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Abstract

The purpose of this note is to try to find necessity for famous theorems on univalency and
convexity by using the Poisson formula. In Section 1, such theorems are stated. Section 2 is
devoted to studying the radius of univalence for several theorems, and the radius of convexity for
the theorems is investigated in Section 3. Several results are improved in Section 4.

1. Introduction

Let n € N = {1,2,3,---} and let A(p) denote the class of functions
(1.1) : f(z)=z+ Z a2
k=2

which are analytic in the open disk U(p) = {z : |z| < p} with the radius p, so when p = 1, U(1) is
the unit disk. Let R(p) be the subclass of A(p) consisting of Re{f’(2)} > 0 in U(p). A function
f(2) € A(p) is called univalent if it never takes the same value twice; that is, if f(z1) # f(z2) for all
points z; and z in a domain D of complex plane with z; # 2. We denote by S(p) the subclass of
A(p) consisting of univalent functions. Further, a function in A(p) is said to be convez if

1+Re{%‘%§;—)}>0 in U(p).

Let C(p) denote the subclass of A(p) of such convex functions in U(p).

In 1934, Noshiro showed that
Theorem A. (2] If f(z) is analytic in a convex domain D and Re{f'(2)} > 0 there, then f(2) is

univalent in D.
In 1962, MacGregor proved that
Theorem B. (3] If f(2) € R(1), then we have

2
[an|§; for n=2.3,---
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In 1925, Littlewood showed
Theorem C. [1] For any f(z) € S(1), the inequality |a,| < en forn = 2,3, --- holds.
In [4,5,6], the following results are established.

Theorem D. [5,6] For any f(z) € S(1), the inequality |a,| < n holds for all n = 2,3,---. The
equality is valid if and only if f(z) is the Koebe function or its rotation.

Theorem E. [4,5,6] For each f(z) € S(1), there hold the inequalities

(11+ 5 <|f'(2) < 1+r)3 in U(1)
and
(1 +7‘)2 <|f(2)] < '(—? in  U(1).

For a fixed z € U(1), z # 0, the equality occurs if and only if f(z) is the Koebe function or its
rotation.

Theorem E is called the distortion theorem.
In order to establish our results, we need the following lemmas.

Lemma 1. [7] For 0 < r < 1, the equality

. 2rsint 1+7r
dt = 2lo
/0 1—2rcost+ r? BT T

holds.

Lemma 2. [4,5,6] Let u(z) be harmonic in |z| < R and continuous in |z| < R. Then u(z) is
given by the equation

) () = u(re®) = L /2”Re{ (Re*)} i d
. u(z) = u(re “ o Jo u R2—2chos(<p—9)+7‘2 ¥
where 0 < r < R.

The equation (1.2) is called the Poisson formula.

2. Radius of univalence

Proposition 1. Let f(z) € A(1) and
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then f(z) € R(1/3).
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Proof. Differentiating (1.1), we find

Re{f'(z)} = Re(l+2azz+3a3z®+ - +nan2"""+:-°)
_ 27
1-|z|

> 1-2|z]-2/z)2—-- =1

1—|z|—2Jz]  1-3||
1—l2l 1-le]

To prove that f(z) € R(p), we find a possible p under Re{f’(2)} > 0, for which we put 1 —3|z| > 0.
Then we have |z| < 1/3.

Proposition 2. If f(z) € A(1) and

1+ 2|
1— |z

1 — |2]
1+ |z

<If() < in U),

. then we have f(z) € S(p) with p = 0.364184---.

Proof.  Using the Poisson formula, we have

g (7)) = o [ (gl (Re)) {2} ap

for z = re®, € = Re®, 0 < r < R < 1. Taking the imaginary part in both sides of the equation, we

{oe (7)) ar |, {5}
+ {oe (7)o (7))

To find a possible p under |arg f/(z)| < 7/2, we put

(2.1) i—{log (;—g) log (}R;i—:)} = 72_r_

Fixing various values of 0 < R < 1, we solved the equation (2.1) for r by the aid of computer with the
software ‘Mathematica’. Then the maximum of such values r would be a possible p, and we found

that p = 0.364184 - - - is one of the value p.

have

|arg {f'(2)}]

IN

i

Proposition 3. If f(z) € A(1) and |a,] < en (n € N), then we have f(z) € S(p) with
p = 0.0766899- - -.

