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1. Introduction
THE PURPOSE of this paper is to build a model of investment decisions and the choice
of technique of the firm under imperfect competition. Special features of our model are
$\mathrm{t}\mathrm{w}\mathrm{o}\prime \mathrm{f}\mathrm{o}\mathrm{l}\mathrm{d}$ as the title indicates. First, we explicitly formulate the investment decisions of
the firm under imperfect competition; second, it analyzes not only firm’s investment
decisions, but also its choice of technique.

Most of the investment theories developed so far assume that the firm to decide

investment is under perfect competition. One of the purposes of this paper is to develop

the theory of investment that explicitly take into account of the behavior of the

imperfectly competitive firm. The most important behavioral difference between the

competitive fnm and the imperfectly competitive firm is that the former bases his

decisions on price expectations, while the latter on quantity expectations. The firm

under imperfect competition faces with expected $\mathrm{d}\vee$emand curves over ffiture periods

when it makes investment decisions. There is scarcely any work that analyzes

investment decisions of the imperfectly competitive firm.1 In this paper we will attempt

to construct a model of investment that explicitly formulates the behavior of the

imperfectly competitive firm.

The second purpose of this paper is to analyze the choice of technique of the firm

simultaneously with investment decisions.2 The investment of the firm involves two

kinds of decisions: how many machines to install, and what type of machines to choose.

The theory of investment usually deals with the former, but not the latter explicitly. In

this paper, we discuss both of these decisions. In doing so, we differentiate the long-run

production ffom the short-run production function; the former represents a set of

available techniques as the relation between labor-capital ratio and output-capital ratio,

while the latler represents utilization of the existing capital stock. From the set of

available techniques represented by the long-run production function, the firm chooses

the best one when it installs new equipment. To take into account the putty-clay

character of technology, we assume that $\mathrm{a}\mathrm{d}\mathrm{j}\mathrm{u}\mathrm{s}\dot{\mathrm{t}}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}$ costs are required not only for

increasing $\iota$) $\mathrm{r}\mathrm{o}\mathrm{d}\mathrm{u}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}$ capacity, but also for $\mathrm{c}\mathrm{h}\mathrm{a}\mathrm{n}_{\epsilon}\sigma,\mathrm{i}\mathrm{n}\mathrm{g}$ labor-capital ratio.
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This paper is organized as follows. Section 2 discusses the relation between the
long-run production function and the short-run production function. Section 3 analyzes

the decisions of the rate of capital utilization of the firm. Section 4 presents a model of
investment decisions and the choice of technique. Section 5 $\mathrm{f}\propto \mathrm{u}\mathrm{s}\mathrm{e}\mathrm{s}$ on the choice of
technique of the firm. Section 6 analyzes the investment decisions of the firm under
imperfect competition. Section 7 summarizes the results.

2. Long-run Production Function and Short-run Production Function
In $o\mathrm{u}x$ model, we differentiate the long-run production function from the sholt-run

production function. The former represents a spectrum of techniques available under

the present state of technological knowledge, while the latter represents utilization of

the existing capital stock.3 $\mathrm{L}\mathrm{e}\mathrm{t}\overline{N}$ and $\overline{\mathrm{Y}}$ be the level of employment and the level of
output, respectively, when the stock of capital $K$ is utilized at the normal level. Then the
$\mathrm{l}\mathrm{o}\mathrm{n}\mathrm{g}\prime \mathrm{r}\mathrm{u}\mathrm{n}$ production function is written as follows:

$\overline{Y}=F(\overline{N},K)$ (1).

In the $\mathrm{f}\mathrm{o}\mathrm{U}\mathrm{o}\mathrm{w}\mathrm{i}\mathrm{n}\mathrm{g}$ , we call $\overline{N}$ as the normal level of employment $\mathrm{a}\mathrm{n}\mathrm{d}\overline{Y}$ as the normal level
of output. Suppose that this production function exhibit constant returns to scale as
usual, then it may be rewritten as

$\frac{\overline{Y}}{K}=F(\overline{\frac{N}{K}},1)=f(n)$ , where $n.\equiv\overline{\frac{N}{K}}$ . (2)

The notation $n$ represents labor-capital ratio at the normal utilization of capital. The
production function $f(n)$ is assumed to satisfy Inada’s condition, $i.e.$ ,

$f(\mathrm{O})=0$, $f(\infty)=\infty$ , $f’(n)>0$, $f’(\mathrm{O})=\infty$, $f’(\infty)=0$ , $f’(n)<0(3\rangle$

At a given point of time, capital stock $K$ as well as the normal labor-capital ratio $n$

is given. Then, the normal level of employment is $\overline{\mathit{1}\mathrm{V}}=nK$ , and the normal level of
output is $\overline{Y}=f(n)K$ . In practice, however. the existing capital stock may not always

be utilized at the normal level. Let us denote actual employment by $N$ , and actual

output by Y. $N$ and $Y$ agree with $\overline{N}$ and $\overline{l}$ respectively, only if the capital equipment

is utilized at the normal level. Otherwise, actual the levels of $N$ and $Y$ depend not only

the existing volume of capital $(K)$ and the normal labor-capital ratio $(n)$ but also the

rate of utilization of capital. In order to know the precise relation between $N$ and $Y$ , we
have to $\mathrm{s}\iota$) $\mathrm{e}\mathrm{c}\mathrm{i}\mathrm{f}\mathrm{y}$ the utilization function, or the short-run production function.

