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Quantile Hedging for Defaultable Securities
in an Incomplete Market

* Jun Sekine
Graduate School of Engineering Science,

Osaka University, Toyonaka, Osaka 560-8531, Japan

Abstract: In this paper, we aim at

1. giving formulas of prices and replicating-strategies of defaultable securities(e.g., bonds, swaps,

derivatives) in incomplete market, and

2. giving “solvable” examples of quantile hedging strategies in incomplete market.

Considering an incomplete market that consisfs of tradable assets and an unhedgeable defaultable
security, whose non-predictable default time has stochastic intensity correlated with the tradable
assets-price-processes, we treat the problem of pricing and hedging of the defaultable security on it.
We employ the quantile hedging strategy (cf., [F-L]) to replicate “the cumulative dividend process”
of the defaultable security by an admissible strategy among the tradable assets. The strategy that
maximize the success probability of hedge under the given initial capital and the‘strategy that

minimize the initial capital under the given success probability of hedge are calculated explicitly.

Keywords: quantile-hedging, defaultable security, incomplete market, Neyman-Pearson’s lemma

1 Introduction

One of the major approach to pricing defaultable securities, the so-called “reduced-form approach” (or

“intensity-model approach”) regards the default time 7 as “unpredictable” (i.e., totally inaccessible)
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stopping time. (cf., [D-S,D-S-S,J-T,L1,L2].) Therefore, for example, if we start with a filtration generated
by continuous assets price processes, a defaultable security expressed as a functional of a discontinuous
of “default indicator”, is unhedgeable by its definition. So, in the referred

submartingale (1{r<¢}) >0

papers above, and the all existing studies about reduced-form approach as we know, the standpoint that
¢ some defaultable securities(e.g., bonds) are already marketed and liquid on a market and the com-

pleteness of the market is established, or
e an equivalent martingale measure is given a priori and fixed,

is employed and arbitrage-free pricing and hedging formulas of defaultable securities(e.g., bonds, deriva-
tives) are derived under the measure.

In this paper, we will start with an incomplete market setting (not fixing equivalent martingale measure)
and price or replicate (“new-introduced”) defaultable securities. Typical examples of our setting are
perhaps the problems of pricing and hedging of untraded or unliguid defaultable securities (e.g., loans).
Especially, we will employ the quantile hedging strategy for the replication, which has recently introduced

by Féllmer and Leukert in [F-L] in place of perfect or super replication. We will seek the strategy that
1. maximize the probability of success of hedge under a given initial capital, or
2. minimize the initial capital under a given lower bound of success probability of hedge.

They éan Be regarded as dynamic versions of the VaR (i.e., Value at Risk), a globally standard method for
tfxe .measurement of marketed risks, and étill look more realistic thaﬁ the perfect or the super replication,
although some dré,wbacks have been pointed out. (cf.k, [A-D-E-H],[F-L].) In Corollary 2, as a simplest
example, we give a Jarrow-Turnbull-type defaultable-bond model with deterministic hazard-rate process
(¢f., [J-T]) and a constant risk-premium parameter; in this case the only random variable Zr is lognormal
distributed, and very explicit expressions of the solutions are obtained. To obtain the explicit optimal
solutions, the Neyman-Pearson’s fundamental lemma in hypothesis testing has been effectively utilized
(at Iea.?t in complete market cases) in [F-L], while it might not be so effective in general incomplete
market cases. Fortunately, in our defaultable security models, since the equivalent martingale measure
thaﬁ realizes “the worst scenario for hedging” can be characterized explicitly (cf., Lemma 4, and the proof
of Lemma 5 in Section 3), we can also obtain the explicit solutions via the Neyman-Pearson’s lemma (by
solving a statistical-test-type problem against a simple alternative iteratedly). Financial theoretically, our

defaultable security model is an unsatisfactory deformed one as stated in Assumption 2 in the next section.
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We will restrict the behavior of the security-holder after the default, which enables us to concentrate to

hedge the “payoff” at the terminal-date T':

dr, if default occurs before T,
Hp .=
D, if default does not occur before T'
of the security, and as a result, the problems are simplified and the explicit solutions for this “European-
type” defaultable security can be obtained. More proper model(or problem) is may be the one stated in

the remark after Problem 1-2, for example, though it remains unsolved.

