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Abstract

We introduce the concept of”the marginal contribution of a player(firm)”
and use it to derive conditions for optimal entry in various industrial situa-
tions. It turns out that, in a competitive economy with a finite number of
goods but with a continuum of potential firms, the marginal contribution of
a firm coincides with the profit of the firm, and so the optimal condition for
entry is that the marginal firms should receive zero profit. We also study the
marginal contribution in the monopolistic competition markets and establish
the ”excess entry theorem” in a new setting.
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1 Introduction
The optimall number of firms in an industry could be either one, two or many
depending on the market structure. The main purpose of this paper is to
introduce the concept of”the marginal contribution of a player( $\mathrm{a}$ firm in the
sequel)” and use it to derive conditions for optimal entry in various industrial
situations. We consider an economy with a finite number of goods but with
a continuum $0_{\perp}^{\mathrm{f}}$ potential firms. The ”marginal contribution of a firm” is
defined roughly as (the limit, as the measure of the firm approaches zero, of)
the difference between the maximal welfare that the economy can attain with
the firm and without it. It turns out that, when there are fixed costs, not all
firms should produce positive outputs even if they have the same production
technology. Under perfect competition, the marginal contribution of a firm
coincides with the profit of the firm, and so the optimal condition for entry
is that the marginal firms should receive zero profit.

Our concept of the ”marginal contribution of a firm” is closely related to
the idea which welfare economists, e.g., Kahn (1935) and Hicks (1939), had in
mind in discussing optimal industrial structure or the ”total conditions” for
optimality. The game theoretic concept of Shapley value (see, e.g., Shapley
(1953), Aumann and Shapley (1971) $)$ is also related to the present concept.
But whereas the Shapley value is the ”expected pay off’ of the game when
all agents are arranged in random order, in our definition, firms are ordered
according to their productivity where productivity is defined in a natural way.
Using this concept we derive conditions for optimal entry which were obtained
verbally or in a partial equilibrium framework by Kahn (1935), Hicks (1939)
and obtained in a general equilibrium framework by Negishi $(1962,1972))^{2}$.
See, also Makowski (1980) and Ostroy (1980) for related discussions.

Our analysis stand.s in contrast with previous studies in that the set of
agents are contained in a non-atomic measure space. The sam$\mathrm{e}$approa-..ch is,
also useful in analy.zing t..h $\mathrm{e}$ problems of the monopolistic competition mar-
ket, as we will show in Section 4. We estab.lish a version of excess entry
theorem which conveys a similar message as in Suzumura and Kiyono (1987)
established for the oligopolistic market. This approach, which follows the

1Our criterion of optimality here is the maximality of the Bergson-Samuelson type social
welfare function. We assume away the problems aesociated with imperfect information and
suppose that the government can attain the optimum by some policy means.

2Negishi’s theorems state that (i) if it is known that positive profit is impossible for
the new firm under prices ruling before entry, entry should not be made and that (ii)if the
new firm is running without a loss after entry, then the firm should have entered after all
(see Negishi (1972)). The last statement needs a careful interpretation if the incumbent
firms are not the most desirable from the welfare viewpoint.
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procedure of Aumann $(1964,1975)$ has the advantage that the marginal con-
tribution of a firm can unambiguously be expressed in terms of the prices and
the allocation of the economy, and the convexity assumptions on preferences
and technologies can be relaxed to a certain extent.

2 A Preliminary example

In order to clarify the nature of the problem and motivate the analysis in
the following sections, we first present a simple example and derive optimal
conditions for entry in this case. In this section all firms are treated discretely,
and the analysis is informal for reasons that will be explained below.

Suppose that the welfare of an economy can be expressed by the utility
$\mathrm{f}.\mathrm{u}$nction

$u=x\cdot(a-l)$ (1)

of a representative consumer, where $x$ is the amount of the consumption
good available to him, $l$ is the amount of labor he supplies and $a$ is a positive
number representing the maximal amount of labor that he can supply in a
fixed time (thus $a-l$ represents consumption of leisure). Let $\underline{J}--\{1,2,3, \ldots\}$

denote the set of firms in the economy that can potentially produce the
consumption good, and assume that the production function of the $j$ -th
firm $(j\in\underline{J})$ can be written as

$x_{i}=\{$
$\sqrt{l_{j}-b_{j}}$ if $l_{j}>b_{j}$

$0$ if $l_{j}\leq b_{j}$

(2)

where $l_{j}$ the amount of labor, $x_{j}$ is the amount of production and $b_{j}$ is a given
non-negative number representing the fixed input of the j-th firm.Let us first
consider the situation where only firms in a subset $J$ of $\underline{J}$ are active. (This
means that $l_{j}=0$ for all $j\in\underline{J}\backslash J$). If some firms in $J$ are not producing
positive outputs, then the consumer need not supply positive amount of labor
to these firms. Hence in considering the social optimum we may assume that
all of the members of $J$ are producing positive outputs. We now formulate
the problem $(P_{J})$ for each such $J\subset\underline{J}$ as:

$(P_{J})$ Maximize

$u=x\cdot(a-l)$

subject to
$x= \sum_{j\in J}\sqrt{l_{j}-b_{j}}$

(3)
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and
$l= \sum_{j\in J}l_{j}$

. (4)

From this we easily obtain the familiar marginal conditions for optimality
:

$\frac{a-l}{x}=2\sqrt{l_{j}-b_{j}}$ (5)

Hence, in view of (1), (3) and (4), we have the following optimal production
allocation

$x_{j}^{*}(J)=\sqrt{l_{j}-b_{j}}$ $(j\in J)$ . (6)

$l_{j}^{*}(J)=(a- \sum b_{i})/3n+b_{i}$ $(j\in J)$ (7)

and the corresponding optimal utility

$u^{*}(J)=2 \sqrt{n}(a-\sum b_{j})^{\frac{3}{2}}/3\sqrt{3}$, (8)

where the summations are over $J$ , and $n$ is the number of firms producing
positive outputs, i.e., the cardinality of J. (The above results show that $J$

must be chosen so that $a- \sum b_{j}>0$).
In the next step we allow $J$ to vary, and choose $x_{j}^{*}(J)$ and $l_{j}^{*}(J)$ to max-

imize $u^{*}(J)$ To simplify the analysis we shall suppose that the firms are
arranged so that

if $j<k$ then $b_{j}\leq b_{k}$ (9)

This implies that the production function of the j-th firm is uniformly above
that of the k-th firm for $k>j$ . Thus, if the k-th firm is producing positive
outputs at the social optimum, then so should the j-th firm, for any $j<k$ .
Hence in order to choose the optimal set of firms, $J$ , it is enough to determine
the optimal number, $n$ , of firms that will produce positive output.