Proof. By an easy calculation, we have

Re{f'(z)} > 1—-2x2e|z|—3x3elz]*—--—nenlz["' -
= 1-—2%]z| —3%|z|? —--- —nPelz|" 1 - .-
= l+e—e—2%z| —32|z|— - - —nlelz|" 1 — -

e(—r3+3r2 —4r)+(1=7)3
(1-r)3
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for [z| =7 (0 < 7 < 1). To see that f(z) € S(p), we find a possible p under Ref’(z) > 0 for which
we put e(—7° + 3r2 — 4r) + (1 — r)3 = 0. In the same way as Proposition 2, p can be found by using
a computer as p = 0.0766899 - - -.

Proposition 4. If f(2) € A(1) and |a,| < n (n € N), then we have f(z) € S(p) with p =
0.164878 - - -

Proof. By the same way with Proposition 3, we obtain

Re{f'()} 2> 1-2laz|lz| —3lasllz|* — - — nlan|2*~* -
> 1-2x2|z|-3x 3|z = —nxnlz" ! -
= 1-2%z| = 32%|z| — .- —n?z|" ! -

_ o 1+ 2l _ 1-14 + 6|2 — 2|z
(1-1z))® (1-12])°

for |z| =7 (0 <r < 1). To find a possible p for f(z) € S(p) under Ref’(z) > 0, we put 1 — 7r + 672 —
2r3 = 0. The same line with Proposition 2 leads that p = 0.164878 - -- :
Proposition 5. If f(z) € A(1) and

<If @< gl *l’j')a in UQ),

— |
(1 +12)*

then we have f(z) € S(p) with p = 0.232019--.

Proof. From the Poisson formula, we obtain

log {f'(2)} = % /02%r (log | f'(€)1) {

=

for z = rew, &= Re*¥, 0 <r < R < 1. Then we have

w00} = o [ (el ) i {52 )

Taking the absolute value in both sides and applying Lemma 1, we simply have

§+z}

dy

g (G} < 5 [ logls (R fim{
< {os(mp) ) {25
= {os(a=n)) o o e (70))
= 2o (amme) e (R0))
To prove that f(z) € S(p), we find a possible p under |arg f'(z)| < % for which we put

o ()} e ()} -5

dy
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Thus p = 0.232019 - - -

Proposition 6. If f(z) € A(1) and
L SIS e i U,
(T+120)? (1-1z)?
then we have f(z) € S(p) with p = 0.356919 - - -.

Proof. From the Poisson formula, then

arg {f'(2)} = %;/02 (10g|f (Re“")l) Im{g +z}d<p.

Taking the absolute value in both sides and applying Lemma 1, we obtain

o o) o (523))

In order to find a possible p under |arg f'(z)| < 5, we put

o () (e (529} -5

Thus p can be found as p = 0.356919 - - -

3. Radius of convexity

Proposition 7. If f(z) € .A(l) and

1+ 2|
1 — |2

1-14
1 1+ 2| =

then we have f(z) € C(p) with p = 0.194537 - - -.

<If'(2)l < in U(L),

Proof. By means of the Poisson formula, we obtain

log {f'(2)} = 5}7;/02 log |f'(Re™)| {%}dw

for z = re, 0 < r < R < 1. Taking the differentiation in both sides of this equation and Lemma 2,

and an easy calculation leads

zf"(2)
(2)

1 2 ' i 2zRe'
‘%/0 log | f'(Re™)| Rev = 2)? de

1 2 i 2|z|R
R P [ I S,
o /0 ‘log |f (Re )l‘ {IRequ _ 2'2 } d(p

1 [2r . 2Rr
- 1 ! P
27r/0 ' og |f (Re )” R2——2chos(<p—~0)+r2ds0

B AED 1Y
= 27 U ®\1-Rr o R2—2Rrcos(p—0)+r?

