0000000000
1165 0 2000 0 232-244 232

KINSHIP-RECOGNITION AND SELF-SACRIFICE IN
PRISONERS’ DILEMMA

MIKIO NAKAYAMA

Department of Economics, Keio University, 2-15-45 Mita, Tokyo
108-8345. ‘

ABSTRACT. We define the kinship-recognizing program (KRP, for
short) to play the Prisoners’ Dilemma, a generalization of the self-
recognizing program discussed by Howard [6], to one that can rec--
ognize not only itself but also similar programs as well, thereby
admitting mutual cooperation in a wider class of programs. The
definition is self-referential in that the KRP is a program that can
recognize the opponent as the KRP. The existence is proved, under
a recursive equivalence (kinship) relation, by a recursion theorem
which is also called a fized point theorem in computability theory.
Any KRP is then shown to entail the existence of a program that
sacrifices itself to the opponents that are kin to the KRP. It is
also proved that, under a given kinship relation, no KRP is able
to recognize any member of other class of KRP.

1. INTRODUCTION

Theoretical inquiry into how players come to cooperate in a repeated
play of the Prisoners’ Dilemma has been one of the main subjects in
- game theory. In the literature, at least two types of reasonings of coop-
eration can be found: one is the rational cooperation with a punishment
mechanism at Nash equilibria, as exhibited in the classical folk theorem
“and its more recent version; and the other is the cooperation achieved
by boundedly rational players. In the latter approach, just as in the pi-
oneering experimental work of Axelrod [3], players are often modeled as
machines that act according to predetermined programs. Thus, Abreu
“and Rubinstein [1] or Neyman [11], for example, have used finite au-
tomata as models of boundedly rational players (strategies) in playing
the Prisoners’ Dilemma. Neyman [11], in particular, has shown that
restricting the number of states of automaton players prevents them
from counting the stages of rcpetitions so that coopcerating at every
stage can be in Nash cquilibrium in finite repetitions. Megiddo and

Date: Decanber,1999.

Wigderson [9] showed further that cooperation can be approximated
by a Nash equilibrium when players are more sophisticated programs
such as Turing machines. Howard [6] has also considered machine play-
ers, and argued even more drastically that cooperation is possible in
the one shot play of the Prisoners’ Dilemma.

The key notion in the argument of Howard [6] is the program that
can recognize the opponent as identical to itself. That is, under the
environment that players are drawn from a program pool and matched
to play the Prisoners’ Dilemma, the ability to recognize whether or
not the opponent program is identical to itself naturally leads to mu-
tual cooperation, which would be hardly the case between rational
human players. Every program is fed as an input the algorithm of

the opponent player in the form of the Godel number, but no player

knows its identity; that is, no program is given its own Godel num-
ber separately from the inputs. Thus, the existence of the program,
the self-recognizing program(the SRP, for short), is not a trivial fact.
Howard [6] directly constructed the algorithm both by English and by a
programming language. Rubinstein [15], in a recent stimulating book;
also has presented verbal algorithms of the SRP, and discussed several
applications to modeling boundedly rational players. '
The purpose of this paper is to treat the SRP in an elementary
recursion theoretic setting, thereby generalizing it to a program that is
able to recognize not only itself but also other programs which are kin
to one another in an appropriate way. We call this program a kinship-
recognizing program (KRP, for short). The generalization is motivated
in part by the fact that the SRP cannot, by definition, cooperate even
with very slightly different SRPs, implying a sort of inefficiency in the
mutual cooperation. We shall define the KRP in a self-referential way
to be the program that can recognize the IXRP, which will be shown
to exist, under a recursive equivalence (kinship) relation, by the second
recursion theorem. We then discuss the play of an KRP and other
programs in the Prisoners’ Dilemma. It will turn out, in particular,
that any IKRP entails the existence of a highly altruistic program that
sacrifices itself to the fellow programs of the KRP, being necessarily
exploited by them. Finally, a certain impossibility result will be shown:
the ability of KRP cannot be extended to the one deciding whether or
not the opponcnt program is also a member of the set of all KRPs
under the samne kinship relation. -
Though recursion theory or computability theory have recently come
to be applied more often than before in the literature of game the-
ory and economic theory, basic concepts and theorcms still appear
relatively unfamiliar. Therefore, we begin with a brief summary of

233

computability theory including just the necessary elements in this pa-
per. For formal treatments, the reader may refer to Cutland [5] , or
Odifreddi [12].