In the characteristic function form game $(u^{*}, J)$ with the characteristic
function $u^{*}$ and the player set $J$ , the marginalworthofaplayerj to coalition
$S(S\subset J)$ is defined by

$u^{*}(S\cup\{j\})-u^{*}(S)$ for $j\not\in S$

Hence writing $u^{*}[n]$ for $u^{*}(J)$ (where $n$ is the cardinality of $J$ ) it rnay seem
natural to define the marginal worth of the n-th firm by $u^{*}[n]-u^{*}[n-1]$ or,
supposing that $u^{*}[n]$ is defined for all real numbers, by $dv^{*},/dn$ . Actually, it
turns out to be more convenient to define it by

$- \frac{du^{*}/dn}{\partial u^{*}/\partial l}$ (10)
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which is also independent of the choice of utility functions. (The denominator
represents the marginal disutility of labor evaluated at the optimum alloca-
$\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}.)\mathrm{T}\mathrm{h}\mathrm{i}\mathrm{s}$ corresponds to what we will later call the marginal contribution of
the firm.

In the special case where $b_{j}=b$ for all $j$ , we have

$u^{*}[n]=2\sqrt{n}(a-nb)^{\frac{3}{2}}/3\sqrt{3}$ . $(8’)$

Hence if we allow $n$ to take on all positive values, we have

$\frac{du^{*}}{dn}=\frac{\sqrt{a-nb}(a-4nb)}{3\sqrt{3}n}$ (11)

Since, by (5), all $l_{j}^{*’}\mathrm{s}$ are equal in this case, in view of (1),(3) $,(4)$ and (7), we
obtain

$- \frac{\partial u^{*}}{\partial l}=\sqrt{a-nb}\sqrt{n}/\sqrt{3}$ (12)

and
$\frac{\partial u^{*}}{\partial x}=2(a-nb)/3$ . (13)

Equations (11) and (12) then imply

$- \frac{\partial u^{*}/dn}{\partial u^{*}/\partial l}=\frac{a-4nb}{3n}$ . (14)

Now if the price vector $(-u_{x}^{*}/u_{l}^{*}, 1)$ is used to evaluate the profit $\pi$ of the
firm, we have, from (6), (7), (12) and(13)

$\pi$ $=$ $- \frac{u_{x}^{*}}{u_{l}}*x_{j}^{*}-l_{j}^{*}$

$=$ $\frac{a-4nb}{3n}$ (15)

Comparing (14) with (15) we may conclude that the marginal contribution

of the firm is the profit of the firm.
The present analysis, which dealt with the case of a finite number of firms,

is somewhat informal because the marginal contribution was not defined
accurately. In the following sections, we shall rigorously establish similar
results in more general settings without restricting ourselves to the special
production functions and the utility function of this model.
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$\underline{Remarks}(\mathrm{a})$ In the special case where $b_{j}=b>0$ for all $j,$ (11) shows
that the optimal number of the firms in the industry is given by $a/4b$ , if it
is an integer. This implies that not all firms should stay in the industry even
if they have the same technology.

(b) If, moreover, $b_{j}=0$ for all $j$ , then $u^{*}[n]$ is an increasing function of
$n$ , and there is no optimal number of firms for the economy.

(c) That the marginal worth is an increasing function with respect to
the coalition size is a characteristic feature of the convex game which has
been studied by Shapley $(1971),\mathrm{I}\mathrm{c}\mathrm{h}\mathrm{i}\mathrm{i}\mathrm{s}\mathrm{h}\mathrm{i}(1981)$ and Topkis(1987), among oth-
ers. Remark(a) shows that the present model contains an example of a
non-convex game.

(d) As a model of entry in a free market, the discrete model must rely
seriously on the assumption that entry occurs in the order of superiority
in technology as expressed in (9). It is easy to construct an example in
which (i) a finite number of firms are making positive profits and that (ii) a
technologically superior firm incurs a loss should it enter the market. To see
this, slightly increase the parameter $b_{i}$ of an incumbent firm in the model of
Remark(a).

3 The Marginal Contribution and the Effi-
ciency Price

In this section we consider two different models of an economy with a finite
number of goods but with a continuum of firms. There are no restrictions on
prices or quantities of the goods traded and monopolies are ruled out. In both
of these models firms are assumed to be arranged in a certain natural order,
and we consider the overall effects $\mathrm{o}\mathrm{f}’$

)
$\mathrm{a}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}$

” firmjoining an industry. The
performance of the economy is considered to be expressed by a real valued
function, which we may call an objective function or a welfare function. The
marginal contribution of a firm is then defined as the limit, as the measure of
the firm approaches zero, of the increase in maximum welfare, divided by the
marginal contribution to welfare (marginal utility) of a numeraire, say labor.
(see, also the discussion below). Equation(10) is the expression for this in the
economic model of Section 2. For the definitions of economic concepts not
defined here we refer to Samuelson (1947), Debreu (1959) and Arrow-Hahn
(1971). The main result that we establish in this section is:

Theorem 1
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In the classical 3 Arrow-Debreu competitive economy, the marginal con-
tribution of a firm is equal to the profit of the firm in terms of the efficiency
prices.

An efficiency price vector in terms of the numeraire good is the vector of
marginal rates of substitution when they exist. In general it is defined by
the normal vector of the separating a hyper plane to, say, the production
set. Since competitive prices are also efficiency prices (cf. Debreu (1957) or
Arrow-Hahn (1971) $)$ , Theorem 1 implies:

T.heorem 2
Under the same assumption as in Theorem 1, the optimal condition for

the entry of firms is that the profit of the marginal firm should equal to zero.

We will prove Theorem 1 under two slightly different sets of assumptions
in models A and B. Model A is a continuum analogue, extended in several
respects, of the example in section 2. It is assumed that the welfare of the
economy is described by the utility function of a representative consumer.
Model $\mathrm{B}$ is quite general in its treatment of production technology, but con-
sumers’ demands for goods are assumed to be given exogenously.

Model A
Let us assume that the utility function of a representative consumer is

given by

$u=(x_{1}, x_{2}, a-l)$ (16)

where $x_{i}(i=1,2)$ denotes his consumption of good $i,$ $l$ is his labor supply
and $a$ is a given positive number

$\mathrm{r}‘ \mathrm{e}$

presenting the maximum amount of labor
that he can supply. We make

$\underline{\mathrm{A}\mathrm{s}\mathrm{s}\mathrm{u}\mathrm{m}\mathrm{p}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}}$A.1
$u(\cdot)$ is increasing, strictly quasi-concave and twice continuously differen-

tiable. The set of firms that can potentially be in industry $i$ is represented
by a bounded interval $\underline{T_{i}}(i=1,2)$ . We suppose that $\underline{T_{1}}$ and $\underline{T_{2}}$ are disjoint.