In the next section, we_will state our setup and our main results, and in Section 3, we prove them.

2. Setup and Results

For a fixed constant T'(> 0), let us prepare a complete probability space, (©,F,P), a d-dimensional
Brownian motion on it, w := (wt)epo,7}, the augmented Brownian filtration, (gt)te[O,T]’ (i-e., G :=
o-{ws; s €[0,¢)}v{4A C Q;3B € F with A C B, P(B) = 0}), and a random variable e that is independent
of Gr and exponentially distributed (with intensity 1). "

Now, consider a financial market on a time interval [0,T] consists of the following elements:
1. the (d + 1)-assets-price-processes:
L vy d
p= (pt)tE[O,T] g = (qt )tG[O.T] PERERY (Qt )tG[O,T]

that are G;-adapted processes, in particular, p is the price process of a default-free bond maturing

at T, i.e., it holds that p; > 0 for all ¢t € [0,T] and pr = 1 P-a.e.,
2. a defaultable security, expressed as the triplet: (7,d, D) (cf., [D-S-S)), i.e.,

(a) the default time, 7, defined by the formula:

t
T::inf{t>0; 65/ )\udu}
0

with a nonnegative Gi-adapted process, A := (At)po, 1), Which satisfies

t
Pr(/ /\udu<oo)=1,
0

(b) the payoff upon default, d,, which is determined by the default time 7 above and a nonnegative

P-ae. for all t € [0,7],

G,-predictable process d = (dt)te[o,"rp
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(c) the payoff at the terminal date T, say D, which is nonnegative, Gr-measurable and provided

if there has been no default.
Let us denote the default indicator function by
Ny :=1,< (t€10,T)),
set the filtration (Ft)seo, 1) bY
Fi:=G:Vo-{Ns; s€[0,t]},

and interpret it as the whole information on the market (along the time-evolution). This is a way of
introducing reduced-form defaultable security model, which follows [L1-2], especially. More generally,
[D-S-S] and [K] are referred for example. For simplicity, we assume Fo = {§, 2}. By definition above, it

is easy to see that the relation
E[1=N,|G] = A = exp {-,/Otx,,du}
holds for ¢ € [0,7] and that the process: (Me)seio.m)> where
M; = N; — /ot(l - Nu)s\udu

is an Fy-martingale obtained from the Doob-Meyer decomposition of the submartingale (Nt)te[o,T]' More-

over, let us recall the following, which shall be used in the proof of our results:

Lemma 1 (Corollary 3.8 in [K], or Proposition 3.1 in [L2]) For any Gr-measurable and L' (P)-random

variable I, we have
E[F(1-N7) | F] =1 = N)E[ArA;'F | G]  for any t € [0,T).
Throughout this paper, we assume the following:
Assumption 1 The normalized assets-prices-process:
X =, x4 = (¢ /p,-..,¢% /D),

((-Y denotes the transposition of a vector) with a numéraire p satisfies the following stochastic differential

equation:

d
j=1

1

with a d x d-matriz-valued o = (o*7), _, i<q and an R%-valued v = (v',...,7%)" are G;-adapted satisfying
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1. clz|? < (04(w)z,z) < Clz|?, P x dt-a.e., for all z € R* and for some 0 < ¢ < C,
2. the space of the probability measures on (£, F):

P :={Q : equivalent to P, and X is a martingale under Q}

contains P, given by the formula:

P »
7P 2 & (—/7d'w> =:Z; forallte[0,T).