As for the relation between actual $\mathrm{o}\mathrm{u}\mathrm{t}_{\mathrm{I})}\mathrm{u}\mathrm{t}$ and actual employment, we follow the

formulation given by Okishio (1984). Given the stock of capital and the technique

embodied in it ($i.e.$ , given $\overline{Y}$ ), $Y$ is related to $N$ as follows:
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$\frac{Y}{\overline{Y}}=g(\frac{N}{\overline{N}})\backslash$ . (4)

This function may be called a utilization function. Defme $x\equiv N/K$ ; then $N/\overline{N}=x/n$ .
Substituting this relation and (2) into (4), we have

$\frac{Y}{K}=g(\frac{x}{n})f(n)$ . (5)

This function shows the relation between actual output per unit of ca..pital and actual
employment per unit of capital for given $K$ and $n$ ; so it may be called the short-run
production function. The utilization function $g(x/n)$ is assumed to have the following
properties:

(a) $g(0)=0$

$’(\mathrm{b})g’>0$

(c) $g(1)=1$

(d) $g(\infty)=\overline{u}>1$

(e) There exists a point of inflection $(x/n)^{0}<1$ such that
if $x/n<(x/n)^{0}$ , then $g’(x/n)>0$ ;

if $x/n=(x/n)^{0}$ , then $g’(x/n)=0$ ;

if $x/n>(x/n)^{0}$ , then $g’(x/n)<0$ .

$( \mathrm{f}\cdot)\frac{(x/n)g’(x/n)}{g(x/n)}=\frac{nf’(n)}{f(n)}$ , if and only if $x=n$ .

These assumptions imply that the utilization function $g$ is an increasing function
with $\mathrm{S}$ -shape starting ffom the origin. In view of (e), the marginal productivity of labor
is increasing when the rate of employment is lower than $(x/n)^{0}$ , and is decreasing
when it is above $(x/n)^{0}$ . Assumption (c) implies that actual output is at the normal
level when employment is at the normal level, and (d) implies that there exists some
upper bound for output in the short-run. Finally, assumption (t) implies that the short-
run production funclion touches the long-run produclion function at the normal

utilization of capital.

Figure 1 illustrates the relation between the long-run and short-run production

functions. As is explained above, the long-run production function shows a spectrum of
available $\mathrm{t}\epsilon \mathrm{c}\mathrm{h}\mathrm{n}\mathrm{i}\mathrm{q}\mathrm{u}\mathrm{e}\mathrm{s}$ as the relationshi-o between the normal labor-capital, $n$ , and the
normal outpul-capital ratio, $f(n)$ . Suppose that the technique embodied in the existing
capital stock is represented by $(\overline{\prime\iota},f(\overline{;\iota}))$ . Then, the short-run production function
touches the long-run production function at $x=\overline{;\iota}$ , since the existing capital stock is
normally utilized at that point. Except that point, the short-run $\sim \mathrm{o}\mathrm{r}\mathrm{o}\mathrm{d}\mathrm{u}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{f}\iota\iota \mathrm{n}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ is
located below the long-run production function. For the long-run production function
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represents efficient frontier of production.

In the following discussion, we use the inverse function of (4) for convenience. Let

us define $u\equiv Y/\overline{\mathrm{Y}}$ , which is called the rate of capital utilization. Then, the inverse

function of (4) may be written as

$\frac{N}{\overline{N}}=h(u)$ . (6)

This function, which represents the required rate of employment for a given rate of
utilization, is called the employment function in the following. The employment

function $h(u)$ have the following properties:

(a) $h(0)=0$

(b) $h’>0$

(c) $h(1)=1$

(d) There exists some real quantity $\overline{ll}>1$ , such that $h(\overline{u})=\infty$ .

(e) There exists some real quantity $u_{\mathrm{c}}<1$ , such that:

if $u<u_{0}$ , then $h”<0$ ;

if $u=u_{0}$ , then $h”=0$ ;

if $u>u_{0}$ , then $h’>0$ .

(f) $\frac{h(u)}{uh’(u)}=\frac{nf’(n)}{f(n)}$ if and only if $n=1$

This function is illustrated by $\mathrm{F}\mathrm{i}_{3}\sigma \mathrm{u}\mathrm{r}\mathrm{e}2$ . It increases with decreasing rate for $u<u_{0}$ , with

increasing rate for $u>u_{0}$ , and $\mathrm{a}\mathrm{s}\mathrm{y}\mathrm{m}\mathrm{p}\mathrm{t}\mathrm{o}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{a}1_{1}^{1}\mathrm{y}$ approaches $\overline{u}>1$ .

3. The Decisions of the Rate of Capital Utihzation under Imperfect
$\mathrm{C}$ompetition

In this section, we examine how the imperfectly $\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\backslash$etitive firm determine its

output and prices, given the existing stock of capital and the technique embodied in it.

To determine the level of ourput, $Y$ , with given stock of capital is nothing but to

determine the rate of capital utilization, $u$ . So what we examine in this section is

reduced to the determination of the rate of capital utilization and the price of output by

the imperfectly competitive firm.

At a given $\dot{\mathrm{p}}$ oint of time, the representative firm under imperfect competition is

faced with an expected demand curve with downward sloping. Let us denote the

expected demand of the firm by $Y^{e}$ and the price of product by $p$ . Then the expected

demand function of the firm is written as
$Y^{e}=Ap^{-\eta}$ , (7)

where $A$ denotes the level of expected demand al a given level of price, and $\eta$ is the
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price elasticity of demand. A change in $A$ indicates a shift in the expected demand curve.
We assume $\eta$ to be constant in the following.

Suppose that the firm determines output $\mathrm{Y}$ to be equal to the expected demand
$Y^{e}$ . Then we can rewrite (7) in the form of inverse demand function as

$p=( \frac{Y}{A})^{-\epsilon}=(\frac{Y}{K}\frac{K}{A})^{-\epsilon}=\{uf(n)k\}^{-\epsilon}$ (8)

where $\epsilon\equiv 1/\eta$ (the inverse of the price elasticity of demand) and $k\equiv K/A$ (capital per

unit of expected demand). The normal labor-capital ratio $n$ is constant in the short-run,

since the technology embodied in the existing capital is given.