For each $i(i=1,2)$ , let the production function of firm $t$ be denoted by

$x_{i}(t)=\{$
$f_{i}(l_{i}(t)-b_{i}(t), t)$ if $l_{i}(t)>b_{i}(t)$ (17)
$0$ if $l_{i}(t)\leq b_{i}(t)$ , $(i=1,2)$

3This usually means the economic environment with convex preferences and convex
production technologies and with no externalities. However the term ”classical” is used
here in a somewhat broader sense than usual. Firms may require to use a fixed amounts
of input when they produce positive amount of outputs although no inputs are required
$\backslash \mathrm{v}\mathrm{h}\mathrm{e}\mathrm{n}$ no outputs are produced. Hence the average cost curve is decreasing when output
levels are small.
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where $x_{i}(t)$ is the density of production of good $i$ and $l_{i}(t)$ (of which $b_{i}(t)>0$

is a fixed amount) is the density of labor input for firm $t$ in industry $i$ . This
means that given $l_{i}(t)dt$ of labour the firm can produce $f_{i}(l_{i}(t)-b_{i}(t), t)dt$ of
the product if $l_{i}(t)>b_{i}(t)$ . (See, e.g., Aumann (1975) or Aumann-Shapley
(1971) for a related way of representing agents.) We make

Assumption A.2
For each $tf_{i}(\cdot, t)$ is increasing, strictly concave4 and twice continuously

differentiable. For each $x,$ $f_{i}(x, \cdot)$ is continuous except possibly at a finite
number of points, $(i=1,2)$ .

The present model can be generalized to the case of any finite number of
goods. Model $\mathrm{B}$ allows the existence of intermediate goods. Let us denote
by $T_{i}\in\underline{T_{i}}$ the set of firms actually producing positive outputs in industry
$i(i=1,2)$ . To simplify the analysis we make

Assumption A.3
$T_{i}$ is a disjoint union of a finite number of intervals $T_{ik}(k=1, \ldots, i_{k})\mathrm{i}\mathrm{n}\underline{T_{i}}$.
We may suppose (as was explained in section 2) that all firms in $T_{i}$ are ac-

tually producing positive outputs. In the sequel we shall often write $\mathrm{e}.\mathrm{g}.,\int_{T}f$

instead of $\int_{T}fdt$ . The demands for goods are satisfied if

$x_{i} \leq\int_{\tau_{:}}x_{i}(t)$ $(i=1,2)$ (18)

and
$l \geq\int_{T_{1}}l_{1}(t)+\int_{T_{2}}l_{2}(t)$ . (19)

Since $\mathrm{u}(\cdot)$ is increasing, when finding the optimum, we may replace the
inequalities in (18) and (19) by equalities. And if we extend the definitions
of $l_{i}(t)$ and $x_{i}(t)$ , by setting them equal to zero outside $T_{i}$ , we may replace
the domain of integration, $T_{i}$ , by $T=T_{1}\cup T_{2}$ . Thus for each of $T_{1}$ and $T_{2}$ ,
we formulate the problem $(P_{T})$ as:

$(P_{T})$ Maximize

$u=u( \int_{T}x_{1}(t), \int_{T}x_{2}(t),$ $a- \int_{T}(l_{1}(t)+l_{2}(t)))$ (20)

subject to
$x_{i}(t)=f_{i}(l_{i}(t)-b_{i}(t), t)$ $(i=1,2)$ (21)

The existence of the maximum and some other related properties will
be discussed in Section 5 in a more gcncral framework, in which we will
assurne that $x_{i}(t)$ and $l_{i}(t)$ are Borel $\mathrm{n}\mathrm{l}\mathrm{e}\mathrm{a}\mathrm{s}\mathrm{u}\mathrm{r}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}$ functions. For the present

4We will argue below that this assumption is not practically important as is the case
in the discrete economy.
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we assume that the maximum exists and impose the following conditions on
admissible functions:

Assumption A.4
$l_{i}(t)$ and $x_{i}(t)$ are continuously differentiable in the interior of each of the

sub-intervals $T_{ik}$ as defined in (A.3).
The problem $(P_{T})$ can easily be solved by substituting (21) into (20). Tak-

ing the variational derivative (see, e.g., Gelfand and Formin ( $(1963)$ pp.27-28)
of $u$ with respect to $l_{i}$ , we know that the conditions for the extremum are

$\frac{\partial u}{\partial x_{i}}\frac{\partial f_{i}}{\partial l_{i}}+\frac{\partial u}{\partial l}=0$ $(i=1,2)$ (22)

These are nothing but the familiar marginal conditions for optimality. We
next let $T_{i}(i=1,2)$ vary and consider the effects of the change on the optimal
solutions of $(P_{T})$ . To simplify the analysis we make

Assumption A.5
The left end-point of each sub-interval of $T_{i}(i=1,2)$ , as defined in (A.3),

and the number of these sub-intervals, are known.
The left end point represents (technologically) the most superior firm in

the industry. We may suppose that (A.5) is satisfied if there are only a finite
number of potential types of firms in an industry. More generally, (A.5) is
satisfied if it is possible to $\mathrm{c}\mathrm{l}\mathrm{a}\mathrm{s}\mathrm{s}\mathrm{i}\theta$ firms into a finite number of groups in such
a way that, within each of the groups, the production function of one firm
is uniformly above or below that of another. Owing to (A.5) we need only
consider changes in the right end-points of the sub-intervals representing the
most inferior firm. Let us consider the effects of a change in a right end
point, $\alpha=t_{is}$ , of $T_{is}$ .

Differentiating $u(\cdot)$ , along the optimal path, with respect to $\alpha$ , we have
(denoting by $j$ the index different from $i$ )

$\frac{du}{d\alpha}$ $=$ $\frac{\partial u}{\partial x_{i}}(x_{i}(\alpha)+\int_{T}\frac{\partial f_{i}}{\partial l_{i}}\frac{dl_{i}}{d\alpha})+\frac{\partial u}{\partial x_{j}}(\int_{T}\frac{\partial f_{j}}{\partial l_{j}}\frac{dl_{j}}{d\alpha})$

$+ \frac{\partial u}{\partial l}(l_{i}(\alpha)+\int_{T}\frac{d(l_{1}+l_{2})}{d\alpha}$ (23)

Noticing that $\partial u/\partial x_{i}$ and $\partial u/\partial l$ are independent of $f,$ , we have from (22),
and (23),

$- \frac{\partial u}{\partial\alpha}/\frac{\partial u}{\partial l}=-\frac{\partial u}{\partial x_{i}}/\frac{\partial u}{\partial l}\cross x_{i}(\alpha)-l_{i}(\alpha)$ (24)

