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- SURVEY ON INTEGRAL TRANSFORMS
IN THE UNIVALENT FUNCTION THEORY

YoNnGg CHAN KiMm

ABSTRACT. The main object of this article.is a survey covering both recent and older
results on the topic. A number of further generalizations, relevant to the conjectures and
open problems, are also considered.

1. Introduction and Definitions

Let A denote the class of functions f(z) of the form :
(1.1) f(z) = ant12™* (a1 :=1),
n=0
which are analytic in the open unit disk
U={z:2€C and |z| <1}.

Also let S denote the class of all functions in A which are univalent in the unit disk U.

A function f(z) belonging to the class S is said to be starlike of order a (0 < a < 1)
in U if and only if '

(1.2) Re(%—?)>a (zeU;0<ax<]).

We denote by S*(a) the class of all functions in § which are starlike of order a in Y.
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A function f(z) belonging to the class S is said to be convez of order o in U if and
only if

(1.3) R;e<1+ Jj;,é())) >a (zeU; 0<a<).

We denote by K(c) the class of all functions in § which are convex of order a in U.
It follows readily from (1.2) and (1.3) that

(1.4) f(z) €K(a) <> zf'(z) €8*(@) (0<a<]l).
If we let D = z4, the equation (1.4) means that

(1.5) feK(a) <= Df € §*(a).

We note also that

(1.6) S*(a) C8*(0)=8* and K(a)CK(0)=Kk (0<a<l),

where §* and K denote the subclasses of A consisting of functions which are starlike

and convex in U, respectively.
The first integral transform defined a subclass of § was introduced by J.W. Alexander

in 1915. In [1], Alexander showed that the operator
, * 24
(1.7) RAE@=RE = [ 1l
0

maps S* onto K. From (1.4), it is clear that
f €8 (a) <= Fo(f) € K(a).

A function f(z) belonging to the class A is said to be close-to-convez in U if there
exists a convex function g(z) such that

(1.8) Re (f:g ;) >0 (z€l).

We shall denote by C the class of close-to-convex functions in U.
Let a,b, and ¢ be complex numbers with ¢ # 0,—1,—2,---. Then the Gaussian
hypergeometric function 3 Fy(z) is defined by ‘ ’

(19) 2F1(Z) = 2F1(a b'c;z)
(@) (b)n 2"
=2

n=0
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where (), is the Pochhammer symbol defined, in terms of the Gamma function, by

(A +n)

(110)  (Vn==Fr,

2{1 (n = 0)
AA+1)--(A+n—1) (neN:={1,23--}).

If Re(c) > Re(b) > 0, then there is a probability measure u(t) on [0,1] (cf., e.g.,
Whittaker and Watson [37,p.293]) such that

(1.11) 2Fi(a,b;c; 2) =/0 (1 — 2zt)"%du(t)

In [22], Miller and Mocanu determined conditions for the Gaussian hypergeometric
function to be starlike in ¢/ and later by [7,Choi et al.].
For the functions f;(z)(7 = 1,2) defined by

(1.12) fi(2) = ajn12™ (@ja =1 5 =1,2),

n=0

let (f1*f2)(z) denote the Hadamard product or convolution of f,(z) and f»(z), defined
by

oo
(1.13) (fr* f2)(2) == Z al,n+1a2,n+1z"+1 (aj1:=1; =1,2).

n=0

From the definition of Hadamard product, it is easy to see that

(1.14) Fo(f)(2) = —log(1 — 2) = f(2)
and
(1.15) - Df(z)= = ) * f(2).

Now define the function ¢(a, c, z) by

(1.16) #(a,c,z) := Z Ea;: ntl (c#0,-1,-2,---; z €U),
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so that ¢(a, ¢, z) is an incomplete Beta function with

(1.17) #(a,c,2) = z 2 Fi(1, a; c; 2).
Note that

(1.18) —log(1 — z) = ¢(1,2, 2)
and

Corresponding to the function ¢(a,c,z), Carlson and Shaffer [6] defined a linear
operator £(a,c) on A by the convolution [6, p. 738, Eqution (2.2)]:

(1.20) L(a,c)f(z) = ¢(a,c,2) * f(2) (f € A).