2. PRELIMINARIES

Let f be a unary partial function from N = {0,1,2,...} to N. The
domain of f is the set Dom(f) := {z|f(z) is defined}, and the range of
f is the set Ran(f) := {f(z)|x € Dom(f)}. If Dom(f) = N, fis called
a totalfunction. Intuitively, a partial function f is said to be computable
if there exists a finite algorithm such as a Turing machine or a unlimited
register machine to compute f. The definition is similar for n-ary
functions. There are several formalizations of the intuitive concept of
effective computability, all of which have turned out to be equivalent to
the Turing-machine computability, giving rise to the well-defined class
of all partial recursive functions. Thus, the partial recursive functions
are considered as the formalization of the functions which are effectively
computable in the intuitive sense (Church’s thesis).

Any algorithm or program computing a unary function is a finite
sequence of well-defined instructions. Let P be a set of all such pro-
grams. Then a bijection v : P =+ G C N can be defined and is called
a coding or Godel numbering if v and v~! are both computable in the
following sense:

(a): Given a particular program P € P, we can effectively find the
- code number y(P) € G; '
(b): Given a number n € G, we can effectively find the program
P =v7(n).
There are several established ways to code finite objects. Fixing on one
coding, every computable (unary) function appears in the enumeration:

®Yo, i, ¥Y2, ¥3, ---

where, for each ¢,, the number e is the indez (code number) of a
program computing the function ¢.. Thus, a natural number can be
identified with the program with that number as its index.

An n-ary relation or predicate R(zy, ... ,%,) is said to be decidable
or recursive if its characteristic function cg(zy, ... ,%,) is computable,
i.e., if the total function

c (”I' T)_ 1 1.[R(:L‘la"- a-'Un,)
RAULy e ybn) — 0 ’(,f —'R(Il,”.7n"n)

is computable.

234

Similarly, we say that an n-ary relation Q(zy, ..., z,) is partially de-
cidable if its partial characteristic function f(zy,... ,v,) is computable,
l.e., if the partial function

| ~ 1 if Q(g;l,... ,fvn),
f(*rl"" /Tn) = {u,ndefi?lEd of ‘*‘Q(l"l,-'-) Zn)

is computable. It can be shown that an n-ary relation Q(zx),... ,z,) is
partially decidable iff there is a decidable n+1-ary relation R(zy,... , z,,
y) such that < ' ,

Q(zy,...,za) ff JyR(zy,... ,24,7).

The relation in the right-hand side involves the unbounded search for a
number y satisfying the decidable relation R(zy,...,2,,y). Checking
successively for y = 0,1,2,... whether or not y satisfies the relation
R, the search procedure stops if it finds such a y; otherwise the search
goes on for ever. But, if the above search procedure is bounded, i.e.,

Q(Il)"' 1$n) fo aySZR(xl'i ,xrny)a

then the relation Q(zy,...,z,) becomes decidable, since only a finite
number of checking is needed to decide whether or not R(zy,... .,).
We will use this fact in proving that the kinship relation is decidable.

A subset A of N is said to be recursive if the membership relation
'z € A’ is decidable. Thus, the set of primes, the set of odd numbers,
the set /V, the empty set and finite sets are immediate examples of
recursive sets. It will be easy to see that a finite union of recursive sets
are also recursive. Similarly, a subset A of IV is called recursively enu-
merable (r.e. for short) if the membership relation 'z € A’ is partially
decidable. Recursive.sets are recursively enumerable, since the partial
characteristic function for the relation 'z € A’ where A is recursive,
can be always obtained by having the computation of the characteris-
tic function for 'z € A’ enter a loop whenever z ¢ A. But, there exists
an important r.e. set {z|p.(z) is defined} that is not recursive. This
set is at the core of every undecidability result. For example, the well-
known unsolvability of the Halting Problem 'p,(y) is defined’ follows
from this fact: if the Halting relation "¢, (y) is de fined’ were decidable,
so must be the relation '¢,(z) is defined’, a contradiction. Note that
the program z halts in some finite numbers of steps if . (y) is defined,
so that the Halting Problem is partially decidable. Thus, the Halting
problem represents a partially decidable relation that is not decidable.

Finally, we list two theorems that will be used to prove our results.

The Second Recursion Theorem.: Let f be a 2-ary computable
function. Then, there exists an integer e such that () ~ f(e, z).