This means that the marginalcontributionof $firm\alpha$ (the left hand side)
is equal to the profit of the firm in terms of the efficiency price vector,
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$p=(- \frac{\partial u}{\partial x_{i}}/\frac{\partial u}{\partial l}, 1)$ (25)

(the right hand side).
Model $\mathrm{B}$

Let $n$ be the number of goods in the economy and, for each $i\in N=$
$\{1,2, \ldots, n\},1\mathrm{e}\mathrm{t}\underline{T_{i}}$ be a bounded interval in the real line R. We consider $\underline{T_{i}}$ to
be the set of all potential firms in industry $i$ . We assume that $\underline{T_{i}}$ and $\underline{T_{j}}$ are
disjoint for $i\neq j.\mathrm{I}\mathrm{f}$ good $i$ is not the product of any firm, we take $\underline{T_{j}}$ to be
$\mathrm{e}\mathrm{m}\mathrm{p}\dot{\mathrm{t}}\mathrm{y}$ . For each $i,j\in N$ with $i\neq j$ , and each $t\in\underline{T_{i}}$ let $y_{j}^{i}(t)$ be the density
of good $j$ used (of which $b_{j}^{i}(t)$ is a fixed amount) in the production of good $i$

by firm $t$ , and let $y_{i}(t)$ be the density of its output. For simplicity we assume
that there are no joint outputs and we write the firms’ production functions
as

$y_{i}(t)=\{$
$f^{i}(\tilde{y}^{i}(t)-\overline{b}^{i}(t), t)$ for $\tilde{y}^{i}(t)\geq\overline{b}^{i}(t)$

$0$ otherwise $(i\in N, t\in\underline{T}_{i})$
’ (26)

where $\overline{y}_{i}(t)=(y_{1}^{i}(t), y_{i-1}^{i}(t),$ $y_{i+1}^{i}(t),$
$\ldots.,$

$y_{n}^{i}(t)$ and similarly for $\tilde{b}^{i}(t)$ . We
make the following assumptions on the production technology:

$\underline{\mathrm{A}\mathrm{s}\mathrm{s}\mathrm{u}\mathrm{m}\mathrm{p}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}}$B.1
For each $t,$ $f^{i}(\cdot, t)$ is increasing and twice continuously differentiable, and

for each $y^{i},$ $f^{i}(y^{i}, \cdot)$ is continuous except perhaps at a finite number of points.
Assumptions must also be made on the asymptotic behavior of $f^{i}(\cdot, t)$

, in order to guarantee the existence of a maximum of the problem to be
formulated below. This point will be discussed in the Appendix so, for the
moment, we will not worry about the problem of existence. Let $T_{i}\subset\underline{T_{i}}$

denote the set of firms producing positive outputs in industry $i(i\in N)$ and
impose:

$\underline{\mathrm{A}\mathrm{s}\mathrm{s}\mathrm{u}\mathrm{m}\mathrm{p}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}}$B.2
The same as assumption A.3 in model A.
Letting $c_{i}(i=1,2, \ldots, n-1)$ denote the aggregate net demand for good

$i$ ; that demand will be satisfied if

$c_{i} \leq\int_{Tt}y_{i}(t)dt-\sum_{j\neq i}\int_{Tj}\oint_{i}(t)dt$ (27)

Extending the definitions of $y_{j}^{i}(t),$ $y_{i}(t)$ and $b_{j}^{i}(t)$ , by defining them to be
equal to zero outside $T_{i}$ , we may replace $T_{i}$ in (27) by $T=\cup T_{i}$ . Now, for a
given $(T_{i})(i\in N)$ , we formulate the problem $(P_{T})$ as

$(P_{T})$ Maximize

11



$\int_{T}f^{n}(\tilde{y}^{n}(t)-\tilde{b}^{n}(t), i)dt-\sum_{j\neq n}\int_{T}y_{n}^{j}(t)dt$ (28)

subject to

$c_{i}= \int_{T}f^{i}(\tilde{y}^{i}(t)-\tilde{b}^{i}(t), t)dt-\sum_{j\neq i}\int_{T}y_{i}^{?}(t)dt$

$(i=1, \ldots, n-1)$ (29)

where $c_{i}(i=1, \ldots, n-1)$ and $\tilde{b}^{i}(t)(i=1,2, \ldots, n)$ are assumed to be given.
A natural interpretation of the problem is that it is to minimize the sum
of the labor inputs of the economy on the conditon that specified demands
are satisfied. The equality in (29) is due to the assumption that $f^{i}(\cdot, t)$ is
increasing.

As in the previous model, the following conditions are imposed on the
admissible functions:

$\frac{\mathrm{A}\mathrm{s}\mathrm{s}\mathrm{u}\mathrm{m}\mathrm{p}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{B}.3}{\mathrm{A}11y_{j}^{i}(t)\mathrm{a}\mathrm{n}\mathrm{d}y_{i}}(t)$

are continuously differentiable in the interior of each
sub-interval, $T_{ik}$ , as defined in (A.3).

Following the standard procedure (cf. Gleaned and Forman ( $(1963)$ pp.43-
46) we write the Lagrangean of the problem as

$\sum_{i=1}^{n}p_{i}(\int_{T}(f^{i}(\tilde{y}^{i}(t)-\tilde{b}^{i}(t), t)-\sum_{j\neq i}y_{i}^{?}(t))dt-c_{i})$ , (30)

with $p_{n}--1$ and $c_{n}=0$ , and obtain the Euler conditions for optimality:

$p_{i^{\frac{\partial f^{i}(t)}{\partial y_{j}^{i}}}}=p_{j}$ $(i,j\in Nt\in T_{i})$ (31)

where we set $f^{i}(t)=f^{i}(\overline{y}^{i}(t)-\overline{b}^{i}(t), t)$ . These are the familiar marginal
conditions for optimality. We next let $(T_{i})(\mathrm{i}\in \mathrm{N})$ vary and consider the
effects of the change on the optimal solutions of $(P_{T})$ . To simplify the analysis
we impose

$\underline{\mathrm{A}\mathrm{s}\mathrm{s}\mathrm{u}\mathrm{m}\mathrm{p}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}}$B.4
The same as (A.5) in Model A.
With this assumption, we need only consider changes in the right end

points of the sub-intervals $T_{ks}$ .
Differentiating (29) with respect to a right end point $\alpha=t_{ks}$ , we have

(noticing that the optimal solutions of $y_{i}^{?},$
$y_{i}$ and $p_{i}$ are functions of $\alpha$ )

