# Integral Means of the Fractional Derivative for Certain Starlike and Convex Functions of order $\alpha$

Tadayuki Sekine[関根忠行 日大薬学部]\*
Kazuyuki Tsurumi[鶴見和之 東京電機大工学部]<sup>†</sup>

#### Abstract

In this paper we study a subclass of analytic functions consisting of functions of the form

$$f(z) = z - \sum_{k=n+1}^{\infty} e^{i(k-1)\vartheta} a_k z^k \quad (\vartheta \text{ real}, \ a_k \ge 0; \ n \in N).$$

We show the integral means of the fractional derivative for starlike and convex functions of order  $\alpha(0 \le \alpha < 1)$  belonging to the subclass.

## 1 Introduction

Denote by A the class of functions f(z) of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

that are analytic in the open unit disk  $U = \{z : z \in C, |z| < 1\}$ , and by A(n) the subclass of A consisting of all functions of the form

(1.1) 
$$f(z) = z - \sum_{k=n+1}^{\infty} a_k z^k \quad (a_k \ge 0 \; ; \; n \in \mathbb{N} = \{1, 2, 3, \cdots\}).$$

We denote by T(n) the subclass of A(n) of univalent functions in U, further by  $T_{\alpha}(n)$  and  $C_{\alpha}(n)$  the subclasses of T(n) consisting of functions which are starlike of order  $\alpha(0 \le \alpha < 1)$  and convex of order  $\alpha(0 \le \alpha < 1)$ , respectively. These subclasses T(n),  $T_{\alpha}(n)$  and  $C_{\alpha}(n)$  were introduced by Chatterjea[1]. When n = 1 these notations are

<sup>\*</sup>College of Pharmacy, Nihon University, Funabashi-shi, Chiba 274-8555, Japan

<sup>&</sup>lt;sup>†</sup>Department of Mathematics, Faculty of Technology, Tokyo Denki University, Kanda, Nishiki-cho, Tokyo 101-8457, Japan

usually used as T(1) = T,  $T_{\alpha}(1) = T^*(\alpha)$  and  $C_{\alpha}(1) = C(\alpha)$ , which were introduced earlier by Silverman[7]. Chatterjea[1] showed that a function f(z) of the form (1.1) is in  $T_{\alpha}(n)$  if and only if  $\sum_{k=n+1}^{\infty} (k-\alpha)a_k \leq 1-\alpha$ , and that a function f(z) of the form (1.1) is in  $C_{\alpha}(n)$  if and only if  $\sum_{k=n+1}^{\infty} k(k-\alpha)a_k \leq 1-\alpha$ . In the case of n=1 these results coincide with Theorem 2 and Corollary 2 of Silverman[7], respectively.

Denote by  $A(n, \vartheta)$  the subclass of A consisting of all functions of the form

$$f(z) = z - \sum_{k=n+1}^{\infty} e^{i(k-1)\vartheta} a_k z^k \quad (\vartheta \text{ real}, \ a_k \ge 0; \ n \in N)$$

(see, Sekine and Owa[6]).

We note that A(n,0) = A(n). We define the subclasses  $T(n,\vartheta)$ ,  $T_{\alpha}^{*}(n,\vartheta)$  and  $C_{\alpha}(n,\vartheta)$  of  $A(n,\vartheta)$  by the same way as those for the subclasses T(n),  $T_{\alpha}(n)$  and  $C_{\alpha}(n)$  of A(n), respectively. Then it is clear that T(n,0) = T(n),  $T_{\alpha}^{*}(n,0) = T_{\alpha}(n)$  and  $C_{\alpha}(n,0) = C_{\alpha}(n)$ .