235

Here, the symbol ~ means that respective values of both sides are either
undefined or defined with the same value. The number e is called a fized
point; and it can be shown that there are infinitely many fixed points.
A fixed point e is the index of a program that computes the function
defined by using e itself, therefore, it is widely useful in showing the
existence of programs defined in a self-referential way. Just for this
reason, we need this theorem. On the other hand, the next theorem is
a source of many impossibility results in computability theory.

The Rice’s Theorem.: Suppose that B is a nonempty proper sub-
set of all unary computable functions. Then the problem '¢, € B’

is undecidable.

Thus, wheher or not a given function e has a certain non-trivial prop-
erty is generally undecidable.

3. THE SELF-RECOGNIZING PROGRAM

Let z be the index of a program computing the partial function ..
Program z is a player of the Prisoners’ Dilemma if the range of the
function ¢, is {c,d}, where we interpret the numbers c and d (c # d)
as representing cooperation and defection, respectively.

,|‘c d
cl|3,3 0,4
d|4,0 1,1

We will assume that every program is fed as an input a natural num-
ber, the index of the opponent program. A player x then follows the
procedure of its own program: it may decode the input and simulate
the behavior of the opponent to determine its output, or may simply
ignore it and produce an output, or may produce nothing. We allow
the possibility that a player cannot produce an outcome of the game
when the opponent program outputs nothing or an irrelevant number.
But, the ability of recognition requires a program to compute a total
function as follows. '

Definition 1. Program z is said to be a self-recognizing player (SRP)

of

(y) = ¢ ifr=y
v=(y) =\ ifoty

Programs do not know their own indices. In other words, no program
is fed its own index separately from the index of the opponent program.
But, the SRP defined here behaves as if it knew that z is its own index:

236

it cooperates if the opponent is identical to itself, and defects otherwise.
In this sense, we say z is self-recognizing.

Proposition 1. There exists a self-recognizing player.

The proof follows from Proposition 2 in the next section, where the
existence of a generalized version of an SRP is proved. For an intuitive
description of the structure of the SRP, see Howard [6] or Rubinstein
[15].

Counsider, now, the following program.

Definition 2. Program z is said to be self-sacrificing if p,(2) = d and
@, (y) = ¢ for some y # 2.

An immediate example of a self-sacrificing player would be one that
is highly irrational, defecting just against itself and cooperating oth-
erwise. Such a player is seen to exist simply by exchanging ¢ for d in
Definition 1. But, a more interesting self-sacrificing player would be
the following.

Corollary 1. Let = be an SRP. Then there exists a self- sacmﬁcmg
player z,z # = such that -

(y) = c ify=z
YY) = d ny#l‘

Proof. Let z be any program with z # z such that ¢, = ¢,. Then, the
rest follows from Definition 1. . . []

The player z might be called T — alf'ruzstzc sarrlﬁcmg itself to z
and defecting otherwise. It is remarkable that the very existence of an
SRP7should entail the existence of such an altrmstlc plogram in the
Prisoners’ Dilemma.

4. THE KINSHIP-RECOGNIZING PROGRAM

There exist infinitely many SRPs due to the property of the fixed
points. As noted by Howard [6], any one of them recognizes no other
SRPs no matter how they are similar to itself. For example, no SRP
can by definition recognize any program that has just a slightly dif-
ferent syntax yet computes the same function. Any such program is
essentially the same to the original SRP, so that they could cooperate
with cach other if only they had the ability to recognize each other as
essentially the same. The SRP is in this sense an inefficient program as
far as the mutual cooperation in the Prisoners’ Dilemma is concerned.

237

Let us call program ¢’ a fellow program to e if ¢ computes the same
function as that of e, i.e., o = .. A program might be called a fellow-
recognizing program (FRP), if it is a program that can recognize an
opponent as a fellow program that can recognize an opponent as a
fellow program that can recognize ... ad infinitum. This self-referential
definition can be substantiated in the following.

For each e € N, let I, = {z]p, = @} be the set of indices of
programs that compute the function e. Then, the relation 'y € I’ is an
equivalence relation, since the reflexivity [x € 1.], the symmetry [y € I,
iff z € 1] and the transitivity [z € I, and y € I, imply = € I.] are
all satisfied. It will be legitimate, therefore, to require that FRP z
recognize any fellow program y € .I,. But, this is a condition asking
too much; that is, there is no algorithm to implement the requirement
because [, is not a recursive set.