$m( \alpha)=p_{k}y_{k}(\alpha)-\sum_{j\neq k}p_{i}y_{i}^{k}(\alpha)+\int_{T}\sum_{i\in N}p_{i}(\sum_{j\neq i}\frac{\partial f^{i}(t)}{\partial y_{j}^{i}}\frac{\partial y_{j}^{i}}{\partial\alpha}-\sum_{j\neq:}\frac{\partial d_{i}}{\partial\alpha})dt$ (32)
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But the terms in parenthesis cancel out since, by (31),

$\sum_{i\in N}p_{i}\sum_{j\neq i}\frac{\partial f^{i}(t)}{\partial y_{j}^{i}}\frac{\partial y_{j}^{i}}{\partial\alpha}$ $=$ $\sum_{i\in N}\sum_{j\neq i}p_{i^{\frac{\partial f^{i}(t)}{\partial y_{j}^{i}}\frac{\partial y_{j}^{i}}{\partial\alpha}}}$

$=$ $\sum_{i\in N}\sum_{j\neq i}p_{j^{\frac{\partial y_{j}^{i}}{\partial\alpha}}}$

$=$ $\sum_{i\in N}\sum_{j\neq i}p_{i^{\frac{\partial\dot{d}_{i}}{\partial\alpha}}}$ . (33)

The last two relations imply

$m( \alpha)=p_{k}y_{k}(\alpha)-\sum_{j\neq k}p_{i}y_{i}^{k}(\alpha)$
. (34)

Since the marginal contribution of $y_{n}$ to the objective function is $p_{n}=1$ ,
we know that $m(\alpha)$ is the marginal contribution of firm $\alpha=\dot{t}_{ks}$ . By (34),
it is equal to the profit of the firm in terms of the efficiency price vector
$(p_{1},p_{2}, \ldots,p_{n-1},1)$ .

4 The Marginal Contribution in a Monopo-
listic Model

In this section we apply the previous analysis to derive the marginal con-
tribution of a firm in a simple model of monopolistic competition. The
contribution to welfare of a monopolistically competitive firm is calculated
under the assumption that the behavior rule of the other firms in the markets
are unaltered. Another possible interpretation of the model will be discussed
below.

Model C.
The basic framework of the model is the same as that of model A ex-

cept that there is only one industry in the present case. Using the previous
notation let

$U=u(x)+a-l$ (35)

be the utility function of the representative consumer which is the sum of
utilit.v from a consumption good $u(x)$ and the leisure $a-l$ . We assume that $u$

is an increasing concave function. The industry has a continuum of potential
firms which we denote by $\underline{T}$ . We assume that $\underline{T}$ is a bounded interval in the
real line $R$ . The production function of firm $t$ of the industry is denoted by
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$x(t)=\{$
$f(l(t)-b(t), t)$ if $l(t)>b(t)$

$0$ if $l(t)\leq b(t)$
(36)

We will assume that $f$ is concave in the region $l(t)>b(t)$ We make
Assumption (A.1) and Assumption (A.2) of Section 3 applied for the single
industry case.

The profit of the industry is expressed as

$\pi=\int_{T}(px(t)-l(t))dt$ (37)

where $p$ is the price of the product in terms of the wage rate. We denote the
(inverse) demand function of the consumer as

$p=P(x)$ , $P(x)=u’(x)$ (38)

We will assume that
Assumption C. 1

$P’(x)>0$ ,

$P(x)+xP’(x)>0$

$2P’(x)+xP$” $(x)>0$

The first inequality means that the marginal utility of the $0\sigma \mathrm{o}\mathrm{o}\mathrm{d}$ is positive.
The second and the third inequalities say that the marginal revenue is positive
and decreasing. It is also assumed that monopolistic firms in the industry
maximize their joint profits $\pi$ with respect to $l(\cdot),$ $x(\cdot)$ , and $T$ , knowing the
consumer’s demand function for their good $P$ . See, Remark (a) below for
another interpretation. We make assumptions (A.4) and (A.5).

We now consider the problem:
$(P)$ Maximize

$\pi=\int_{T}[P(x)x(t)-l(t)]dt$ (39)

subject to

$x$ $=$ $\int_{T}x(t)dt$

$=$ $\int_{T}f(l(t)-b(t), t)dt$ (40)

First we solve the problem considcring that $x$ and $T$ are fixed. We set
the Lagrangean of the problem as

14



$L= \int_{T}[Pf(t)-l(t)-\lambda(f(t)-\frac{x}{\beta})]dt$ (41)

where
$f(t)=f(l(t)-b(t), t)$

and
$\beta=\mathrm{l}\mathrm{e}\mathrm{n}\mathrm{g}\mathrm{t}\mathrm{h}$ of $T$

From this we obtain the following Euler condition for optimality:

$(P- \lambda)\frac{\partial f(t)}{\partial l}=1$ (42)

for all $t$ . This implies that the marginal products of labor are equal for all
firms within the industry.

Next we vary $x$ and $\alpha=t_{s}$ (a right end point of a sub-interval). Assuming
that the solutions, still denoted $l(\cdot),$ $x(\cdot)$ etc., are unique and differentiable
with respect to $x$ and $\alpha$ , we have

$\int_{T}[P’f(t)-((P-\lambda)f’(t)-1)\frac{\partial l}{\partial x}+\frac{\lambda}{\beta}]dt=0$ (43)

and,

$Pf(\alpha)$ 1 $( \alpha)-\lambda(\alpha)f(\alpha)+\frac{\lambda x}{\beta}$

$+$ $\int_{T}[((P-\lambda)f’(t)-1)\frac{\partial l(\cdot)}{\partial\alpha}-\frac{\lambda x}{\beta^{2}}]dt=0$ (44)

where we have set
$P’= \frac{dP}{dx}$ and $f’(t)= \frac{\partial f(t)}{\partial l(t)}$ .

In view of (42) and (43), we then have

$- \int_{T}P’f(t)dt$ $=$ $\lambda$

$=$ $P- \frac{1}{f’(t)}$ $(t\in T)$ (45)

We note that $\lambda>0$ since $P’>0$ . Hence, noticing $\mathrm{t}\mathrm{h},\mathrm{a}\mathrm{t}P’$ is independent
of $t$ and using (40), we have

$P(x)+xP’(x)= \frac{1}{f’(t)}$ . (46)

15



On the other hand, (42) and (44) yield

$\frac{f(\alpha)}{l(\alpha)}=f’(\alpha)$ (47)

for each $\alpha=t_{s}(s=1,2, \ldots, s_{i})$ . Since $1/f’(t)$ is the marginal cost $(MC)$ of

the product equation (46) may be expressed as

$- \frac{x}{p}\cdot\frac{dP}{dx}=(p-MC)/p$ . (48)

Combining (42), (46) and (47) we can state
Lemma 1.
Under assumptions (A. $l$) $-(A.\mathit{5})$ , the profit of each indusiry in Model $D$

is maximized if (i) marginal products of labor are equal for all $firms_{\mathrm{Z}}(ii)$ the

mark up ratio equals the elasticity of inverse demand function for the product

and (iii) the marginal cost equals the average cost of the marginal firm.
Next we consider a slightly different problem. Suppose that firms in

the industry maximize their joint profit, $\pi$ as in the previous analysis, but
$T$ is now under the control of government. $T$ will be chosen so that the

utility of the representative consumer is maximized given the behavior of the
monopolistically competitive firms.