The short-run profit $\Pi$ of the firm is given by

$\Pi=pY-7tN=[puf(n)-m(u)n]K$ , (9)

where $W$ is the money wage rate. The short-run decisions of the firm under imperfect

competition is to set price and determine the rate of capital utilization so as to maximize

the profit, given the stock of capital and technology. Maximizing $\Pi$ with respect to $u$

subject to the $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}\iota \mathrm{a}\mathrm{i}\mathrm{n}\mathrm{t}(8)$ yields:
$(1-\epsilon)pf(n)=m’(l\mathit{1})n$ (10)

This equation has a meaningful solution only if $e<1$ (or $\eta>1$ ). So the price elasticity

of demand for the representative must be greater than unity. In addition to this

condition, the second order condition for profit maximization

$\mathcal{E}+\frac{uh^{n}}{h’}>0$ (11)

must be satisfied. The second term of the left-hand side of (11) represents the elasticity

of the marginal employment rate, $h’(u)$ , with respect to capital utilization, $u$ . Let us

denote it by $\sigma$ :

$\sigma\equiv\frac{uh^{f}}{h’}$ . (12)

Then (11) is rewritten as
$\epsilon+\sigma>0$ (13)

The value of $\sigma$ may be either positive or negative. Second order condition (13) implies

that even if it is negative, its absolute value cannot exceed $\epsilon$ . This condition restricts

the degree of increasing return for the short-run production function (5).

Substituting (8) into (10), we have
$(1-\mathcal{E})\{llf(n)k\}^{-\mathit{5}}f(’\iota)=m^{l}(\iota r)n$ . $\mathrm{j}$ . (14)

Since $k$ and $n$ are constant in the short-run, $\mathrm{t}_{}\mathrm{h}\mathrm{i}\mathrm{s}$ equation determines $u$ . So $u$ may

be expressed as a function of $k$ and $n$ by solving (14): $u=n(k,n)$ . The elasticity of $n$
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with respect to $k$ is calculated to be

$\frac{k}{u}\frac{\partial u}{\partial k}=-\frac{\mathcal{E}}{\epsilon+\sigma}<0$ . (15)

Thus $u$ is a decreasing function with respect to $k$ . This means that the rate of capital

utilization, $u$ , increases if the level of expected demand, $A$ , rises under a given stock of

capital, $K$ .
The elasticity of $u$ with respect to $n$ , on the other hand, is shown to be

$\frac{n}{u}\neg\frac{Oll\neg}{\alpha\iota}=-\frac{1-(1-\epsilon)\theta}{\epsilon+\sigma}<0$ , (16)

where $\theta$ is defined as

$\theta\equiv\frac{nf’(n)}{f(n)}$ . (17)

It represents the elasticity of the long-run production function $f(n)$ with respect to $n$ ,

and $0<\theta<1$ if the production function satisfies Inada’s conditions (3). Thus $u$ is a

decreasing function with respect to $n$ . It implies that, other things being equal, a

higher labor-capital ratio yields a lower rate of capital utilization.

The results obtained above are summarized as follows. In the short-run, given the

values of $k$ and $n$ , the rate of utilization, $u$ , is determined by profit maximizing

condition (14), and then, the product price is determined by ghe inverse demand

function (8). In other words, the short-run decisions of the representative firm under

imperfect competition is to determine the rate of utilization and the price of product at

each point of time, given expected demand, capital stock and $\mathrm{t}\mathrm{e}\mathrm{c}\mathrm{h}\mathrm{n}\mathrm{o}\mathrm{l}\mathrm{o}_{\Leftrightarrow}^{\sigma}\mathrm{y}$ .

4. AModel of Investment Decisions and the Choice of Technique

In the last section, we dealt with the short-run decisions of the firm, given the stock

of capital and technology. We now turn to the long-run decisions concerning with

investment and $\mathrm{t}\mathrm{e}\mathrm{c}\mathrm{h}\mathrm{n}\mathrm{o}\mathrm{l}\mathrm{o}_{8}^{\sigma}\mathrm{y}$ .

The investment decisions of the firm are made based on the expectations of about

demand and costs over the periods during which the newly installed equipment will be

used. So expectations for investment decisions may be characterized as long-run

expectations, differing from those for the $\mathrm{d}\mathrm{e}\mathrm{c}_{\sim}^{i}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}$ of capital utilization.

In order to make expectations about demand and costs central to investment

decisions, we follow the standard theory of investment decisions that emphasizes the

presence of costs to changing the $\mathrm{c}\mathrm{a}_{\wedge}\mathrm{o}\mathrm{i}\mathrm{t}\mathrm{a}1$ stock. In addition, however, we assume that

changes in techniques embodied in the capital stock also involve adjusrment costs. So

we introduce two kinds of adjustment costs in our model.
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Let us first formulate the assumption about adjustment costs for investment.