- e (122} ()

IA




where we employed the formulas

1 1
R2 — 2Rrcos(p —0) +1r2  |Rel — 2|2

and
1 2w R2 _ ,r.2

2 Jo R2 —2Rrcos(yp — 6) + r2 dp
(Z)

= 1.

<1

To show that f(z) € C(p), let us find a possible p under ' e

o) on foe ()} () =1

Then p is calculated to be p = 0.194537 - - -

Proposition 8. If f(z) € A(1), f'(z) # 0 in U(1) and

. 1
org ()1 < 115

U,

then we have f(z) € C(p) with p = 0.329296- - -

Proof. From the Poisson formula, we have

og (/') = 5= [ arg{f(Rew)}{ o }d«)

The differentiation in both sides of this equation and Lemma 2 lead
azf'(z) / i 2Re*¥ 2
fil(z) — orm arg {f (Re )} (Rei — 2)? dp
zf"(z) / i 2Rr
.fl(z) 2 a'rg Re )}’ {lRei<p _ z|2}dg0
i { 1+ R} 2Rr d
or \1—RJJo RZ—2Rrcos(p—0)+r2 7
B i{1+R}{ 2Rr }
~ 2r l1-R RZ—r2)"
To show that f(z) € C(p), we find a possible p under

1 (1+R 2Rr
(3.2) '2??{1-}1}{32—7»2}"1'

Then p = 0.329296 - - -

IN

l < 1 for which we put

Proposition 9. f(z) € A(1), f'(z) # 0 in U(1) and

|f()|s% in U(),

~ |2|
1+ l])® ~

27
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then we have f(z) € C(p) with p=0.376934 - -

Proof. From a simple calculation, we have

jf = o [ Goglr @) {@2_&—;2—}@

and 1)) 1 1+R 2R
zf"(z r
2L < — 1 .
) | = 2n { o8 ((1 - R)3)} {R2 —72}
In order to attempt for the left side of this inequalities to be less than 1, we put
1 1+R \\ [ 2Rr
. 1 =1
(33) e s (o) Hm o =2

which yields p = 0.376934 - - -.

Proposition 10. If f(z) € A(1) and

<
Q+2)? ~

then we have f(z) € C(p) with p = 0.489936 - - -

1 .
<|f(2)] < a—pEpe ° Uu(),

Proof. By the same way with the above Proposition, we simple have

zf"(2) < %r— {log <(1 —1R)2)} {R22{2—Tr2} -
Putting

®)
(34) e {8 (o)} {mr=me) =2

we have p = 0.489936 - - -

4. Improvement of Proposition 1

We now consider improvement of Proposition 1.

Proposition 11. If f(z) € A(1) and

31w
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then
! _k .
|f'(z) — k| <m in |z|<————m_k+3,

where k >1,1/2<m <k.
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Proof. By means of (1.1), then we have

Ilf'(z)—k| = [1—k+ i na,z" 1!

n=2

o0
< Jk=14 )27
n=2

= |k-1]+2
£ =1+ 22l =
2r
= k-1
k + T
k—1—(k-3)r
= <m
l-7r
where r < (m —k +1)/(m — k + 3), and we have the result.
Proposition 12. If f(z) € A(1) and
2
lan| < =  for n=23,---,
n
then k41
"(z) — ; m-rFTz
Pkl <m in < 2
where 1/2<m <k <1.
Proof. By the similar way as Proposition 11, we have
2r
"(2)—k| = 1-k
|f'(2) — k| + 1
1-k+(1+k)
<m,
1—-7r

wherer < (m—k+1)/(m+k+1).

For the case of K = 1 in Propositions 11 and 12, we obtain

Corollary If f(z) € A(1) and

then

where 1 > m > 1/2.

Remark If we put m = 1 in Corollary, we find that f(z) € R(1/3), which means that Propositions
11 and 12 are improvements of Proposition 1.
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