For each $T\in\underline{T}$ let $l(\cdot),\tilde{x}(\cdot)\sim$ , and $\tilde{x}$ be the solutions of the problem $(P)$

(hence these solutions satisfy (42),(46) and (47)). In the sequel, the tilde
sign over the functions will be deleted. We consider the following problem:

(P) Maximize

$U$ $=$ $u(x)+a-l$

$=$ $u( \int_{T}f(t)dt, a-\int_{T}l(t)dt)$ (49)

with respect to $T$ where $l(t)$ is the soluiions of the problem stated above.
Consider a change in $\alpha=t_{s}$ , one of the right end points of the sub-

intervals in (A.5). Differentiating (49), along the optimal solution, with
respect to $\alpha$ , we have

$\frac{dU}{d\alpha}$ $=$ $U’(x)f( \alpha)+\int_{T}f’(t)\frac{dl}{d\alpha}dt$

$+$
$l( \alpha)+\int(\frac{\partial l}{\partial\alpha}dt)$ (50)

If the consumer maximizes utility at given market prices, then
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$\frac{du}{dx}=p$ , (51)

hence if we define

$s=(p-MC)/MC$, (52)

where $MC$ is the marginal cost of the industry, we find from (46) $(\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{i}\mathrm{n}\mathrm{g}$

that $MC=1/f’$ ), that $s$ is positive. Also (50) may be expressed as

$\frac{dU}{d\alpha}=pf(\alpha)-l(\alpha)-s\int_{T}\frac{dl}{d\alpha}$ . (53)

Now differentiating (46) with respect to $\alpha$ and noticing that $f’(t)$ is in-
dependent of $t$ we have

$(2P’(x) + xP” (x))(f’(t) \int_{T}\frac{dl(t)}{d\alpha}+f(\alpha))$

$=$ $- \frac{f’(t)}{(f^{l}(t))^{2}},$ . $\frac{dl(t)}{d\alpha}$ (54)

Finally we assume that
$\underline{\mathrm{A}\mathrm{s}\mathrm{s}\mathrm{u}\mathrm{m}\mathrm{p}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}}$C.2
All incumbent firms either decrease or increase labor inputs if there is an

entry of a marginal firm.
In view of (54) and assumptions on the sign of derivatives of functions we

can show that $dl(t)/d\alpha>0$ . We have thus proved (see, (54):

Theorem 3
The marginal contribution of a firm of in model $D$ is equal to the differ-

ence between (i) the profit of the firm and (ii) the increase in the total costs of
all monopolists each multiplied by the corresponding mark up $ratio_{f}s$ . This
second term takes on a positive value.

Remarks (a) Notice that if we denote the demand elasticity of the good
(the reciprocal of the left side of (46)) by $e$ , we have

$s= \frac{1}{e-1}$ . (55)

Hence (53) is in accordance with the formula of Kahn [(1962) p.29], which
was obtained in a partial equilibrium framework. Notice that although he did
not assume the joint profit maximization, he did assume that the mark up

17



ratio is constant for all firms in the industry. As to the simplifying assumption
on which this result depends see $\mathrm{M}\mathrm{c}\mathrm{K}\mathrm{e}\mathrm{n}\mathrm{z}\mathrm{i}\mathrm{e}(1951)$.

(b) As an alternative interpretation of the present model, assume that
the industry is monopolized by a firm which has a continuum of potential
factories, $T$ . Then the maximization of the profit of the monopolist can be
analyzed in exactly the same way as in the present model.

In the last interpretation, in view of (51), we have the following result:

$\frac{\mathrm{T}\mathrm{h}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{m}4\mathrm{a}}{Inthe}monopolistic$

market, if the firm operates its factories until the last
of them earn zero profit, the contribution is positive. Hence entry is excessive.

This corresponds to the content of the excess entry theorem in Suzumura
andKiyono (1987), which was established for the homogeneous good Cournot-
type oligopoly model. lVeizs\"acker $(1980)$ analyses a heterogeneous duopoly
model with a quadratic utility function.

(c) The We above framework may be interpreted as a model of monop-
olistic competition, as formulated by Chamberlin(1933), with a large (non-
oligopolistic) group of suppliers of physically similar but economically dif-
ferentiated products. Bishop(1976) analyzed the welfare implication of equi-
librium of the market where, as in the Chamberlin’s idealization, all the
actual and potential members of the group have the ”same” costs and face
the ”same” demands. He showed diagramatically that, in the monopolistic
competition market, entry is excessive from the consumer’s viewpoint. The
proposition was generalized in the present analysis to the case where the pro-
duction function (cost functions) of firms in the industry may be different.

Theorem $4\mathrm{b}$

In the monopolistic competition $model_{f}$ where all the actual and potential
firms in the industry face the same demands, the optimal product variety calls
for production at a point short of minimum average cost of the marginal firm.

This result is a direct consequence of (53). We need to interpret that the do-
main of imtegration $\underline{T_{i}}$ now represents the variety of the (physically identical)
products in the industry.
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5Appendix to Section $3:\mathrm{T}\mathrm{h}\mathrm{e}$ Existence of the
Optimum and Related Topics

In this section we will prove the existence of solutions to problem $(P_{T})$ in
models A and $\mathrm{B}$ , and discuss the continuity, with respect to $t(t\in T)$ , of
the solutions, in each of the fixed sub-intervals in the domain of integration.
Detailed proofs will be given only for model $\mathrm{B}$ , because the proofs for model
A are essentially the same and even simpler.