Clearly, £(a,c) maps A onto itself, and £(c, a) is the inverse of L(a,c), provided that
a#0,-1,-2,---.

In [11], Kim and Srivastava investigated several interesting properties of Carlson-Shaffer
linear operator associated with various subclasses of univalent functions.

A function f(z) belonging to A is said to be in the class V(a,¢; @) if L(a, ¢)f is an
element of S*(a). Further, a function f(z) belonging to A is said to be in the class
W(a,c; ) if zf'(z) is an element of V(a,c;a). Then it is easily verified that

W(a,c; @) = L£(1,2)V (a,c; a) = L(c,a)K(a),
V(a,c;a) = L(2,1)W(a,c; a) = L(c,a)S*(a),

K(a) = W(a,a;a) = L(1,2)V(a,a; a),

and

S*(a) = V(a,a;a) = L(2,1)W(a, q; a),
See [36, Srivastava and Owa] for the further information of these classes.

Ruscheweyh [32] introduced an operator D* : A — A defined by the convolution:

‘ A+1*f(z) (AZ—L ZEZ/{),

(1.21) - D M(z) = A
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which implies that

(1.22) D" f(z) = z(zn—i{!(z))(n) (n € No := NU {0}).
Making use of (1.17) and (1.21), we also have

D f(2) = LA+ 1,1) f(2).
Since D°f = f and D' f = Df, from (1.22) we have

le(Z)}

fesS (o) = Re{DOf( )

D2f(2) a+1
Dif)! > T2

Hence Ruscheweyh gave the following problem in his paper [32] :

fEeEK(a) <= Re{

Problem. Determine the smallest values 0n, such that the condition Re(D ik ) >
dn, z € U, guarantees the univalence of f € A. It is known that §o =0, §; =1 /4

2. History and Problems of Linear Integral Transforms

This section is based on the survey article of Rgnning [30]. The main object of this
section is to study integral transforms of the type

1
(2.1) BOE = [ rola,

where A : [0,1] — R, A(t) > 0 and [, A(t)dt = 1.

For examples, the following authors defined linear integral transforms with special
types of A(t).

(1) Bernardi [3] :

(2.2) A®) = (c+ 1)t°, ¢>—1.

¢ =0 : The Alexander (Biernacki) transform (see(1.7)).
¢ =1 : The Libera transform [19].
(2) Komatu [16] :

(e+1)°

( ) tc(l g(l/t))a—- y €2 _17 52 0.

(2.3) M) =
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(3) Carlson and Shaffer [6] :

I'(c)

b—1714 _ pye—b—1 b 0.
—_—F(b)f‘(c—b)t (1-1¢) , ¢>b>

(2.4) A(E) =

(4) Hohlov [10] (or Kim and Rgnning [13]) :

(2.5)

_ I'(c) 1 e—a— c—al-a
’\(t)'r(a)r(b)r(c—a—b+1)tb (1-1) szl(c——a—-b+1’1_t)

(a>0,6>0,c>a+b-1).

Remark 1. We see that

z

BOE = [ M= £2)

Then, with A as in (2.5) we can write

(2.6) Va(£)(2) = z2Fi(a,b; ¢; 2) * f(2).

Remark 2. In (2.1), if we take ) as in (2.4), from (2.6) it is easy to see that
Va(£)(2) = £(b,¢)f(2),
where L(b,c) is defined by (1.20). '

Let Fj, be the Alexander operator defined by (1.7). In 1960 Biernacki [4] claimed
that f € S implies Fy € S, but this turned out to be wrong. A counterexample was
given by Krzyz and Lewandowski [17] who proved that

f(z) = A=)

is spiral-like in &, and hence in S, but that the corresponding Fp is in fact infinite-valent
in U (c¢f. [Duren, 8]). From this fact, we have the following open problem :
Problem 2.1. Find the radius of univalence in the set {Fo(f) : f € S}

Merkes and Wright [20] proved that Fp(C) C C and also Libera [19] proved that if f
is a member of K, S*, or C then Libera transform F; belongs to the same class, where

2.7) Fi(z) = 2 /0 " flen)dt.
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This result was extended by Bernardi [3] and he defined the more general transform F,
by (2.2). In fact,

(2.8) ' F(z)=(c+1) /01 t° 1 f(tz)dt, c¢>—1.