Sekine and Owa[6] proved that a function f(z) in  $A(n,\theta)$  is in  $T^*_{\alpha}(n,\theta)$  if and only if

(1.2) 
$$\sum_{k=n+1}^{\infty} (k-\alpha)a_k \le 1-\alpha$$

and that a function f(z) in  $A(n, \vartheta)$  is in  $C_{\alpha}(n, \vartheta)$  if and only if

(1.3) 
$$\sum_{k=n+1}^{\infty} k(k-\alpha)a_k \le 1 - \alpha.$$

We note that the coefficient inequalities (1.2) and (1.3) do not contain  $\vartheta$  and coincide with the coefficient inequalities for  $T_{\alpha}(n)$  and  $C_{\alpha}(n)$  of Chatterjea[1], respectively.

We have the following results needed later. Since the proofs are similar to those in [5], we omit the proofs(see, [5]).

Theorem 1.1 The extremal points of  $T^*_{\alpha}(n, \vartheta)$  are functions

(1.4) 
$$f_1(z) = z \text{ and } f_k(z) = z - e^{i(k-1)\vartheta} \frac{1-\alpha}{k-\alpha} z^k \quad (k \ge n+1).$$

Theorem 1. 2 The extremal points of  $C_{\alpha}(n, \vartheta)$  are functions

(1.5) 
$$f_1(z) = z \text{ and } f_k(z) = z - e^{i(k-1)\vartheta} \frac{1-\alpha}{k(k-\alpha)} z^k \quad (k \ge n+1).$$

# 2 Fractional derivative and Subordination

In this section we recall the concepts of fractional derivative and subordination. Further we give several known results needed later.

Definition 2.1 ([4]) The fractional derivative of order  $\lambda$  is defined by

$$D_z^{\lambda} f(z) = \frac{1}{\Gamma(1-\lambda)} \frac{d}{dz} \int_0^z \frac{f(\xi)}{(z-\xi)^{\lambda}} d\xi \quad (0 \le \lambda < 1),$$

where f(z) is an analytic function in a simple connected region of the z-plane containing the origin and the many-values of  $(z - \xi)^{-\lambda}$  is removed by requiring  $\log(z - \xi)$  to be real when  $z - \xi > 0$ .

### Remark 2.1

(2.1) 
$$D_z^{\lambda} z^m = \frac{\Gamma(m+1)}{\Gamma(m+1-\lambda)} z^{m-\lambda} \quad (m \in N),$$

where  $0 \le \lambda < 1$ .

For analytic functions g(z) and h(z) in U with g(0) = h(0), g(z) is said to be subordinate to h(z) if exists an analytic function w(z) so that w(0) = 0, |w(z)| < 1 ( $z \in U$ ) and g(z) = h(w(z)), we denote this subordination by  $g(z) \prec h(z)$ .

In 1925, Littlewood[3] proved the following subordination theorem.

Theorem 2.1 ([3]) If g and f are analytic in U with  $g \prec f$ , then for  $\lambda > 0$  and 0 < r < 1,

$$\int_0^{2\pi} \left| g(re^{i\theta}) \right|^{\lambda} d\theta \le \int_0^{2\pi} \left| f(re^{i\theta}) \right|^{\lambda} d\theta.$$

Making use of Theorem 2.1, Silverman[8] proved the following integral means for univalent function with negative coefficients.

Theorem 2. 2 ([8]) Suppose  $f(z) \in T, \lambda > 0$ , and  $f_2(z) = z - z^2/2$ . Then for  $z = re^{i\theta}, 0 < r < 1$ ,

$$\int_0^{2\pi} |f(z)|^{\lambda} d\theta \le \int_0^{2\pi} |f_2(z)|^{\lambda} d\theta.$$

Further, Kim and Choi[2] showed the integral means of the fractional derivative for T, C,  $T^*(\alpha)$  and  $C(\alpha)$ . In this paper, we show the integral means of the fractional derivative of order  $\lambda$  for the functions belonging to  $T^*_{\alpha}(n; \vartheta)$  and  $C_{\alpha}(n; \vartheta)$ .