Model $\mathrm{D}$

This is a modification of model $\mathrm{B}$ , with many of the technical assumptions
generalized. Let $n$ be the number of goods in the economy. To simplify the
argument we assume that good $n$ is labor. For $i=1,2,$ $\ldots,$ $n-1,$ let $(\underline{T_{i}}, B_{i}, \mu)$

be a measure space where $\underline{T_{i}}$ is a bounded interval in the real line $R,$ $B_{i}$ , is
the $\sigma$-algebra of Borel sets of $\underline{T_{i}}$ and $\mu$ is the Lebesque measure. As before

$\underline{T_{i}}$ is the set of potential firms in industry $i$ , and each member $T_{i}$ of $B_{i}$ is
interpreted as the set of firms that are actually producing positive outputs
in industry $i$ . Problem $(P_{T})$ is formulated as in model B. But this time we
choose $T_{n}$ to be empty (labor is never produced). Hence the problem reduces
to:

$(P_{T})$ Maximize

$c_{n}=- \int_{T}\sum_{j\neq n}y_{n}^{j}(t)$ (56)

subject to

$c_{i}= \int_{T}(f^{i}(\overline{y}^{i}(t)-\tilde{b}^{i}(t), t)-\sum_{j\neq n}y_{n}^{j}(t))dt$ $(i=1,2, \ldots, n-1)$ . (57)

Since $f^{i}$ is assumed to be increasing, $(P_{T})$ is unaltered if we replace the
inequalities by equalities. Instead of (B1) we make the following:

Assumption D. 1
For each $i\in N,$ $(i)f^{i}(\tilde{y}^{i}(t), t)$ is continuous for almost all $(\tilde{y}^{i}(t), t)\in$

$R_{n-1}^{+}$ $\cross T_{i}(R_{n-1}^{+}$ denotes the non-negative orthant of $n-1$ dimensional
Euclidean space) and (ii) $f^{i}(\tilde{y}^{\mathrm{i}}(t), t)$ is increasing in $\tilde{y}^{i}(t)$ , for almost all $t\in T_{i}$ .

For some of the arguments below it is enough to replace (i) by $(\mathrm{i})$

’

for almost all $t,$ $f^{i}(\cdot, t)$ is upper semi-continuous and, for almost all $\tilde{y}^{i}(t)$

$f^{i}(\overline{y}^{i}(t), \cdot)$ is measurable. Such a numerical function is usually referred to as
a Carath\’edory function (in a minimization problem $f^{i}(\cdot, t)$ is assumed to be
lower semi-continuous). It is a special case of a normal integrand (see, e.g.,
Ekcland-Temam (1976) pp.231-234]), all of which satisfy the condition that

19



$(\mathrm{i})$
” for almost all $t,$ $f^{i}(\cdot, t)$ is upper semi-continuous and there exists a Borel

function $\tilde{f}^{i}$ such that $\tilde{f}^{i}(\tilde{y}^{i}, \cdot)=f^{i}(\tilde{y}^{i}, \cdot)$ for almost all $\tilde{y}^{i}$ .
All functions that we consider are assumed to be integrable. We now

make
Assumption D.2
For each $i=1,2,$ $\ldots,$ $n-1,$ $c_{i}>0$ , and it is technologically possible to

satisfy net demand $c_{i}+d_{i}(i=1,2, \ldots, n-1)$ for some $d_{i}>0$ (i.e., (57) has
solutions $\tilde{y}^{i}(t)\geq 0$ when each $c_{i}$ is replaced by $c_{i}+d_{i}$ )

The assumption on the sign of $d_{i}\mathrm{s}$ is made mainly for simplicity of expo-
sition. It is very easy to cover the case where some of them are negative (the
case of primary factors of production).

In order to rule out the possibility that the production of a good will be
carried out by a negligibly small set of firms, we need a certain uniformity
assumption on the production technology. To simplify the argument we
assume that, given the set of active firms in an industry and the net final
demand for the good, there are lower bounds such that if the members of a
non-negligible set of firms are using inputs beyond any of the bounds, then
there exists a more efficient way of allocating resources within each industry.
More precisely, we make

Assumption D.3 (inefficiency of over concentration)
$\overline{\mathrm{F}\mathrm{o}\mathrm{r}}$each $(i=1,2, \ldots, n-1)$ there exists $\tilde{a}^{i}\in R_{+}^{n-1}$ (which may depend

on $c_{i}$ and $T_{i}$ ) such that if not $\tilde{y}^{i}(t)\leq\tilde{a}^{i}$ for almost all $t$ in some non-null set
$S_{i}\subset T_{i}$ , there exists $\hat{y}(t)\in R_{+}^{n-1}$ such that $\hat{y}(t)\leq\tilde{a}^{i}$ for all $T_{i}$ ,

$\int_{Ti}\hat{y}^{i}(t)dt\leq\int_{Ti}\tilde{y}^{i}(t)dt$

and

$\int_{Ti}f^{i}(\tilde{y}^{i}(t)dt\leq\int_{Ti}f^{i}(\hat{y}^{i}(t), t)dt$

This assumption is likely to be satisfied if firms in an industry can be
classified into a finite number of groups with positive measures, in such a
way that firms within each group are technologically ”similar” and there are
”no increasing returns” in production. Because of this assumption we may
suppose that the optimal solution of $(P_{T})$ lies in a compact set defined by $\tilde{a}^{i}$

$(i=1,2, \ldots, n-1)$ .
Finally we will give a simple definition. Let $f$ and $g$ be functions from

$X\cross T\mathrm{t}\mathrm{o}\overline{R}$ (the extended real line). We say that $f$ is integrably dominated
by $g$ if, for every $\epsilon>0$ , there exists a positive integrable function, $e(t)$ , such
that

$f(x, t)\geq e(t)$ implies $f(x, t)\leq\epsilon g(x, t)$
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We are now ready to state the following theorem

Theorem 5
Under assumptions $D.\mathit{1}_{f}D.\mathit{2},$ $D.\mathit{3}_{f}A.\mathit{3}$, and $A.\mathit{5}$ there exists a solution

to problem $(P_{T})$ in model $D_{f}$ where the admissible solutions are taken to be
all measurable functions..

The proof of Theorem 5 depends heavily on the following proposition due
to Berliocchi and Lasry ((1973) pp. 155-156), which is an extension of the
main theorem of Aumann and Perles (1965).

Theorem A.
Let $g^{n}$ : $R^{n-1}\cross$ $Tarrow R$ be a Borel function such that $xarrow g^{n}(x, t)$

is upper semi-continuous almost everywhere and $g^{1},$ $g^{2},$
$\ldots,$

$g^{n-1}$ be normal
integrands of $R^{n-1}\cross R_{+}arrow R$ . If $( \alpha)\sup(0, g^{n})$ is integrably dominated by
$g^{1}+g^{2}+\ldots+g^{n-1}$ and (b) $\lim(g^{1}+g^{2}+\ldots+g^{n-1})(x, t)arrow\infty$ as $||x||arrow\infty$

almost everywhere, then the problem
(Q) maximize

$\int_{T}g^{n}(x(t), t)dt$

subject to
$\int_{T}g^{i}(x(t), t)dt\leq k_{i}$ $(i=1,2, \ldots, n-1)$

(where $k_{i}>0$ ) has a solution. If the domain of $g^{n}$ is $S\cross$ $T$ , where $S$ is
compact, then the assumption on the asymptotic behavior of $\sum g^{i}$ can be
dropped.