The cumulative dividend process H := (Ht)tE[O,T a7 Of the defaultable security (7, d, D) is defined by

H = d.N;+D(1- NT)]-{tZT}

TAE
= / dudNu + D(l - NT)l{tzT}a
0
as in [D-S-S]; we will deform the definition:

Assumption 2 The process d/p is a P-martingale, which means that o holder of the security receives
some tradable (and priced arbitrage-freely) asset in the case of default. After the default t > 7, we will
assume that the holder keeps the tradable d, so, we will interpret the value of the cumulative dividend

H; := d;; we will extend the cumulative divided process H on [0,7 AT} to [0,T] by redefining

Hy = dNy+D(1- Nr)ly>ty
0 on {0<t<(rAT)},
= ds on {T <t<T},

D on{t=T<r71}.’
Assumption 3 One of the following is satisfied:
(A) D>dr>0 P-ae.,
(B) 0<D<dy P-ae.

Remark: Assumption 3 can be removed. It is just for the simplicity of the presentation of our results,

and it is satisfied in typical examples: e.g.,

e a defaultable (zero-coupon) bond model: D =1 > dr > 0, P-a.e.. This can be interpreted a
generalization of defaultable bond model by Jarrow and Turnbull in [J-T]. Upon default, the

bond-holder receives é.p;, where . := E[dﬂg,] is called the recovery-rate upon default.
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e a default-swap model: e.g., an insurance on the defaultable-bond above, i.e., the holder is

insured the default-loss: d; := (1 — d,)p,, and D is set to 0.

Now, consider the situation that a hedger seeks to recover the default-loss of the defaultable security
by a self-financing strategy between the assets p, ¢*,...,q% or that a writer of the security who wants to
decide the price of this defaultable security. By a standard argument, the value process (Vt)te[O,T] of the

self-financing hedging portfolio is written as

‘/0 i
Vi=pr ——+/§udxu :
Po 0

where Vo € R is the initial cost and the Gy-predictable (and X-integrable) process £ := ({t)iepo,1)
represents the trading-process of the assets. If Vt > 0, P-a.e. for all t € [0,T), then, the strategy is
called edmissible in this paper. Obviously, the hedger cannot replicate perfectly the cumulative dividend
process H := (Ht)te[o.T] of the defaultable security by the admissible strategy between p, ¢',...,q%, i.e.,_

our market is incomplete. We can observe

H, := esssup E* [Hr|Fy] = g (1-N)E [(D -dr)* I,Qt] o @
P-eP Dt

(cf., Lemma 6), it provides us the trivial super hédging strategy of H such that:

o starting with the initial cost Ho = do/po+E [(D - dT)+] =F [ma.x (dr, D)] and choose the trading
process ({¢)iefo,1) of X, such that

t
jl:i - Ho+ / £,dX, =  [max (dr, D) | Gi]
t 0 .

then, the hedger shall be in the safe-side:
Vr 2 Hr,
at the terminal-date T with probability 1.

Instead of the trivial strategy above, we will employ the quantile hedging strategy that has been
proposed by Follmer and Leukert in [F-L] as more “suitable” strategy and price for the defaultable

security; we will seek the following:

Prpblem 1 (mazimizing the probability of success) Fiz Vo < Hy. Among admissible strategies, solve

the following optimization-problem:

maxPr ({Vr > Hr}) subjectto Vp < Vs, : 2)
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Problem 2 (minimizing the cost for a given probability of success) Fiz 0 < a <1. Among admissible

strategies, solve the following optimization-problem:
minVy subject to | Pr({Vr > Hr}) 2 1-q, (3)
Remark: It might be more natural to consider the probability at the default time:
 Pr({Venr 2 Hoar})
in place of the probability at the terminal:
Pr({Vr 2 Hr})

in the expression (2) and (3) since the defaultable securities are only defined on the time interval

[0,7 A TY); for example, in Problem 1, the inequality:
max Pr ({V-,—/\T Z H,-/\T}) S-maxPr ({VT Z HT}) ,

-is always satisfied, where the maximization is considered over all admissible strategies with the
initial cost Vy < Vo(< Hp). Our deformation simplifies our quantile hedging problems, we only

have to see the “two states”: Np and 1 - Nr, i.e., at the terminal T', if the default occurs or not.
Our results are stated as follows:
Theorem 1 (A) Let (A) in Assumption 3 hold. For a nonnegative constant k, denote