Also for the Libera transform it is so that there is an f € S such that F} is infinite-valent
nl.

In 1979, Komatu [15] presented two conjectures and considered the linear integral
transform

é 1
(2.9) F() = 5757 [ Go(a/0) Sy

[+ 7% n
=e+ )

n=2

where f(z) is given by (1.1). Note that this transform is a special case of the transform

defined by (2.3).

Conjecture. If f is a member of §* or K, then Komatu transform F¢ belongs to
same class at least for § > 1. '

In 1983, Lewis [18] proved that

fo(z)=z+ Z %z"

n=2

is convex for all § > 0. Since Fg(z) = fs5(2) * f(z), by the convolution properties for the
Polya-Schoenberg conjecture [31] (or [8, p.248]), the Komatu conjecture is true for all
Jd>0.

If we let

(2.10) Hob,o(f)(2) = 22 Fi(a,b;¢;2) * f(2)

for f € A, by using the Gauss summation theorem, Hohlov [10] determined the con-
ditions to guarantee that H, 3 .(f) will be univalent in U for a function f in S. We
note that the Hohlov operator is a natural choice for studying the geometric properties
of it because of its interaction with geometric function theory for the special operator
popularly known as Bernardi operator. In fact the Bernardi operator Fy in (2.8) is
a special case of the Hohlov operator H, 3. whena =1,b=1+1n, ¢ = 2 + 5 with
Ren > —1.
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For 0 < v £ 1 we define the class
P,(8) = {f € AFp € R|Re{e"?((1 — 'y)—f(z—z) ++f'(2) = B8)} >0, ze U}.
Noshiro-Warschawski Theorem gives that
Ref'(z) >0=> f(z) €S  (z €U).

This means that
ReﬂzEl >0=>F(f)esS (z€lU).

The behaviour of (2.8) was investigated by Singh and Singh [34] who proved that —1 <
¢ <0, F, € 8§* if Ref’(z) > 0 in U. Note that this result gives no information about
the case ¢ > 0, so the Libera transform acting on P;(0) is not covered by this result. In
1986 Mocanu proved that

Ref'(z) > 0= F; € §*,

and Nunokawa [26] improved this result.
In[35], Singh and Singh also proved that

Re{f'(s) + 2f"(:)} >~ = f(:) €5* (s €U).
This result implies that
Re(f'(:)} > ~; = Fo(f) €8° (s €U).

After Miller and Mocanu published their papers (cf. [23], [24]), many authors have used
differential subordination techniques, and these have not given sharp results. A new
approach was taken by Fournier and Ruscheweyh in their paper [9], using the duality
theory for convolutions. They found the sharp bound 8 = S, such that F.(P1(8)) C S*.
For examples, they gave that

_1-—2log(2) 3 —4log(2)

Bo = >~ 2log(2) ~ ~-0.629..., B = >~ dlog(2) — —-0.294...,
_ 4—6log(2)
B2 = 5 6log(2) 0.188....

This appears to be an adequate tool when dealing with these types of integral transforms,
and tends to give sharp bounds (see also [29)]).
Recently, by using the similar technique, Kim and Rgnning [13] improved
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Theorem 1. Let

Ly, (k) = inf f tl/v—lA,,(t)( hit;) (l—it)2>dt’

40—[-il 5, 7> 0.

where

Let B be given by

1
- [ A0

where g is the solution to

d 1/v /71 —

FE o) = as, a0 =1
Then

WA(P4(B)) € 8* <= La,(h) 20,

where

2(14 £12)

1- z)2. lol = 1.

h(z) =
Using Theorem 1 and (2.5) we obtain
Corollary 1. Let 1/2 < v < 1 and g(t) be defined as above. Define 8 = B(a,b,c,v)
by
B I'(c)

1-8 T(®T(c—bT(c—a—b+ 1)

f tb—l(l _ t)c_a_sz]_(C —a,l—a;c—a—-b+1;1~- t)g.y(t)dt.
0

Then for f € Py(B),0<a<1,0<b<2andc>a+b wehave Hyp(f) € S*. The
value of B is sharp.