## 3 Results

Theorem 3. 1 Suppose  $f(z) \in T^*_{\alpha}(n; \vartheta)$ ,  $\beta > 0$ , and  $f_{n+1}(z)$  is defined by (1.4). Then for  $z = re^{i\theta}$  and 0 < r < 1,

$$\int_0^{2\pi} \left| D_z^{\lambda} f(z) \right|^{\beta} d\theta \le \int_0^{2\pi} \left| D_z^{\lambda} f_{n+1}(z) \right|^{\beta} d\theta \quad (0 \le \lambda < 1).$$

**Proof.** If  $f(z) \in T^*_{\alpha}(n; \vartheta)$ , then we have  $f(z) = \sum_{k=0}^{\infty} e^{i(k-1)\vartheta} a_k z^k$   $(a_k \ge 0)$ . By Remark 2.1 for the function f(z), we have

$$D_z^{\lambda} f(z) = \frac{z^{1-\lambda}}{\Gamma(2-\lambda)} \left( 1 - \sum_{k=n+1}^{\infty} e^{i(k-1)\vartheta} k a_k \Phi(k) z^{k-1} \right),$$

where

$$\Phi(k) = \frac{\Gamma(k)\Gamma(2-\lambda)}{\Gamma(k+1-\lambda)} \quad (k \ge n+1).$$

Since  $\Phi(k)$  is a non-increasing function of k, it follows that

$$0 < \Phi(k) \le \Phi(n+1) = \frac{\Gamma(n+1)\Gamma(2-\lambda)}{\Gamma(n+2-\lambda)}.$$

On the other hand, for the function

$$f_{n+1}(z) = z - e^{in\vartheta} \frac{1-\alpha}{n+1-\alpha} z^{n+1},$$

we have

$$D_z^{\lambda} f_{n+1}(z) = \frac{z^{1-\lambda}}{\Gamma(2-\lambda)} \left( 1 - \frac{e^{in\vartheta}(1-\alpha)\Gamma(2-\lambda)\Gamma(n+2)}{(n+1-\alpha)\Gamma(n+2-\lambda)} z^n \right).$$

To prove this theorem we must show that

$$\int_0^{2\pi} \left| 1 - \sum_{k=n+1}^{\infty} e^{i(k-1)\vartheta} k a_k \Phi(k) z^{k-1} \right|^{\beta} d\theta \le \int_0^{2\pi} \left| 1 - \frac{e^{in\vartheta} (1-\alpha)\Gamma(2-\lambda)\Gamma(n+2)}{(n+1-\alpha)\Gamma(n+2-\lambda)} z^n \right|^{\beta} d\theta.$$

Since

$$\int_0^{2\pi} \left| 1 - \sum_{k=n+1}^{\infty} e^{i(k-1)\vartheta} k a_k \Phi(k) z^{k-1} \right|^{\beta} d\theta \le \int_0^{2\pi} \left| 1 - \sum_{k=n+1}^{\infty} e^{i(k-1)\vartheta} (k - \alpha) a_k \Phi(k) z^{k-1} \right|^{\beta} d\theta,$$

by virtue of Theorem 2.1, it suffices to show that

$$(3.1) \quad 1 - \sum_{k=n+1}^{\infty} e^{i(k-1)\vartheta} (k-\alpha) a_k \Phi(k) z^{k-1} \prec 1 - \frac{e^{in\vartheta} (1-\alpha) \Gamma(2-\lambda) \Gamma(n+2)}{(n+1-\alpha) \Gamma(n+2-\lambda)} z^n$$

If we put

$$1 - \sum_{k=n+1}^{\infty} e^{i(k-1)\vartheta}(k-\alpha)a_k \Phi(k) z^{k-1} = 1 - \frac{e^{in\vartheta}(1-\alpha)\Gamma(2-\lambda)\Gamma(n+2)}{(n+1-\alpha)\Gamma(n+2-\lambda)} (w(z))^n,$$

then we have

$$(w(z))^n = \frac{(n+1-\alpha)\Gamma(n+2-\lambda)}{e^{in\vartheta}(1-\alpha)\Gamma(2-\lambda)\Gamma(n+2)} \sum_{k=n+1}^{\infty} e^{i(k-1)\vartheta}(k-\alpha)a_k \Phi(k) z^{k-1}.$$

