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1 Introduction

Let X be a real separable reflexive Banach space. A correspondence (= multi-
valued mapping) I' : [0,T] x X — X and a function u : [0,T} x ¥ x X — R are
assumed to be given. A double arrow —- indicates the domain and the range
of a correspondence. The compact interval [0,T] is endowed with the Lebesgue
measure dt. £ denotes the o-field of the Lebesgue-measurable sets of [0, T7.

Let WP ([0, T], X) be the Sobolev space consisting of functions of [0, T] into
X (cf. Appendix) And let A(a) be the set of all the solutions in the Sobolev
space WP ([0,T), X) of a differential inclusion :

(%) z(t) € I'(t,z(1)), z(0) = q,

where z denotes the derivative of  and a is a fixed vector in X. And consider
a variational problem :

T
) MinimizexeA(a)/o u(t, z(t), z(t))dt.

The object of this paper is to discuss a couple of existence problems as fol-
lows :

(i) the existence of a solution for the differential inclusion (*), and

(ii) the existence of an optimal solution for the variational problem (}).



In Maruyama [14] [15], I presented a solution of these problems in the special
case X = R® by making use of the convenient properties of the weak convergence
in the Sobolev space W12([0,T], R®) ; i.e. if a sequence {z,} in W12([0,T], R%),
weakly converges to some z* € W12([0, T}, R%), then there exists a subsequence
{zn} of {za} such that

2z, — z* uniformly on [0,T], and (W)
3, — & weakly in £2([0,T},R%).

However it deserves a special notice that this property does not hold in the
space W12([0,T],X) if dimX = oco. Taking account of this fact, I provided
a new convergence result to overcome this difficulty in the case X' is a real
separable Hilbert space in Maruyama [17]. And I also gave a existence theory
for the problems (i) and (ii) being based upon this new tool in the framework
of a separable Hilbert space in Maruyama [17],[18].

The purpose of the present paper is to generalize my previous results to the
case X is a real separable reflexive Banach space. Papageorgiou [19] also gave
an elegant extension of my results in Maruyama [14],[15] to the infinite dimen-
sional case. The present paper might be regarded as an alternative approach to
Papageogiou’s theory. .

Let me mention about another improvement added on this occasion. In
Maruyama [17], I imposed a very restrictive requirement on the continuity of
the correspondence T' ; i.e. '

the correspondence z —~ I'(t,z) is upper hemi-continuous for each
fixed t € [0,T] with respect to the weak topology for the domain
and the strong topology for the range.

I have to admit frankly that this is a very unpleasant assumption. In the
present paper, I propose the upper hemi-continuity of z = T'(t,z) with respect
to the “weak-weak” combination of topologies instead of the “weak-strong”
combination.

2 A Convergence Theorem in W?([0,T], X)

As I have already said, any weakly convergent sequence {z,} in the Sobolev
space W12([0,T],RY) has a subsequence which satisfies the property (W) in
section .1. :

On the other hand, let X be a real Banach space with the Radon-Nikodym
property (RNP). Then any absolutely continuous function f : {0,T] — X is
Fréchet-differentiable a.e. (If the Banach space & does not have RNP, this prop-
erty does not hold. For a counter-example, see Komura [13].) Let {z,} be a se-
quence in WP ([0, T], X') which weakly converges to some z* € W' ([0, T}, X).
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We should keep in mind that it is not necessarily true that the sequence {z,}
has a subsequence {z,} which satisfies the propery (W) if dimX = oo even in
the case p = 2. ;

Counter-Example (Cecconi[9], pp:28-29) Let X be areal separable Hilbert

space and {@n;n =1,2,:--} a complete orthonormal system of H. (cf. Yosida
[28] P.89.) Define a sequence {z, : [0,7] — H} by

zo(t) =tp, (n=1,2,--).

We also define the function z* : [0,1] — M by z*(¢) = 0. Then z,,’s as well as z*
are elements of Wh2([0,T], H). It follows from the Riemann-Lebesgue lemma
that the sequence {z,} weakly converges to z* in W12([0, 1], H). However there
is no subsequence of {z,} whlch converges strongly (hence uniformly) to z* in

£2([0,1],H).