Following Hayashi (1983), adjustment costs per unit of investment are assumed to rise
as a function of $I_{t}/K_{t}$ , which is denoted by $g‘$. in the following. Then, the total

adjustment costs $C_{t}$ is written $\mathrm{a}\mathrm{s}^{4}$

$C_{t}=\Phi(I_{t}/K_{t})I_{t}=\Phi(g_{t})I_{t}$ , (18)

where $\Phi(g_{t})$ is the per-unit adjustment cost. This function is assumed to have the

following properties:
$\Phi(0)=0$ , $\Phi’>0$, $\Phi^{\pi}>0$ . (19)

In other words, the per unit adjustment cost increases more than proportionally as $g_{t}$

increases.
We assume the price of capital goods to be constant, putting it equal to unity for

convenience. Then, the total cost of investment becomes as
$\{q_{\ell}+\Phi(g_{t})\}I_{t}=[\{1+\Phi(g_{t})\}g_{t}]K_{t}=\phi(g_{t})K_{t}$ , (20)

where $\phi(g_{t})=\{1+\Phi(g_{t})\}g_{t}$ . In view of (19), this function has the following properties:

$\phi(0)=0$ , $\phi’>0$, $\phi’’>0$ . (21)

If we $\mathrm{i}_{\epsilon}^{\sigma},\mathrm{n}\mathrm{o}\mathrm{r}\mathrm{e}$ the depreciation of capital, we have

$\dot{K}_{t}=g_{\ell}K_{\ell}$ . (22)

Let us next consider adjustment costs accompanied by changes in the technique

embodied in the capital stock. The technique embodied in the existing capital stock is

expressed by its normal labor-capital ratio $??_{t}.\cdot$ If capital is assumed to be completely

malleable, labor-capital ratio $\mathrm{w}\mathrm{i}\mathrm{U}$ be adjusted instantaneously to changes in factor

prices. In reality, however, factor proportions are largely embodied in existing capital:

technology is putty-clay. In this case, the labor-capital ratio will not instantaneously get

to the optimal level responding to changes in factor prices. To take into account of this

fact in our model, rather than explicitly allowing for a putty-clay technology, we assume

that the firm faces cost of adjusting factor proportions.5 Then, what the firm can control

in the short-run is not $n_{t}$ but its time derivative $\dot{n}_{t}$ . Denoting the firm’s control

variable by $s_{t}$ , we have
$\dot{n}_{t}=S_{t}$ . (23)

We assume that the cost of adjusting the normal labor-capital ratio, $n_{t}$ , depends on its

rate of change, $\dot{n}_{t}$ , and the size of capital stock, $K_{t}$ ; specifically, we express it as
$C_{n}=\psi(j_{l_{\ell}})K_{t}=\psi(s_{t})K_{t}$ . (24)

Here, the function $\}^{\prime/(l\dot{l})}$: representing the adjustment cost per unit of capital has the

following properties:
$\psi(0)=0$ , $\psi’(f\dot{\iota}_{t})_{\overline{\prec}}^{\geq}0$ depending on $\dot{n}_{\ell}\frac{z}{\prec}0$ , $l^{l/^{n}>0}$ . (25)
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In other words, the cost of changing $n_{\ell}$ increaaes with increasing rate as the degree of

its change increases. The adjustment costs function satisfying (25) is shown in Figure 3.
Taking into account the cost for investment (20) and the cost for changing factor

proportions (24), we can express the present value of the firm’s long-run profits as

$V_{0}=\Gamma_{0}[p_{t}u_{t}f(n_{\ell})-W_{t}h(u_{t})n_{t}-\phi(g_{\ell})-\psi(s_{t})]K_{t}e^{-n}dt$ , (26)

where we assume the real rate of interest $r$ to be constant. In view of the inverse

demand function (8), the price of products is given by

$p_{\ell}=\{u_{t}f(n)k_{p}\}^{-\epsilon}$ (27)

and as we discussed in the last section, the rate of capital utilization is give by
$u_{\ell}=u(k_{t},n_{\ell})$ , $u_{k}<0$, $u_{n}<0$ (28)

Here, $k_{t}$ is defined by

$k_{t} \equiv\frac{K_{\ell}}{A_{t}}$ . (29)

In the $\mathrm{f}\mathrm{o}\mathrm{U}\mathrm{o}\mathrm{w}\mathrm{i}\mathrm{n}\mathrm{g}$ discussion, we assume that the expected the firm expects the demand

for their product at the given price level grows at a constant rate a. Therefore, we have

$A_{\ell}=A_{0}e^{a\ell}$ (80)

Taking the time derivative of equation (29) and substituting from (30), we have

$\dot{k}_{\ell}=(g_{\ell}-\alpha)k_{t}$ . (31)

To sum up, the problem of investment decisions and the choice of technique of the

imperfectly competitive firm is to maximize

$V_{\mathrm{c}}= \int_{0}^{\infty}[p_{t}u_{t}f(n_{\ell})-W_{t}h(u_{\ell})n_{t}-\phi(g_{\ell})-\psi(s_{t})]k_{t}e^{-(r-\alpha\grave{)}\ell}dt$ , (32)

subject to the constraints

$\dot{k}_{t}=(g_{t}-\alpha)k_{t}$ (33)

$\dot{n}_{t}=s_{:}$ , (34)

where $p_{t}$ is given by (24). The variables that the firm can control are $g_{\ell}$ and $s_{t}$ , while
$k_{t}$ and $n_{\ell}$ are state variables.

To solve this problem, we set up the present-value Hamiltonian:

$H_{t}=e^{-(r- a)t}[\{p_{t}u_{\ell}f(n_{\ell})-W_{p}h(u_{t})fl.’-\phi(g_{t})-\psi(s_{t})\}k_{\ell}$

$+\lambda_{t}(g_{t}-\alpha)k_{p^{-\ulcorner}}.u_{t}s_{t}]$ (35)
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where $\lambda_{\ell}$ and $\mu_{t}$ are shadow prices of $k_{\ell}$ and $n_{\ell}$ , respectively. The first order

conditions for a maximum of $V_{0}$ are
$\lambda_{t}=\phi’(g_{t})$ , (36a)

$\mu_{\ell}=\psi’(s_{\ell})k_{t)}$ (36b)

$\overline{\dot{\lambda}}_{\ell}=-$ (r- $g_{\ell}$ ) $\lambda_{t}-$

-

$\{(1-\epsilon)p_{t}u_{t}f(n_{t})-W_{\ell}h(u_{t})n_{t}-\phi(g_{\ell})-\psi(s_{t})\}$ , (36c)