Therefore we have

$$|w(z)|^{n} \leq \frac{(n+1-\alpha)\Gamma(n+2-\lambda)}{(1-\alpha)\Gamma(2-\lambda)\Gamma(n+2)} \sum_{k=n+1}^{\infty} (k-\alpha)a_{k}\Phi(k)|z|^{k-1}$$

$$\leq \frac{(n+1-\alpha)\Gamma(n+2-\lambda)}{(1-\alpha)\Gamma(2-\lambda)\Gamma(n+2)}\Phi(n+1)|z| \sum_{k=n+1}^{\infty} (k-\alpha)a_{k}$$

$$\leq \frac{n+1-\alpha}{(n+1)(1-\alpha)}|z| \sum_{k=n+1}^{\infty} (k-\alpha)a_{k}$$

$$\leq \frac{n+1-\alpha}{n+1}|z| \sum_{k=n+1}^{\infty} \frac{k-\alpha}{1-\alpha}a_{k}.$$

By applying the coefficient inequality (1.2) to the inequality above we have

$$|w(z)|^n \le |z| < 1,$$

that is, |w(z)| < 1. Therefore we have the subordination (3.1).

Theorem 3. 2 Suppose  $f(z) \in C_{\alpha}(n; \vartheta)$ ,  $\beta > 0$ , and  $f_{n+1}(z)$  is defined by (1.5). Then for  $z = re^{i\theta}$  and 0 < r < 1,

$$\int_0^{2\pi} \left| D_z^{\lambda} f(z) \right|^{\beta} d\theta \le \int_0^{2\pi} \left| D_z^{\lambda} f_{n+1}(z) \right|^{\beta} d\theta \quad (0 \le \lambda < 1).$$

**Proof.** By the assumption, we note

$$f_{n+1}(z) = z - e^{in\vartheta} \frac{1-\alpha}{(n+1)(n+1-\alpha)}.$$

Also we note that

$$(n+1)\sum_{k=n+1}^{\infty}(k-\alpha)a_k \leq \sum_{k=n+1}^{\infty}k(k-\alpha)a_k \leq 1-\alpha,$$

that is,

$$\sum_{k=n+1}^{\infty} \frac{k-\alpha}{1-\alpha} \le \frac{1}{n+1}.$$

By means of two notes above, we can prove this theorem by an argument similar to that in Theorem 3.1.

## References

[1] S. K. Chatterjea, On starlike functions, J. pure Math. 1(1981), 23 - 26.

- [2] Y. C. Kim and J. H. Choi, Integral means of the fractional derivative of univalent functions with negative coefficients, Publ. Res. Inst. Math. Sci.(Kyoto) 1062(1998), 47 52.
- [3] J. E. Littlewood, On inequalities in the theory of functions, Proc. London Math. Soc. 23(1925), 481 519.
- [4] S. Owa, On the distortion theorems, 1, Kyungpook Math. J. 18(1978), 53 59.
- [5] S. Owa, T. Sekine, T. Yaguchi, M. Nunokawa and D. Pashkouleva, Notes on certain class of analytic functions with negative coefficients, Internat. J. Math. & Math. Sci. Vol. 12, No. 1(1989), 199 204.
- [6] T. Sekine and S. Owa, Coefficient inequalities for certain univalent functions, Math. Inequal. & Appli. Vol. 2, No. 4(1999), 535 544.
- [7] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. Vol. 51, No.1(1975), 109 116.
- [8] H. Silverman, Integral means for univalent functions with negative coefficients, Houston J. Math. Vol. 23, No.1(1997), 169 174.