The following theorem cultivated to overcome this difficulty is a generallza—
tion of Theorem 1 of Maruyama [18]. "

Henceforth we denote by X, (resp.X,,) a Banach space X endowed with the
strong (resp. weak) topology. ’ '

THEOREM 1. Let X be a real separable reflexive Banach space. And
consider a sequence {z,} in the Sobolev space WI'P([O T}, X)(p = 1). Assume
that

(i) the set {zn(t)}5%, is bounded (and hence relatxvely compact) in X, for
each t € [0, 77, and

(i) there exists some function 9 € LP([0,T7], (0, +00)) such that
| 2a(2) | S9¥(t) ae.

Then there exists a subsequence {z,} of {z,} and some z* € whr([0,T], X)
such that

(a) zn — z* uniformly in X,, on [0,T), and
(b) z, — &* weakly in £7(0,T], X).

Remark Since X is separable and reﬂexi\}e, the followihg results holds
true. Assume that p = 1.

(1] £r([0,T], X) is separable.



(I1] £7([0,T], X) is isomorphic to L([0,T], X’), where 1/p+1/q =1 and
“, 7 denotes the dual space.

(III] Any absolutely continuous function f : [0, T} — X is Fréchet-differentiable
a.e. and the “fundamental theorem of calculus” ,le

=10+ | fr)dr; e [0,1]

is valid.

Proof of Theorem 1. (a) To start with, we shall show the equicon-
tinuity of {z,}. Since 9 is integrable, there exists some § > 0 for each £ > 0
such that

H%@%wJﬂHéflMAﬂuwg/ﬂuﬂwgeﬁnm n

provided that [t — s| =6. This proves the equicontinuity of {z,} in the strong
topology for X. Hence {z,} is also equicontinuous in the weak topology for X.

Taking account of this fact as well as the assumtion (i), we can claim,.

thanks to the Ascoli-Arzela theorem (cf. Schwartz[21] p.78), that {z,} is rel-
atively compact in C([0,77), X, ) (the set of continuous functions of [0,7] into
Xy ) with respect to the topology of uniform convergence.

By the assumption (i), {z,(0)} is bounded in X, say

sup || z,(0) || = C < +0c0.

And the assumption (ii) implies that

¢
ufawmwgwm for all 1€ [0,T).
0
Hence
t
sup || za(t) [|= sup || za(0) +/ Za(r)dr || = C+ || ¢
n n 0
for all ¢t € [0, 7).
Thus each z,, can be regarded as a mapping of [0, T] into the set

M={weX|l|v]=C+]¥Ih}

The weak topology on M is metrizable because M is bounded and X is a
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separable reflexive Banach space. Hence if we denote by M, the space M
endowed with the weak topology, then the uniform convergence topology on
C([0,T), My,) is metrizable.

Since we can regard {z,} as a relatively compact subset of C([0,T], My,),
there exists a subsequence {yn,} of {z,} which uniformly converges to some
z* € C([0,T), Xy).

(b) Since

| 9n () Il S¥(t)  aee,

the sequence {wy, : [0,7] — X'} defind by

_W) g
wn(t)—¢(t), =1,2,

is contained in the unit ball of £%°([0,7], X) which is weak*-compact (as

the dual space of £1([0,T7], X')) by Alaoglu’s theorem. Note that the weak*:

topology on the unit ball of £L%°([0,T], X) is metrizable since £}([0,T], X’) is
separable. Hence {w, } has a subsequence {w,:} which converges to some w* €
L*=([0,T], X) in the weak* topology. We shall write z,, = gpr = - wpr.

If we define an operator A : £L>([0,T], X) — LP[0,T], X) by

A:grm g,

then A is continuous in the weak* topology for £ and the weak topology for £P.

In order to see this, let {gx} be a net in £L°([0,T], X) such that w* —lim, g) = '

g* € £2([0,T), X); ie.

