.8), respectively. This ev1dently
contradict the assumption of Theorem 2.1.
Next, we suppose that

3=

9(z0)" = —ia (a>0).

Applying the same method as the above, we have

_az0(20f'(20))" + (1 — a)zof"(20)
ae ( azog’(20) + (1 — a)g(20) ﬂ)

S nsin[3{1 - (4, B,a))]
-2 (S=ROEUD) 4 g cos[3 {1 - (4, B, @)}

T
=—=6
2 ?
where § and ¢(4, B, ) are given by (2.7) and (2.8), respectively. This also contra-

dict the assumption of Theorem 2.1. Therefore, we complete the proof of Theorem
2.1.

Letting A=1, B=0and § = 1 in Theorem 2.1, we have
Corollai'y 2.1. LetfeX If
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g [ @) + (- @)f(2) 1
R{ oz (2) + (1= 2)g(2) }> B 0<a<zi0<h<l)

for some g € ¥ satisfying the condition :

zg'(2)

9(2)

+1|<1 (z el),

then

—Re{zgéz)} > 8 (0<B<1).

If we put g(z) = 1 in Theorem 2.1, then, by letting B — A (A < 1), we obtain

z

Corollary 2.2. Let feX. If

then
|arg {—2%f'(z) - B}| < %n,

where n (0 < n < 1) is the solution of the equation :

5=n+ ?T-tan-l (o). (2.9)

The proof of Theorem 2.2 below is much akin to that of Theorem 2.1. The
details may be omitted.

Theorem 2.2. Let f € ¥ and suppose that
(1+B)>a(2+A+B) (-l<B<A<1l 0<a< -é-).

I

0x(zf () + (1= )z (2))| _ = |
e (94 e )| <7 (5> 1 0<6<
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for some g € $*[A, B], then

zf’(Z)>’ <7

arg <ﬂ+ o) 57

where n (0 < n < 1) is the solution of the equation (2.7).
For a function f belonging to the class X, we define the integral operator F,, as

follows :
Fufr=zawxa::1‘”ﬂét%4fawt (2.10)

1
aza"l

1
(0<a<§; z € D).

The following Lemma will be required for the proof of Theorem 2.3 below.
Lemma 2.4. Let f € ¥ and let h be a convex (univalent) function in U with
h(0) =1 and Re{h(2)} > 0inU. If

zf'(2)
) < h(z) (ze€lU),

then F ()
— Faa(f) < h(z) (z€el),

for max,cy Re h(z) < £ —1 (0 < a < 1), where F, is defined by (2.10).
[ 2

Proof. From the definition (2.10), we get

azFo(f)(2) + (1 - )Fa(f)(2) = (1-2a)f(2) (2.11)
a | _ 2B
G ="F0n
Then (2.11) yields '
(Lo = (1_,) &)
- (1) == (a-2) iy 212

Taking logarithmic derivatives in (2.12) and multiplying by z, we get

W@ @
R ST C MR
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Therefore, by Lemma 2.1, we have that g(z) < h(z) for max,ey Re h(z) < L —
10<a< %) This evidently completes the proof of Lemma, 2.4.
Next, we prove

Theorem 2.3. Let f € ¥ and suppose that

1
(1+B)>a(2+A+B) (-1<B<A<L]I; 0<a<—2—).

If

oz @Y+ =02 @) _ N Ty 0t go 1
arg ( 029 @) T (= 2)9(2) ﬁ)‘<25 0<a<l; f>1,0<6<1)

for some g € £*[A, B], then

az(zFL()) + (1 — a)zFL(f)
e (“ azF’(g) + (1 — @) Falg) ﬁ)

where F, is given by (2.10) and n (0 < n < 1) is the solution of the equation (2.7).

< gn, (2.13)

Proof.  Since g € ¥*[A, B], by applying Lemma 2.4; the function F,(g) be-
longs to the class XA, B]. Then, from (2.11), we get

_az(ZF () + (1 —a)zF(f) _ _2f'(2)
azFi(g) + (1 — &) Fa(g) g(z)

Hence, by the hypothesis and Theorem 2.1, we have (2.13), which completes the
proof of Theorem 2.3.

Taking A =1, B=0and § =1 in Theorem 2.3, we have
Corollary 2.3. Let fe X. If
o {2EE )+ 01— ef 2
azg'(z) + (1 — a)g(z) .

for some g € ¥ satisfying the condition :

} > B (0<B<1)

zg'(2)

9(2)

+1|<1(zeL{),

then

e { SR (- )

azF.(g) + (1 — a)Fa(g) } > B (0<B8<1).
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Putting g(z) = % in Theorem 2.3, and then, by letting B — A4 (A < 1), we
obtain :

Corollary 2.4. Let feX. If

;arg (_ 2(f'(2) + azf"(2)

™ 1
— = = 0< : <
1—2a ﬁ>|<25 (0<oz<2,O_ﬁ<1,0<(‘)'_1)7

then

2(F! F/ 1
arg (—z ( “({)j?f a (/) —ﬁ), < gn (0<a<z0<B<10<6<1),
where n (0 < n < 1) is the solution of the equation (2.9)

By a similar method of the proof in Theorem 2.3, we get

Theorem 2.4. Let f € ¥ and suppose that

(1+B)>a(2+A+B)(-1<B<A<1; 0<a<—21-); '
If

0 0<a<1l;8>10<6<1)

0z(zf'(2)) + 1 —@)zf'(2)\| =
o8 (ﬁ T ez (o) F (L= a)g(z) )l<2

for some g € £*[A, B), then

az(:F4(f)) + (1~ D) 7,
azFy(g) + (1 - a)Fale) )| = 2™

where Fy is given by (2.10) and n (0 < n < 1) is the solution of the equation (2.7).

< - (2.13)

arg </@ +

Finally, we prove

Theorem 2.4. Let fe X. If

larg {—(a%)—)z+(l—a)—z§é—§)>—ﬁ”<g5 (@<0;0<B<1;0<d<1)
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for some g € £*[A, B], then

zf'(2) > ™™
arg | —————= -0 }| < —,
® ( g(2) 2
and n (0 < n < 1) is the solution of the equation :
2. —ansin[g =)
§=n+ =tan!
T (%—}%—ancos[ Z{1 —sin~ (AA%)}]

Proof.  Setting

_ 1 (4@ %)
o) =125 (LE 4 5) wna ra)= -2,

we have

L (PR )
-5 ( 7o T ”)

azq'(z)
=q(z) + )

The remaining part of the proof of Theorem 2.5 is similar to that of Theorem 2.1,
and so we omit it.
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