$\dot{\mu}_{t}=(r-\alpha)\mu_{t}-\{(1-\epsilon)p_{t}u_{f}j(n_{t})J’/-W_{t}h(u_{\ell})\}k_{t}$ . (36d)

The transversality conditions are

$\lim_{tarrow\infty}k_{t}\lambda_{t}e^{-(r- a)\ell}=0$, $\lim_{tarrow\infty}n_{\ell}\mu_{t}e^{-(r-\alpha)t}=0$ . (36e)

The system consisting of six equations (33), (84), and $(3.5\mathrm{a})\sim(35\mathrm{d})$ include six variables:
$g_{t},$ $s_{t},$ $k_{\ell},$ $n.$”

$\hat{\nearrow}\vee\ell$ and $\mu_{t}$ . So it is complete. The solution of this system determines

the path of those variables. But the system is too complex to solve explicitly for the

general solution. In the $\mathrm{f}\mathrm{o}\mathrm{U}\mathrm{o}\mathrm{w}\mathrm{i}\mathrm{n}\mathrm{g}$ , therefore, we discuss investment decisions and the

choice of technique separately by making some $\mathrm{s}\mathrm{i}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{i}\Phi \mathrm{i}\mathrm{n}\mathrm{g}$ assumptions.

5. The Choice of Technique of the Firm under Imperfect Competition
We first consider the choice $0\underline{\mathrm{f}}$ technique of the firm. Equation (36b) shows that the

optimum rate of change of labor-capital ratio, $s_{t}$ , determines at which the shadow price

of labor per unit of capital equals the marginal adjustment cost of changing labor-
capital ratio. But, in view of (36c), the shadow price of la\‘oor per unit of capital, $\mu_{t}$ , can

be expressed as follows:

$\mu_{t}=\int_{0}^{\Phi}e^{-(r-\alpha)(\tau-t)}\{(1-\vee p)p_{\sim}.u_{-}.f’(n_{\tau})-W_{\tau}h(u_{\mathrm{r}})\}k_{\tau}d\tau$ . (37)

This equation states that the value of labor per unit of capital at a given time equals the
$\mathrm{d}\mathrm{i}\mathrm{s}^{\backslash }\mathrm{c}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{d}$ value of its future marginal revenue products. Substituting this equation

into (36b), we have

$\psi’(s_{t})k_{t}=\ulcorner_{t}e^{-(r-\alpha \mathrm{X}^{\sim}-t)}.\{(1-\epsilon)p_{\mathrm{r}}u_{\mathrm{r}}f’(n_{\mathrm{r}})-W_{\tau}h(u_{\mathrm{r}})\}k_{\mathrm{r}}d\tau$ . (38)

At time $t,$ $k_{t}$ is given since it is a state variable. Therefore, this equation determines

$s_{t}$ if the firm’s $\mathrm{e}\mathrm{x}\iota$) $\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ of the future marginal revenue products is given. This result

implies that the firm’s expeclations about future demand and costs are crucial in the

determination of $1\mathrm{a}\iota_{)\mathrm{o}\mathrm{r}- \mathrm{c}\mathrm{a}1)}\mathrm{i}\mathrm{t}\mathrm{a}1$ ratio if the adjustment costs for its changes are taking

into account.

However, the discounted value of the future marginal products of labor per unit of

capital, the right-hand side expression of (38), depends not only on expected prices and
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wages but also on future values of $n$ and $k$ . But, those future values are affected by

the levels of $s_{t}$ and $g_{t}$ to be determined at present. So, $s_{\ell}$ cannot be determined by

equation (38) alone. It is determined simultaneously with other variables in the
complete system.

In order to seek a $\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{n}\mathrm{i}\mathrm{n}_{\epsilon}\sigma,\mathrm{f}\mathrm{u}1$ explanation for the determination of the labor-capital

ratio, we focus on the steady state of the complete system. Putting $\dot{k}_{t}=0$ in (33) and

$\dot{n}_{t}=0$ in (34), we have $g_{t}=\alpha$ and $s_{\ell}=0$ . Next, putting $\dot{j}_{\vee}.’=0$ in (36c) and $\dot{\mu}_{t}=0$

in (36d), and substituting ffom (35a) and (35b), respectively, we have the following
steady state relationships:

$(1-\epsilon)puf(n)-Wh(u)n=\phi(\alpha)+(r-\alpha)\phi’(\alpha)$ , (39)

$(1-\epsilon)puf’(r?)-m(u)=0$ . (40)

In view of (27) and (28), the steady state values $0^{\underline{\{}}\wedge p$ and $n$ are determined by
$p=\{uf(n)k\}^{-\epsilon}$ (41)

$u=u(k,n)$ . (42)

Taking these relations into consideration, the steady-state values of $k$ and $n$ are
determined by (39) and (40). The wage rate, $W$ , the rate of interest, $r$ , and the
expected rate of growth, $\alpha$ , are given $\mathrm{e}\mathrm{x}\mathrm{o}_{\epsilon}^{\sigma},\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{u}\mathrm{s}\mathrm{l}\mathrm{y}$ .

If we use equation (10) to substituoe out $\wedge p$ and $W$ in equation (40), we have

$\underline{h(u)}\underline{nf’(n)}=$

(43)
$uh’(u)$ $f(n)$

Notice the $\mathrm{a}\mathrm{s}\mathrm{s}\mathrm{u}\mathrm{m}\mathrm{o}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}\wedge$ that were made on the utilization function $h(u)$ in section 2.