Formally, this impossibility follows directly from the Rice’s Theorem
by noting that @ C I, C N. In fact, it is not recursively enumerable (see,
e.g., Cutland [5, Corollary 6-1.5, p.104; and Exercise 7-2.18(11(d)),
p.133]). Intuitively, the non-recursiveness of I, can be seen by observing
that z € I, iff ¢, = ¢, and that the latter relation is not decidable
because the equality of functions cannot be assured in any finite number
of steps. Thus, there is no algorithm that can decide whether any given
two programs are themselves fellows or not.

The only way to circumvent this is to narrow the set of fellow pro-
grams down to some recursive subset of I, by defining a recursive rela-
tion to distinguish the opponent program. To this end, we may apply
the technique known as padding. Specifically, let M be a finite set with
|M| = m > 0 that is a subset of all instructions every one of which
is itself redundant -and has no influence upon any other instructions.
Then, for each index e, consider the program obtained by adding finite
numbers of instructions of M with repetitions to the tail of program
e. All these programs can be enumerated according to the number and
the order of the added instructions as follows:

€, €11y y€lmy €2y -+ ,€2m2y- - 1, Cnly--+ , Enpn,y ...

where e,; 1s the code of the jth program of all m"™ programs with n
instructions appended to e. Let this set be represented by

[*e = {80181)62763)"'})

where eg = e. Then, if m > 1, the number ex with & > 0 is the
index of j = k—m(m™ ! —1)/(m —1) th program in the m" programs
with n > 0 instructions appended to e, i.e., ex = ey;, if and only if
m(m* = 1)/(m—1) <k <m(m"—1)/(m —1). When m =1, e, is

238

just the index of a program with k repetitions of the single instruction
appended. The important property of the set I*, is the following.

Lemma 1. %, is a recursive set.

Proof. Let v be our coding system. The set I*, consists of the indices
of all programs of the form

JoJ1Jy - Jr

where Jj is the program P with index e and for k = 1,... ,r, J; is the
instruction from M added with repetitions just after k — 1 instructions
from M have been appended. Then, we have

rel* & Irlz=v(lJ1J2 - J)]
The search for the number r in the right-hand side is bounded, since
’Y(JoJljg"'Jr)ZT, VT‘:O)I,Q,... '

so that

rel* e Ir<zlz=v(loNJy--J.)]
Then, the right-hand side is decidable by virtue of the bounded search
and the total computability of v. Hence, the relation 'z € I*,’ is
decidable, which implies that the set I*, is recursive. O

Intuitively, given z, whether or not z is a member of I*, can be
decided by first decoding = and then checking if it consists exactly
of the instructions identical to the program e with a finite number of
instructions just in M being appended. Note that, by construction,
the code number e is the minimum in [*,; and that I*, is an infinite
set unless M = (. If we take M = (), we have [*, = {e}.

We now have the recursive relation 'y € I'*,’ which, however, is not
symmetric. We say z is a predecessor of y if y € I'*, in that y is derived
from™ by copying instructions from M. By slightly abusing the use
of the word, we say z is a predecessor of itself. A predecessor of z
with no predecessor other than itself is called the ancestor of z. By
construction, for any program z the ancestor of z exists uniquely. We
now define an equivalence relation R*(z,y) from the relation 'y € I*,’
as follows: For all z and y,

R*(z,y) & 3w such that z € I*, Ay € I*, .

We call this relation R* a kinship relation in that z and y are kin to
each other iff they have a predecessor in common. Since the common
predecessor also has the ancestor, it follows that z and gy are kin to
each other iff they share the ancestor in common. The kinship relation
1s a recursive equivalence relation as shown below, and it reduces to
the equality relation when M = 0.

239

Lemma 2. R*(x,y) is a recursive, equivalence relation.

Proof. First, we show that it is an equivalence relation. It will be
enough to check the transitivity. Assume that R*(z,y) and R*(y, z).
Then, there are w and v such that

zel*, ANyel*,, andye I*, Az e I*,.

But, then, the ancestors of w and v coincides with that of y, which is
then the common ancestor of z and z. Hence, for this ancestor o we
have ‘

zel* ANzel*,,
which shows that R*(z, z), i.e., the transitivity.