(Proof of Theorem 5) We define ..

$x(t)=(\tilde{y}^{1}(t),\tilde{y}^{2}(t),$ $\ldots,\overline{y}^{n-1}(t),$ $0)\in R_{+}^{(n-1)n}$ (58)

$g^{n}(x, t)=- \sum_{j\neq n}\tilde{y}_{n}^{j}$
(59)

Also using Assumption (D.2) we may add a positive number to each of equal-
ities in (56) and (57) and assume that the right hand side of each of them
are non-negative. This proves the existence of a solution to $(P_{T})$ .

The existence of a solution to problem $(P_{T})$ in model A can be proved
in a very similar $\backslash \mathrm{v}\mathrm{a}\mathrm{y}$. The key to the proof is the following proposition of
Berliocchi and Lasry ((1973) p. 155).

Theorem B.
Let $f^{i}$ : $X\cross Tarrow\overline{R}$ $(i=1,2, \ldots, k)$ be Carath\’edory functions and $g^{i}.$’

$X\cross Tarrow\overline{R}(i=1,2, \ldots, n)$ be normal integrands. If $\lim\sum g^{i}arrow$ $\infty$ almost
everywhere and each $|f^{i}|$ is integrably dominated by $\sum g^{i}$ and $u:R^{k}arrow R$ is
continuous, then problem
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(Q) maximize

$u( \int_{T}f^{1}(x(t), t)dt,$
$\ldots,$

$\int_{T}f^{k}(x(t), t)dt))$ ,

subject to
$\int_{Ti}g^{i}(x(t), t)dt\leq 1$ $(i=1,2, \ldots, n)$

has an optimal solution.
In Theorem 5 we gave conditions under which there exists a measurable

solution, $\tilde{y}^{i}(t)(i\in N)$ , to the problem $(P_{T})$ . Let us next give conditions un-
der which these functions are chosen to be continuous in each of the subinter-
vals of $T_{i}$ . For each $\delta_{i},$ $0<\delta_{i}<d_{i}$ , where $d_{i}$ is defined in (D.2), we consider
a”perturbed $\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{b}\mathrm{l}\mathrm{e}\mathrm{m}’$

’ :
$(P_{\delta})$ Minimize

$\int_{T}\sum_{j\neq n}y_{n}^{i}(t)dt$
(60)

subject to

$-(c_{i}+ \delta_{i})\geq\int_{T}(\sum_{j\neq i}\not\simeq_{i}(t)-f^{i}(\tilde{y}^{i}(t)-\tilde{b}^{i}(t), t)dt$ $(i=1,2, \ldots, n-1)$ . (61)

We set

$\delta=(\delta_{1}, \ldots, \delta_{n-1})$

and
$h( \delta)=\inf(P_{\delta})$ , (62)

namely, the infimum of problem $P_{\delta}$

We also set
$L(x, t, \delta^{*})=g^{n}(x, t)+\sum_{j=1}^{n-1}\delta_{j}^{*}g^{j}(x, t)$ (63)

where we define $x$ by (58) and $g^{i}(x, t)(i\in N)$ by

$g^{n}(x, t)= \sum_{j\neq n}y_{n}^{j}$
(64)

and
$g^{t}(x, t)= \sum_{j\neq i}d_{i}-f^{i}(\overline{y}^{\mathrm{i}}-\tilde{b}^{i}, t)$ $(i=1,2, \ldots.n-\prime 1)$

(65)

We make
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Assumption D.4
For every non-negative and non-zero $\delta^{*}\in R^{n-1}$ and almost all $t\in T_{i}$ ,

there exists single $x\in R^{(n-1)n}\mathrm{s}\mathrm{u}\mathrm{c}\dot{\mathrm{n}}$ that $L(x, t, \delta^{*})$ is a minimum.
We notice that this assumption is satisfied if, for example, all functions

$f^{i}(\tilde{y}^{i}(t), t)$ are strictly concave in $\tilde{y}^{i}(t)$ (since then $L$ in (63) is strictly convex
in $x$ ).

We will show
$\underline{\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{l}}$

Under assumptions $D.lD.\mathit{4},$ $A.\mathit{3}_{f}$ and $A.\mathit{5}$, problem $(P_{T})$ in model $D$ has
a solution which is continuous in $t$ in each sub-interval defined in $A.\mathit{3}$ .

The following proof depends heavily on the analysis in Ekeland and
Temam ((1976) pp.367-373). We write the Lagrangean of $(P_{\delta})$ as

$\int_{T}L(x(t), t, \delta^{*})dt$ (66)

where $L$ is defined by (63). By (D.3) we may assume that $x(t)$ lies in a
compact set $K$ . Hence applying the measurable selection theorem (Ekerland
and Temam (1976) p.236), we can find a measurable function $\gamma(t, \delta^{*})$ such
that

$\gamma(t, \delta^{*})=\min\{L(x, t, \delta^{*})/x\in K\}$ (67)

and

$\min\int_{T}L(x(t), t, \delta^{*})dt--\int_{T}\gamma(t, \delta^{*})dt$. (68)

We define $\overline{x}(t)$ by

$L(\overline{x}(t), t, \delta^{*})=\gamma(t, \delta^{*})$ . (69)

It can be shown ((1976) pp.367-373) that $\delta^{*}$ is a sub-gradient of $h(\delta)$ ,
which is non-empty in the neighborhood of zero because of $(\mathrm{D}.2).\mathrm{F}\mathrm{o}\mathrm{r}$ fixed
$\delta$ (in particular for $\delta=0,$ $L(x, t, \delta^{*})$ is continuous in $x$ and $t$ . Hence, by the
maximum theorem (see, e.g., Corollary to Theorem 3 in $\mathrm{B}$ of Hildenbrand
(1974) $)$ , $\overline{x}(t)$ is a non-empty and upper hemi-continuous set-valued mapping.
Our uniqueness assumption (D.4) then implies that $\overline{x}(t)$ (and hence- each
$\tilde{y}^{i}(t))$ is a continuous function.

Under the assumptions of the previous theorem, $\overline{x}(t)$ is continuous in each
of the sub-intervals of $T_{i}$ . If these intervals are taken to be compact, $\overline{x}(t)$

is a function of bounded variation(Dunford-Schwartz $(1958)$ ) $\tau$ and hence is
differentiable with respect to $t$ almost everywhere in the sub-intervals. This
implies that under the assumptions of the theorem we may assume that all
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solution functions, $\tilde{y}^{i}(t))$ , are differentiable almost everywhere. We are thus
in the realm of the ordinary theory of the calculus of variations, and so the
assumptions we made in model $\mathrm{B}$ are justified.
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