SpecificaUy, assumption (f) states that (43) holds if and only if $u=1$ . In other words, the

rate of utilization is at the normal level in the steady stare. On this condition, we can
rewrite (39) and (40) as follows:

$(1-\mathcal{E})pf(n)-Wn=\phi(\alpha)\perp(r-\alpha)\phi’(\alpha)$ (44)

$(1-\mathcal{E})pf’(n)-W=0$ (45)

Eliminating $p$ from these two equations, we have

$\frac{f’(n)}{f(;\iota)-flf’(fl)}=\frac{W}{\phi(\alpha)\perp(r-\alpha)\phi’(\alpha)}$ . (46)

This equation determines lhe normal $1\mathrm{a}\mathrm{b}_{\mathrm{o}\mathrm{r}- \mathrm{C}\mathrm{a}_{1})}\mathrm{i}\mathrm{t}\mathrm{a}1$ ratio, $n$ , at the steady state, given
$W,$ $r$ and $\alpha$ .

Calculating the effect of a $\mathrm{c}\mathrm{h}\mathrm{a}\mathrm{n}_{3}^{\sigma}\mathrm{e}$ in $W$ or $r$ on $n$ from equation (46), we have the

following results:
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$\frac{Won\neg}{n\partial W}=\frac{f’(n)[f(n)-nf’(n)]}{nf(n)f’(n)}<0$ (47)

$\frac{1}{n}\frac{\partial n}{b}=-\frac{f’(n)[f(n)-nf’(n)]}{nf(n)f^{n}(n)}\frac{\phi’(\alpha)}{\phi(\alpha)+(r-\alpha)\phi(\alpha)}’>0$ (48)

Thus, the labor-capital ratio decreases with an increase in the wage rate, increases with
an increase in the rate of interest. It should be noted that these results have been
obtained from the comparison of steady states. Since the normal labor-capital ratio is
fixed in the short-run in our model, it does not respond instantaneously to changes in
the wage rate or interest rate. Corresponding to given factor prices, the optimum labor-
capital ratio is attained only at the steady state. But, it takes quite a long time for the
transition ffom one steady state to another. So changes in factor prices can lead to
changes in factor proportions only in the long-run.

6. Investment Decisions of the Firm under Imperfect Competition
Let us next consider investment decisions of the firm by assuming that the normal

labor-capital ratio, $n$ , is given. Since $\mathrm{c}\mathrm{h}\mathrm{a}\mathrm{n}_{\Leftrightarrow}^{\sigma}\mathrm{e}\mathrm{s}$ in the normal labor-capital ratio take
quite a long time as is mentioned above, this simplifying assumption may be justified. It
should be noted, however, that the actual labor-capital ratio changes with the rate of
capital utilization as is already explained in section 2.

With this simplifying assumption, investment decisions of the firm is formulated as
the problem of maximizing

$V_{0}= \int_{0}^{\infty}[p_{t}u_{\ell}f(n)-W_{t}h(n_{t})n-\phi(g_{p})]k_{t}A_{0}e^{-(r-\alpha)\ell}dt$ , (49)

subject to

$\dot{k}_{t}=(g_{\ell}-\alpha)k_{t}$ . (50)

where the product price $p_{t}$ is given by (25), and the rate of capital utilization $u_{t}$ by

(26). Since the normal labor-capital ratio, $n$ , is here assumed to be constant, those

equations are written as

$p_{t}=\{u_{t}f(r\iota)k_{t}\}^{-\epsilon}$ (51)

$ll_{\ell}=ll(k_{t})$ (52)

For analytical convenience, we rewrite the objective function of the firm, (49), in
terms of the rate of return on capital defined by $\pi_{t}=(p_{t}Y_{f}-W_{t}N_{:})/q_{t}K_{t}$ . Since we put

$q_{t}=1$ without the loss of generality, the rate of return on capital can be expressed as
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$\pi_{t}=\frac{p_{t}Y_{t}-W_{t}N_{t}}{K_{t}}=p_{t}u_{t}f(n)-W_{t}h(u_{t})n$ . (53)

Substituting (51) and (10) into this equation yields

$\pi_{t}=\frac{\epsilon+\xi-1}{\xi}\{u_{\ell}f(n)k_{t}\}^{-\epsilon}u_{t}f(n)$ , (54)

where $\xi$ is defined by

$\xi\equiv\frac{uh’}{h}$ (55)

Thus, the rate of return, $\pi_{t}.$
’ is expressed as a function of $u_{t},$

$k_{\ell}$ and $n$ . But, $n$ is

assumed to be constant and $n_{\ell}$ is expressed as a function of $k_{\ell}$ in view of (52). Hence,

$\pi_{t}$ is reduced to a function of $k_{t}$ :
$\pi_{t}=\pi(k_{t})$ . (56)

Calculatin$\mathrm{g}$ the elasticity of the rate of return, $\pi_{t}$ , with respect to $k_{\iota}$ from (53) and

(14) yields

$\omega(k_{t})\equiv-\frac{k_{t}}{\pi_{\ell}}\frac{d\pi_{t}}{dk_{t}}=\frac{\epsilon\xi}{\mathcal{E}+\xi-1}$ . (57)

In view of (54), $\epsilon+\xi-1>0$ must be satisfied if $\pi_{t}>0$ . With this condition, therefore,

$\omega(k_{t}).>0$ . This implies that $\pi_{:}$ is a decreasing function of $k_{t}$ .
Using (56), we can rewrite the objective function of the firm, (49), as follows:

$V_{0}=\Gamma_{0}[\pi(k_{t})-\phi(g_{t})]k_{t}A_{0}e^{-(r-\alpha)t}dt$ (58)

Thus, investment decisions of the firm become the problem of determining $g_{t}$ so as to

maximize (58) subject to the constraint (50).