Al(k) = {1 —_ AT A> deZT,AT < k(D -_ d/p)ZT} s

Az (k)

l

{1 > kDZy,Ap > k(D'— dT)ZT} s
and assume that there ezists k* = k*(V,) satisfying
E [1a:dr +14;3D] = Vo/po, : (4)

where we denote by A}.:= Ay (k*), A := Aa(k*). The super replicating strategy of “the modified

claim”:
fIT = lA;uA;dTNT-FlA;D(l—NT) (5)
is a solution of Problem 1. We have

G-ISSSI;)ID E* [ff’r | -7::] = E (Lasuazdr | G + (1 - N)E [(1A;D —'1A;uA;dT)+ | Qt]
J-e
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< E [1asuazdr | G + E [(1A;D - 1A;uA;dT)+ | gt]
= E [max (lA;uA;dT, 1a; D) | G]

= E[la;dr+14;D |G,
and we can construct an optimal strategy (Vo, €*) by defining
. Vo .,
E[la;dr +14;D | G = ot | Xy forte[0,T].
0
(B) Let (B) in Assumption 3 hold. For a nonnegative constant k, denote

B (k) {1 > kdrZr,1 - Ar > k(dr — D)2},

Bg(k) {AT > kDZr,1—-Ar < k(dT - D)ZT} ,

and assume that there ezists k* = k*(Vy) satisfying
E [1p;dr + 1, D) = Vo/po, (6)

where we denote by B} := By(k*), B3 := Ba(k*). The super replicating strategy of “the modified
claim”:
Hr = 1p;drNr + 1:;up; D(1 - Nr) (7

is a solution of Problem 1. We have

esssup E* [I;TT | .7'}]‘ = E [Bzdr | G) + (1 - N)E [(1B;uB;D - IB;dfz‘)+ l gt]
P+eP

IA

Elpydr |G +E [(h?;uB;D - 113;dT)+ I gt]

E [max (15;u8; D, 15;d7) | Gi]

E [1B;dT +1p; D | G¢]

]

and we can construct an optimal strategy (Vy,€*) by defining
. Vo t
E(lp:dr +1p;D | Ge] = oot GdXy forte [0,7].
0 0
Theorem 2 (A) Let (A) in Assumption 3 hold and assume that the equation:
E[lAl(k)(l—AT)+1A2(k)] =1l—-a (8)

with respect to k is solved for some k* = k*(a). Then, the super replicating strategy of “the modified

claim” defined by (5) is a solution of Problem 2.
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(B). Let (B) in Assumption 8 hold and assume that the equation:
E [131(@ + 132(k)AT] =1l-a 9)

with respect to k is solved for some k* = k*(«). Then, the super replicdting strategy of “the modified
claim” defined by (7) is a solution of Problem 2.

Remark: 1. The existence of the sets A}, A3, B}, By € Gr satisfying (4),(6),(8), or (9) is assured if,

for example,

E [loa, () (1= A7) + 1ga,6)] =0
and  E[lop, k) + lop,mAT) =0,
where  0Ay(k) := {1 — Ar = kdrZr,Ar = k(D - dr)Zr},
0A,(k) := {1 =kDZr,Ar = k(D — dr)Zr},
8B, (k) := {1 = kDZp,1~ Ap = k(dy — D) 27},
and  OBy(k) := {Ar = kDZr,1 - Ap = k(dr — D)Z1}
are satisfied for arbitrary k 2 0 (cf, e.g., [Sc] Cha.ptef III,3). If the sets do not .éxisf, v}e can

reformulate our quantile-hedging procedure as stated in [F-L): for instance, in Problem 1, we

will modify “the success-set-maximization” to “the success-ratio-maximization”.