To show that R* is recursive, first note that R* has a bounded search
for a number w, that is,

R*(z,y) & Jw < z[z € [*y, Ay € I*),

where z = min{z,y}. This must be so, because 0 < w < zand 0 <w <
y whenever a common predecessor w of z and y exists. Conjunction
of two recursive relations is recursive, and a recursive relation with
bounded search is again a recursive relation. Hence, R* is recursive. [J

We are now ready to define the kinship-recognizing program.

Definition 3. Program z is said to be a kinship-recognizing player
(KRP) if ’

_Jc if R¥z,y)
‘Pr(y) - {d Zf "’R*(I,y)

Thus, if z is an KRP and R*(z,y) with = # y, then y is also the
KRP and ¢,(y) = @,(z) = ¢; that is, a mutual cooperation results,
which was impossible for SRPs. Of course, two IKRPs = and y such
that ~R*(z,y), i.e., two IXRPs which are not kin to each other defects
each other.

Proposition 2. There exists a kinship-recognizing player.

Proof. Since the relation R*(z,y) is recursive, the characteristic func-

tion ‘
) = 1 iof R*(z,y)

240

is computable. Therefore, the function h defined by

_ [cflwy) if R¥(z,y)
He = {d+ f@y) if ~R¥(z,y)

is computable. The second recursion theorem then guarantces the exis-

tence of a fized point, i.e., an index x such that ¢, (y) = h(z,y). Hence,
there exists an index x such that

_jc if ¥(z,y)
(PI(Z/) - {(l 7f —:R*(x,y)

which implies that program = is kinship-recognizing. a

The SRP =z is a special KRP with ¥*(z,y) being the recursive rela-
tion 'z =y’

The fact that the general rclation 'z and y compute the same func-
tion’, i.e., the relation 'y € I,’ is not recursive places a limitation on
the ability of recognition of ICRPs. An KRP x judges an opponent
y € I, as a stranger unless *(z,). Nevertheless, the bounded ability
farcs well in the Prisoners’ Dileinma. As was the case with an SRDP,
such an opponent y is a self-sacrificing player that might be called a
kin-to-z-altruistic player in the following sense.

Corollary 2. Let v be a KRP. Then, there exists a self-sacrificing
player z such that ~R*(z,2) and

_Jc if R¥z,y)
pel) = {d if ~R¥(z,y)

The proof follows immediately from Definition 3 by letting z € I
satisfy —[R*(x,2). The player z sacrifices itself to players that are
kin to z, and defccts otherwise, which is the extended attribute of
the wx-altruistic player. Such an altruistic player should exist for any
recursive equivalence relation R(z,-), since the recursive set {y|R(z, y)}
is a proper subset of I,.

If the opponent is not a program computing a total function with
range {c, d}, the outcome of the Prisoners’ Dilemina may not be defined
so that the game is not playable. Even when the opponent is a player
of the Prisoners’ Dilemima, this can happen since playcrs arc programs
computing partial functions. In the next scction, we will discuss some
undecidability results concerning the type of the opponent program.

241

5. THE UNDECIDABILITY OF KRP

The ability of an IKRP to cooperate in the Prisoncrs’ Dilemma is
considerably improved from that of an SRP. The domain of cooperation
is not a singleton set, but an infinite recursive subset of V. Yet, just
like the SRP, an KRP z does not cooperate across the different classes
of kinship since ¢, (y) = d for any program y unless R*(z,y): it cannot
decide whether y is an KRP at all or not when —=R*(z,y). We now
show that this is a fundamental limitation placed on all programs in
general.

Let R(z,y) be any recursive equivalence relation, and let K(R) be
the set of all indices of IKRPs under R. If there existed an algorithm
to decide the membership in I{(R), then such an algorithm could be
used to define the KRP z recognizing any KRP y under R as follows:

e ifze K(R)Ay € K(R)
PW =Ny ifné K(R) VY ¢ K(R)

Note that the relation z € K(R)Ay € I (R) is an equivalence relation.
Thus, the domain of cooperation could be extended to K (R). But, here
again the Rice’s Theorem stands in the way, since § C K(R) C V.

Proposition 3. The set K(R) of all indices of KRPs under any re-
curswe equivalence relation R 1s not a recursive set.

Behind this undecidability is an intuition that, given any index y, the
decision procedure needs infinitely many steps to assure the program
y being able to distinguish its kin from others for each of the infinite
numbers of opponent programs.