To solve this problem, we set up the present value Hamiltonian:

$H_{t}=e^{-(r-\alpha)t}[\{\pi_{p}(k_{t})-\phi(g_{t})\}_{\mathcal{T}}.J_{\vee}(\ell g_{t}-\alpha)]k_{t^{\gamma}}$ (59)

where $)_{\bigvee_{\iota}}$ is the shadow price of $k_{t}$ . We put $A_{0}=1$ without the loss of generality.

The first order conditions for a maximum of $V_{0}$ are
$\lambda_{t}=\phi’(g_{t})$ (60a)

$\dot{\lambda}_{t}=J_{\vee}(tr-g_{\iota})-[\pi(k_{t})\{1-\omega(k_{\iota})\}-\phi(g_{t})]$ , (60b)

where $\theta$ is $\mathrm{d}\mathrm{e}\iota_{1\mathrm{n}\mathrm{e}}^{\vee}\mathrm{d}$ by (57) above. The transversality condit.ion is

$\lim_{tarrow\infty}k_{\ell}\phi’(g_{t})e^{-(r- a)t}=0$
(60c)

Eliminating $\nearrow^{\neg}\vee t$ from (60a) and (60b), we obtain
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$\dot{g}_{t}=\frac{\phi’(g_{t})(r-0\sigma)\ell-[\pi(k_{t})\{1-\omega(k_{t})\}-\phi(g_{t})]}{\phi’(g_{t})}$ . (61)

Equations (61), (50) and (60c) characterize the firm’s investment behavior.
Lt us analyze the system consisting of these equations by using phase diagram.

The locus of points where $\dot{g}_{t}=0$ satisfies

$\phi’(g)=\frac{\pi(k)\{1-\omega(k)\}-\phi(g)}{r-g}$ (62)

The slope of this locus on $Okg$ plane is calculated ffom this equation as follows:

$\frac{dg}{dk}|_{\dot{g}=0}=\frac{\pi’(k)\{1-\omega(k)\}-\pi(k)\omega’(k)}{(r-g)\phi^{n}(g)}$ . (63)

The second order condition for a maximug of $(_{\backslash }49)$ implies that the right-hand side
expression of (63) is negative. Hence, the locus of $\dot{g}=0$ is downward sloping. The locus

of points where’ $\dot{k}_{\ell}=0$ satisfies

$g=\alpha$ (64)

This locus is a horizontal line on $Okg$ plane. The intersection of these loci denoted by

$E(k,g^{*})$ represents the steady state.
In view of (61), we see that $\dot{g}_{t}>0$ above the $\dot{g}=0$ line. and $\dot{g}.’<0$ below it.

Similarly, it is obvious from (50) that $\dot{k}_{\ell}>0$ above the $\dot{k}=0$ line, and $\dot{k}<0$ below it.

Thus the direction of the movement of the system in each phase becomes as Figure 4.
The steady staoe $E(k^{*},g^{*})$ becomes a saddle point, and there is a unique path that
converges to it. Though we omit the proof, it can be shown that on all other path, either
the optimality condition (61) eventually fails or the transversality condition (60c) is not

satisfied.
The solution to the optimal investment decision $\dot{\mathrm{o}}\mathrm{f}$ the firm under imperfect

competition is summarized by the saddle path $PP$ . This implies that there is a unique

initial level of investment per unit of capital, $g$ , for each initial value of $k$ (capital per

unit of expected demand). For instance, if the initial capital per unit of expected demand,

$k_{\mathrm{c}}$ , is lower than its steady state value, $k$ , the optimal initial level of investment per

unit of capif,$\mathrm{a}1,$

$g_{0}$ , is higher than its steady state value, $g$ . On the contrary, if the

initial capital per unit of expected demand, $k_{!},$ $\mathrm{i}.\mathrm{s}$. higher than the steady state $\mathrm{v}\mathrm{a}\mathrm{l}\mathrm{u}\mathrm{e}_{2}$

$k$ , the optimal investment $1$) $\mathrm{e}\mathrm{r}$ unit capital, $g_{1}$ , is lower than the steady state value,

$g$ . As the $\mathrm{f}\mathrm{i}_{\mathrm{b}}^{\sigma}\mathrm{u}\mathrm{r}\mathrm{e}$ shows, the saddle path $PP$ is downward sloping, and starting at any
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point on the path $g$ and $k$ converges monotonically to $g^{*}$ and $k$ . This implies that
$g$ decreases with $k$ monotonically. But, as we have shown before, $\pi$ is a decreasing

function of $k$ . Therefore, $g$ increases with $\pi$ monotonicaly. Therefore, the

investment per unit of capital, $g$ , is an increasing function of the rate of profit, $\pi$ .

Let us next examine how the rate of interest, $r$ , affects the level of investment per
unit of capital, $g$ . When $r$ rises, the $\dot{g}=0$ line will shift downwards as is shown in

figure 5. Then, the saddle path $PP$ shifts down to $P’P’$ . Therefore, for any given

initial value of $k,$ $g$ will decreaae $\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{p}\mathrm{o}\mathrm{n}\mathrm{d}\mathrm{i}\mathrm{n}_{\mathrm{a}}\sigma$ to a rise in $r$ . For instance, if the initial

value of $k$ is $k_{0}$ , then $g$ will decrease ffom $g_{0}$ to $\circ\sigma_{0}’$ . Thus, investment per unit of

capital changes inversely with the rate of interest.
Finally, we shall examine the effect of the expected growth rate of demand, $\alpha$ , on

investment. When $\alpha$ increases, the $\dot{k}=0$ line will shift upward as is shown in figure 6.
Then, the saddle path $PP$ shift up to $P’P’$ . Therefore, for any given initial value of $k$ ,

$g$ will increase responding to an increase in a. For instance, if the initial value of $k$ is
$k_{0}$ , then $g$ will increase from $g_{0}$ to $g_{0}’$ . Thus, the expected growth rate of demand

has a positive influence on investment per unit of capital.