2. In Theorem 2, the minimal cost of quantile hedging strategy:

- poE [1a;dr +14;D)  in the Case (A),

pb!:
poE [lB;d/I‘ + 1B;D] in the Case (B)
is reexpressed as
drlgeyae+D1 4o
- lime_0 poEE ThAuA 43) [Hr] in the Case (A),
0= (dT18{+DIB{‘uB’)

lim,_,¢ poEe 2" [Hr) in the Case (B),

by using the sequences of equivalent martingale measures (abbrev. EMM, hereafter):

(drlargaz+Dlax) (drlp++Dlgsups)
<Q€ Y442 2 , and ca 1YB; ,
. e>0 >0

and the expectations with respect to them, which shall be defined in Lemma 4 in the next
section. An interpretation of the expression above is that the optimal cost Vj is the expectation

of the payoff Hy with respect to the EMM that realizes “the worst scenario for hedging”.
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Further, we add two corollaries of the theorems above without proofs. First, we observe the following

“trivialized” situations:

Corollary 1 (A) 1. if0< (1= Ar)D < dr < D holds P-a.e., we have
1 ‘ . -
A =0, A3= {ZT < 76——5} satisfying E [143D] = Vy/po,

2. if0< (1 - Ar)D < dr < D holds P-a.e., we have
Al =0, A= {ZT < k*lD} satisfying P (43)=1-aq,
(B) 1. if0< Ardr < D < dr holds P-a.e., we have
Bf = {ZT < oo 7 } satisfying vE[lB;d]'] =Vo/po, B =0,
2. if 0 < Ardr < D < dp holds P-a.e., we have |
kB{ = {ZT < T } ‘satisfying PB{)=1-a, B;=40,

In each cases, (condztwnal) default probabdzty AT has no effect on the optimal solutions of quantile

hedgmg
Secondly, we give an explicit calculation in the case of Jarrow-Turnbull-type defaultable bond model.
Corollary 2 Let0 < dr =6 < D=1 and A (or \) be deterministic.. We have
AT - 1= AT . ) AT
A* = _— < Z < —_ A‘ = Z 7

1 {k‘(l—J) =T = Tges } 2 { T<&1d=3)

in the case of Ar + 8 <1, and
kn-

A =0, A;:{ZT<i}

in the case of Ay + 6 > 1, as given in Corollary 1 (A). Setting d = 1 and the risk-premium process

constant, we observe

1. in Problem 1, the equations (4) is reexpressed as

(1—5)Fg(z—(%7-"-—57)+aw(lﬁ) = Vo/po ifAr+6<1,

EX(/kY) = Volpo ifAr+62>1,
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where F} denote the distribution functions of Zr under P, ie.,

Fl(z) = P(Zr<z):= /0 or (5 (@) b5 (2)'|dz,
Lt 1 .2 . 1 7T
gr(z) := sze 2T h () = 5 (loga: - —2—-) )

2. in Problem 2, the equations (6) is reexpress'ed as

A 1-Aq :
ATF¥(W—7:75)+(1—AT)F%( k*JT) = l-a ifAr+6<1,

Fr (1/k%)

1l

l—a ifAr+52>1,
where F. denote the distribution fdnétz'ons of Zr under P, i.e.,
T

FIG) = P(r<2)= [ or (i) I Y1,

1 VT
po (loga: + ——5——) .

W (z)
The initial cost:
Tol@) = po [P (41(k"(@))) + B (Aa(k* ()]

of the quantile hedging strategy under the success probability constraint, > 1 — a, s equal to

%(a) = [51:"%’ (%‘Eﬁ%) +( '5)F% (Tcﬁﬁ)]

in the case of Ar + 0 < 1, or equal to

Vo(a) = poFy (7;;%07))

in the case of Ap + § > 1, respectively.

Remark: The corollaries above treat only trivialized situations, and computable examples with stochas-
tic A, (or \) seem to be necessary to lead more financial implementations. But they may have to
be computed through numerical computations or simulations, since we may not obtain the explicit

expression of the joint distribution of Z7 and A7 generally, (nor even in simplest examples).

3 Proofs

First, we will prove Theorem 1. Let us consider
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Problem 1’

- A
AfggrE[lA(l Ar)+1p T] ,

subject to E*[1adrNg + 13D(1 — Nr)] < Vo/po, for all P* € P,

and, via similar discussions to Proposition 2.8 in [F-L], see the following:

Lemma 2 Let us denote a solution of Problem 1’ by A* and B* € Gr. The super replicating strategy of
“the modified claim” H := 14-dr Nt + 15-D(1 = N7) is a solutioh“of Problem 1.