But Corollary 1 does not give the answer of all the cases in (2.5). Hence we suggest
the open problems associated with our paper [13] :
Problem 2.2 In Corollary 1, determine the value S ifa > 0,b>0and ¢ > a+b—1.

Problem 2.3 Find conditions on B and A(t) such that

Va(P4(B)) C S.
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3. Problems of Non-Linear Integral Transforms

During the last several years, many authors have defined and developed several types
of non-linear integral transforms which maps subsets of § into S. In 1978, Miller,
Mocanu and Reade [25] defined a univalent integral operator of the form

z , 1/8
1)) = [ 222 [ et e

and provides extensions and sharpening of all previous results.

Also Miller and Mocanu [21] wrote short history of univalent integral operatos in
the introduction of their paper. From the paper we can see the history of non-linear
integral transforms roughly. Hence, in this section, we shall restrict to give problems of

non-linear integral transforms.
From 1963 many papers have appeared concerning the non-linear integral transform

(3.1) L@ =56 = [ (£2) “at,

where o is complex anf f is in a subclass of S. In particular, if 0 < a < 1 then

Ja(S*(B)) C K(ef + (1 —a)).
Also Merkes and Wright [20] proved that

(ii)—%gag—g—#Ja(s*)CC.

—

(i) — 5 Sa < 1= Ju(C) CC.

In general, it is well-known ([14]) that if |a| < %, then Jo(S) C S. But it remains many
open problems associated with the inclusion theorems of the operator Jo.

Problem 3.1. Find the exact region of the exponents a which lead to the univalence
of the operator J,.

Problem 3.2. If 0 < o < 1, determine 8 = B(a)such that Jo(P1(B)) C S*. For
example, if & = 1, then 8 = %g% = —0.624... (see [9]).

It is well known that if f is univalent in |z| < 1, then

(3.2) , L)) = 1) = [ 1P @)t
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is univalent for each complex a of sufficient small modulus. Pfaltzgraff [28] derived
this result with |a| < 1. On the other hand, Royster [31] showed that I, need not be
univalent for any o with |a| > 1.

From the definitions (3.1) and (3.2) we see that

InoJi=J, and Iy=JyoD,

where D = 2 3‘-1;. For the non-linear integral operators I, and J,, Nunokawa also investi--
gated some inclusion theorems associated with several subclasses of univalent functions

(. [27)).
Let f(z) be a locally univalent function on U. we define the order of f by

—aup| T LK FQ)
(3.3) Ord(f)—cegl (+— 7o) "
Then
(3.4) ord(f) = sup|az(¢)|,
ceu

where az(() is a second coefficient of disk automorphism

1(3) -7

= =z as 22
Fol) =nTpampm — a0 +
Since
. ) )

=« ,
(=) f(2)
In [28], Pfaltzgraff used usefully the equation (3.4) in his proof. Also from (3.1) we have

Jae) _ )
() " CTG)

but J; does not preserve the univalence of f. Note that Jy(z) = Fo(z), where Fy(z) is
defined by (1.7). In Section 2, we already mentioned that the radius of univalence of
the operator Fj is still unknown. Hence we have the following question :

Problem 3.3. If f € S, find ord(J;(f)).
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Remark 3. If f € S*, then Fy(f) € K, so that ord(J1(f)) = 1.

For f € A and o € C, we define
Gal1)(2) = Gale) = [ (F(O)plt)t, =€l

where ¢(z) = % Then

Gl(z) _1+z
T(2) =¢(2) =T

z
where I, is deﬁned by (3.2). From (3.5) and (1.6), we are easy to see that if 0 < o < 1,
then

(3.6)

(3.7) I,(K)cK(1- a) cK.

Hence (3.6) and (3.7) imply that if 0 < a <1 and f € K, then we see that Io(f) € K

e Re (CI;,'(( ))) >0, (z€U).

This means that if 0 < o < 1, then from (1.8) we have
G«(K) CC.
In general,

(3.8) 1.(K) C K = Ga(K) C C.

Problem 3.4. Find the largest value of |a| such that Io(K) C K.
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