To summarize the above results, investment per unit of capital, $g$ , is related

positively to $\pi$ and $\alpha$ , and negatively to $r$ . Thus, the investment function of the firm

under imperfect competition may be reprefented as
$g_{t}=G(\pi_{t},r,\alpha)$ , (65)

where

$\frac{\partial G}{o\pi_{t}}>0\neg$

’
$\frac{\partial G}{\partial^{d}}<0$ , $\frac{cG\neg}{\hat{c}\alpha}>0$ . (66)

A special feature of this investment function is that in addition to the rate of profit and

the rate of interest, the expected growth rate of demand plays an important role as a

determinant of investment. The firms under imperfect competition make investment

decisions based on expected future demands for their products. It is not price

expectations but quantity expectations. While the firm under perfect competition holds

price expectations, the firm under imperfect competition holds quantity expectations in

determining investment. The expected growth rate of demand, $a$ , is a parameter that

represents the rate of shifts in expected demand curves over time. This parameter may
$\mathrm{b}\mathrm{c})\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{r}_{1})\mathrm{r}\mathrm{e}\mathrm{t}\mathrm{e}\mathrm{d}$ to correspond to what Keynes called ‘animal sprits’ of entrepreneurs.

In the end, we should mention to the relation between the choice of technique and

investment decisions. As we have seen in the last section, $\mathrm{c}\mathrm{h}\mathrm{a}\mathrm{n}_{\Leftrightarrow}^{\sigma}\mathrm{e}\mathrm{s}$ in the wage rate, $W$ ,

or the rate of interest, $r$ , will lead to $\mathrm{c}\mathrm{h}\mathrm{a}\mathrm{n}_{6}\sigma \mathrm{e}\mathrm{s}$ in the normal labor-capital ratio, $n$ , in

the long-run. But, changes in $n$ will lead to changes in the rate of profit, $\pi_{t}$ , as is
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obvious ffom (54), and then to changes in investment. To be more precise, an increase in
$W$ decreases $\pi$ , and so tends to decrease $g$ , while an increase in $r$ increases $\pi$ , and
so tends to increase $g$ . It should be noted, however, that these indirect effects on
investment though the choice of technique will work only in the long-run. Moreover, as
for effects of $r$ on investment, its negative effect discussed above will certainly exceed
the positive effect through the choice of technique.

7. Conclusions
In this paper, we investigated investment decisions and the choice of technique of

the firm under imperfect competition. Our model has two special features. First, we
analyzed firm’s investment decisions simultaneously with the choice of technique; and
second, we analyzed the behavior of imperfectly competitive firms. We distinguish
explicitly between the normal labor-capital ratio and the actual labor-capital ratio. The
former is determined by the choice of technique of the firm, and the latter by the raoe of
utilization of existing capital. We assumed that the normal labor-capital ratio is fixed in
the short-run, and adjustment costs are needed for changing the ratio towards an
optimal level. So, in our model, adjustment costs are involved not only with investment
as usual, but also with changes in factor proportions.

As for the choice of technique, the comparison of steady states has revealed that a
rise in the wage rate decreases the labor-capital ratio, while a rise in the interest rate

increases its ratio. Theae results do not seem surprising. It should be noted, however,

that in our model the labor-capital ratio attains its optimal level corresponding to factor
prices only in the long-run. For, it takes quite a long time for the transition from one
steady state to another.

As for investment decisions, we have shown that the expected growth rate of

demand is an important determinant of investment in case the firm is under imperfect

competition. This is due to the fact that the imperfectly competitive firm bases his

investment decisions on quantity expectations unlike the perfectly competitive firm who

bases his decisions on price expectations. The expected growth rate of demand may be

interpreted to correspond to Keynes’ animal spirits that reflect the state of long-run

expectations of the firm.
Lastly, we have shown that the wage rate and the interest rate affect investment

indirectly through their effects on the normal laboi-capital ratio. These indirect effects

on investment through the choice of technique $\mathrm{w}\mathrm{i}\mathrm{U}$ work only in the long-run.
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NOTES

1. Uzawa (1972) gives an outline of the investment model for the case of the imperfect

competition. But he does not analyze the model in detail.

2. Okishio (1984) constructed a model of the simultaneous decisions of capital

utilization, investment and technique, and $\mathrm{d}\mathrm{i}_{\mathrm{b}}^{\neg}\mathrm{c}\mathrm{u}\mathrm{s}\mathrm{s}\mathrm{e}\mathrm{d}$ some Keynes’s assertions given

in ‘The General Theory’. This paper owes much to his model. But his model deals with

only the case of two or three periods. Besides, our model focus on different problems

from his.
3. Most of the investment models presenoed so far do not differentiate between the

long-run production function and the short-run production function. This distinction

is made clear in the following literature: Okishio (1984), Malinvaud (1989),

Malinvaud (1998).

4. This formulation of adjustment costs follows Hayashi (1983).

5. A similar assumption is made by Blanchard (1997).
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FIGURE

Figure 1. The Long-run Production Function and the Short-run Production Functiion

$\lambda J/-\Lambda I$

$C/K$

Figure 2. The Employment Function $\mathrm{F}\mathrm{i}_{\mathrm{b}}\sigma \mathrm{u}\mathrm{r}\mathrm{e}3$. The Adjustment Costs
for Changing Labor-Capital Ratio
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$\mathrm{F}\mathrm{i}_{\Leftrightarrow}^{\sigma}\mathrm{u}\mathrm{r}\mathrm{e}4$. The Saddle Path of Optimal Investment Figure 5. The Effects of a Rise
in the Interest Rate

Figure 6. The Effects of an Increase
in the Expected Growth Rate of Demand
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