Proof: For any admissible strategy (Vo,§) with V5 < Vo, the associated “success set”:
1{V7-2HT} = l{V:erT}NT + I{VTZD}(]' - Nt)
satisfies

Vr 2 Hrlgvzur)

Lve2drydr Nt + Lvp >0y D(1 — Nr)

P-as., so,
Vo/po > Vo/P; > E* [Vr] > E* [1{V12d1‘}d’I'NT +‘ Lvz»>pyD(1 = N7)]

for any P* € P since nonnegative local P*-local martingale V/p is a super martingale, this implies
E [Ltvy>Hr}] < E[la-Nr +1p-(1 = Np)] = E[14-(1 — Ar) + 1p-A7]

On the other hand, the super replicating strategy of “the modified claim” H7. is obviously admissible,
esssup E* [Hy | Fi] = esssup E* [14-dr N1 + l.B-D(l - Np) | 7] 20,

P-€P P-eP

and has a maximal “success set”. i.e., in the expression
Yas>Hr) = Y140 dr2dr} VT + Y142 0203y (1 = N7,
we observe
A:={l4-dr >dr} D A*, and B:={13.D> D} D B*,

hence, A and B are solutions of Problem 1’, and the optimality in Problem 1 follows.
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Moreover, we set
Problem 1”

(A) In the case of D > dr > 0, P-g.e.,

A,Berréij.(A:»BE [1a(1—Ar)+1A7], subjectto F[max (1AdT, 1pD)] < Vy/po,

(B) in the case of 0 < dr < D, P-a.e.,

A,Ber%?).(AcBE 1a(1=Ar) +1BA7], | subject to E[max (14dr,15D)] < Vo/po,

and observe

Lemma 3 Problem 1’ is equivalent to Problem 17.
Proof: We have

E*[14drNr +15D(1 = N1)] = E*[ladr]+ E*[(1gD = 14dr) (1~ N7)]
< B [Ladr] + B* [(15D — 1adr)*]

= E [ma.x (1AdT, 1BD)]

for any P* € P, since P* = P on Gr. If we use (le"D_l"dT)) . (C P), which shall be defined
>

in Lemma 4 below, we can approximate the trivial upper bound as

lim EeP=1441) (15D — 14d7) (1 - N7)]| = E [(1,317 - 1AdT)+] ,

€0

SO

‘sup E*[ladrNr +15D(1 - Ny)| = E [(IBD - 1AdT)+] .
P+cP : :

Further, if D > dr > 0 P-a.e., for example, for any A, B € Gp satisfying the condition E [ma.x(l adr,

IBD)] < f/o/po, set A := AU B, and recall that the relation

E[IA(l — A1)+ ]-BAT] < E[lg(l — A1)+ ]-BAT] s

E[max (1adr,15D)] = E[max(1zdr,15D)]

hold, hence follows the lemma.
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]

Lemma 4 For arbitrary F € L*(P), a,8 > 0 and € € (0,T), let us define an equivalent martingale

measure QF by the formula

F
dcg; 5 = Pt
where py = 1+ /ot Pu— (—Yudwy + K, dM,,),
o —1+¢€/X ift<T—e€
" —14 (ot = (e 4 ) B [1{on}|97~_¢]) /A fT-e<t<T,
Then,

. F =
lim B’ [F(1- Np)] = E [F*] (10)
holds, where we have denoted the ezpectation with respect to QF by EF[].
Proof: We will only show “>-side” inequality in (10), since the relation
lim Ef [F(1~ Nr)) < Ef [F*] = B [F*]
€

is obvious. Under QF,
¢
(Nt —f 1-N)(Q+ "‘u))‘udu)
o )

is a martingale, and the relation

t€(0,T)

Ef [P(1 - Np)] = B[FAT]

holds, where we have denoted
r
logAf = - /0 (1 + Kkt)Aedt
= —T-o) - (= (" +¢) E [1rz0l6r-] )
= —¢T—¢)—e%1g: + flg, - (e + 6‘3) LF
with G; =G(F a;e) := {E‘ [1{p20}|g7_¢] >1- e“'“}
and LY = 1G; - E[ip>0p | Gr—] .-
(cf.,[K], for example.) So, by using the inequality e=* > 1~z (z € R), we have
AF > exp {-—ve(T —€) —e “lge + eﬂlc;(} (1—(e*+ eﬁ) LE)