Technically, more is involved in the above undecidability result: the
set & (R) is not recursively enumerable, which follows from the theo-
rem of Rice and Shapiro (see, Cutland [5, Theorem 7-2.16, p.130]); and
the complement K(R)® in N is also not recursively enumerable (Cut-
land [5, Theorem 7-3.4, p.135]). This means that the decision problem
whether or not y is an I{XRP is not just undecidable in the same sense
as the Halting problem, but far more difficult to solve than the Halting
Problem. : '

This undecidability result is not so surprising, however. This is
but one example of many undecidability results obtainable by com-
putability theory when applied to game theory [see, e.g., Binmore [4]
or Anderlini [2] for fundamental restrictions placed on rational program
players; Prasad [13] for undecidability of the existence of Nash equi-
libria in infinite games; Knoblauch [8] or Nachbar and Zame [10] for
non-computability of soine repcated- game strategies; and, Jones [7] or

242

Rabin [14] for more classical undecidability results of certain perfect-
information win-lose games.

The one shot play of the Prisoners’ Dilemma as considered in this
paper is subject to a more primitive undecidability of the type dis-
cussed by Anderlini {2], which are now seen to follow directly from
the Rice’s Theorem. For example, no program can, given any op-
ponent program, decide whether or not the opponent is a player of
the Prisoners’ Dilemma; namely, the set I := {e|Ran(p.) = {c,d}}
is not recursive because § C I C N. Similarly, there is no program
to decide if the game to be played can be played at all, for the set
I° := I N {e|pe is total} is not recursive. In other words, whether or
not a given program is a player capable of always reaching a decision
in the Prisoners’ Dilemma is not decidable; in fact, it is very badly
undecidable just as the membership relation to the set I{ of all KRPs.
Thus, as far as the playability of the game is concerned, an outside,
intelligent umpire (like an oracle in computability theory) will be nec-
essary. The KRP could always play the Prisoners’ Dilemma only when
the opponent programs were drawn from the non-recursive set P of
programs computing total functions with range {c,d}.

REFERENCES

[1] Abreu, D., and A. Rubinstein, "The Structure of Nash Equilibrium in Re-
peated Games with Finite Automata,” Econometrica, 56 (1988), 1259-1281.

[2] Anderlini, L., ”Some Notes on Church’s Thesis and the Theory of Games,”
Theory and Decision, 29 (1990), 15-52.

(3] Axelrod, R., The Evolution of Cooperation, Basic Books, New York 1984.

[4] Binmore, K. G., "Modeling Rational Players, Part 1,” Economics and Philos-
ophy 3 (1987), 179-214.

[5] Cutland, N. J., Computability, Cambridge University Press, Cambridge, 1980.

(6] Howard, J. V., ”Cooperation in the Prisoners’ Dilemma,” Theory and Decision,
24 (1988), 203-213.

[7] Jones, J. P., ”Some Undecidable Determined Games,” International Journal
of Game Theory 11 (1982), 63-70.

(8] K{noblauch, V., "Computable Strategies for Repeated Prisoners’ Dilemmma,”
Games and Economic Behavior, 7 (1994), 381-389.

(9] Megiddo,N and A.Wigderson, "On Play by Means of Computing Machines,”
in Theoretical Aspects of Reasoning About Knowledge, Poceedings of the 1986
Conference, J.Y.Halpern ed. Los Altos:Kaufmann, 1986.

[10] Nachbar, J.H. and W.R. Zame, "Non-Ccomputable Strategies and Discounted
Repeated Games,” Economic Theory, 8 (1996), 103-122.

[11] Neyman, A., "Bounded Complexity Justifies Co-Operation in the Finitely Re-
peated Prisoners’ Dilemma,” Economics Letters, 19 (1985), 227-229.

[12] Odifreddi, P., Classical Recursion Theory, North-Holland, Amsterdam, 1992.

243

[13] Prasad, K., ”Computability and Eandomness of Nash Equilibrium in Infinite
Games,” Journal of Mathematical Economics, 20 (1991), 429-442.

[14] Rabin, M.O., "Effective Computability of Winning Strategies,” in Contribu-
tions to the Theory of Games, Annals of Math. Studies, 39, M.Dresher, et.al
eds., Princeton University Press,1957.

[15] Rubinstein, A., Modeling Bounded Rationality, MIT Press, Cambridge, Mas-
sachusetts, 1998.

244