= [exp(—€7®) lg: +exp () 1g,] eI (1 = (7 + €F) LY)
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therefore,

EF[F(1-N7)] 2 exp{—e(T—¢)—¢*} E[Fla]
+exp {—€(T —¢€) + Y EF1g,]
= (e + ) exp{~e(T - €) — e} E[FL  16¢]

- (e'-a + ) exp{=e(T ~¢)+ £} E [FLf16.]

follows. The second term of the right-hand-side above converges to £ [F*] as € — 0, and the rest

of all terms go to 0 as € — 0, since ze™® — 0 as £ — oo and since the relation:
E[FLF16) =B [F (1- B [1grz0) | 9r-d]) 16.] < BF16,] e

is observed. Hence follows the lemma.

To obtain Theorem 1, we show the following
Lemma 5 (A) The sets A} U A} and Aj defined in Theorem 1 (A) is a solution of Problem 17 (A).
(B) The sets B} and B} U Bj defined in Theorem 1 (B) is a solution of Problem 1” (B).

Proof: We only show (A), since (B) can be seen similarly. For the constant k* = k*(V;) given in Theorem

1 (A), define

B*

{AT > k* (D - dT)ZT} ,

A*

{(1- Ar + iB'AT) > k™ (dr + lé- (D - dT))’ZT} ,
and note that the relations
A*\B*=A] and A*NB*=A4;
hold. For any Gr-measurable A D B satisfying E [max (14dr, 15D)] < Vi /po, we have

E[1a(1 = A7)+ 1gA7] — k*Vo/po
< E[14(1 - Ar) + 1gA7] — k*E [max (14dr, 15D))
= EQla((1~Ar)+1pA7)] = k"E 14 (dr + 15(D — dr))]

= E[l4{(1-Ar) - k*drZr + 15 (Ar — k*(D - dr) Zr)}]
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< E[1a{(1-Ar) - k*drZr + 15 (Ar — k*(D — dr) Z1)}]

= E[14{( - Ar +1p-A7) — ¥ (dr + 15-(D — dr)) Zr}]

< E[la{Q - Ar + 1g-A7) — k* (dr + 18-(D — dr)) Z7}]

= E[la- (1 - Ar+1p-Ar)] - k*E[La- (dr + 15-(D — dr))]

= E[lajua;(1 - Ar) + LagAr] — K*E [Laguazdr + Lag(D — dr)]

= E[lajuay(1 — A7) +1a3A7] - k*Vo/po,

therefore the optimality is derived, hence follows the lemma.

Now, Theorem 2 can be obtained straightforwardly. Following to the discussion in [F-L}, we can reduce

solving Problem 2 to solving
Problem 2’
(A) If D >dr >0, P-ae,

min E [max (14d7,18D)] subject to E [1a(l—=Ar)+1A7] 21 -0,
ADBEGT : : :

(B) If0<dr <D, P-ae,

in B 14dr,1 ject to E[la(1— 1gAr] > 1—a.
Acl’lllglélgTE[maX( adr,15D)] subject to [1a(1— A7) +1pAT]) 2 a

and we can give solutions of these problems via similar “Neyman-Pearson-like” discussion as Lemma 53,
although we omit the detail. At the last of this section, we give the relation, which is used to describe

the super hedging strategy of Hr.

Lemma 6 The relation (1) holds.
Proof: For any P* € P, we have
B [drNp+ D= Np) | B] = Eldr|G]+E" [(D-dr) (1= Nr)| G,

so obviously,

Htﬁﬂ
Pt

+(1-N)E[(D-dn)’* | G-
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If we prepare (Q7 —dT)£>0 defined in Lemma 4 above, we observe
essoup P~ (Hr|Gl] = =+ (1-N)E[(D-dr)* |G|,
e>0 Dt

hence actually, the trivial upper bound above is estimated arbitrary.
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