T T .
/ (a(t), gr () dt — /0 ((t),g" (1) dt forall «e £Y([0,T],X).

Then it is quite easy to verify that

T T
/o BR), pDgrE)) dt = / WOB(E), 9a () dt

T
- / W), 0" (1)) dt
for all B € LU0,T), X)), 1/p+1/g=1

since ¥+8 € L}([0,T], X’). This proves the continuity of A.
Hence

Zn = Y war — P w*  weakly in  £7([0,T), %), - (1)

which implies
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t t
(9,/t é,,(j')d‘r) = / (0, zp (7)) dT — / @,9(r) - w*(r))dr forall 6e€ X'
3 s 3 (2)

On the other hand, since

t
za(t) — 2n(s) =/ zp(7)dT for all m,

and z,(t) — z,(s) — z*(t) — z*(s) in X, we get
¢
(9,/ tu(1)dT) = (0,2,(t) — zn(s)) — (0,2 (t)—2"(s)) forall 6€ X'. (3)
(2) and (3) imply that

t .
0,z (t) —z"(s)) = (6,/ P(r) s w(r)dr) forall e X,

from which we can deduce the equality

z*(t) — z*(s) = /; Y(r) - w*(7)dr. . (4)

By (1) and (4), we get the desired result :

Zn — ¥ = - w* weakly in LP([0,T], X).
a

In the proof of our Theorem 1, we are making use of some ideas of Aubin and
Cellina [1] (pp.13-14). However their reasoning does not seem to be perfectly
sound.

3 Differential Inclusions (1)

In this section, we prepare several lemmas which are to play crucial roles in the
existence theory for differential inclusions.
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Throughout this section, X’ is assumed to be a real separable reflexive
Banach space.

Let us begin by specifying some assumptions imposed on the correspon-
dence I : [0,T] x X, — X,,. Special attentions should be paid to the fact that
both of the domain and the range of I' are endowed with the weak topologies.

Assumption 1. T is compact-convex-valued ; i.e. I'(¢, ) is a non-empty,
compact and convex subset of X, for allt € [0,T] and all z € X.

Assumption 2. The correspondence z +—- I'(¢, z) is upper hemi-continuous
(abbreviated as u.h.c.) for each fixed ¢t € [0,T] ;i.e. for any fixed ({,z) €
[0,T) x Xy and for any neighborhood V' of I'(t,z) C A, there exists some
neighborhood U of z such that I'(t,z) C V for all z € U.

Assumption 3. The graph of the correspondence ¢~ I'(t,z) is (L,B(Xy))-
measurable for each fixed z € X where B(X,,) denotes the Borel o-field on &,,.
(For the concept of “measurability” of a correspondence, the best reference is

Castaing-Valadier [8] Chap.III.)

Assumption 4. I' is LP-integrably bounded: ; i.e. there exists ¥ €
£7([0,T), (0,+00))(p > 1) such that I'(¢,z) C Sy for every (t,z) € [0,T] x X,
where Sy(s) is the closed ball in X with the center 0 and the radius ¥(?).

The following lemma is essentially due to Castaing [5].

LEMMA 1 (Castaing [5]) Suppose that a correspondence I' : & — X
satisfies the Assumptions 1-3, and that a function z : [0,T] — & is Bochner-
integrable. Then there exists a closed-valued correspondence z:[0,T] = Xy
such that

T(t) C T(t,z(t)) forall te€0,T],
and the graph G(Z) of  is (£, B(X, ))-measurable.

Proof. Let {z, : [0,7] — X} be a sequence of simple functions which
satisfies that

|| 2o (t) —z(t) || 0 foreach t€[0,T] as n— oo.

(For the existence of such a sequence, see Yosida [28] p.133. )
Define a correspondence 'y, : [0,T] — X, by ‘

Cpitr— Tt za(t);n=12,--



Then it can be shown that the graph G(I',) of each I'y, is (£, B(Xy,))-measurable.
In order to confirm it, we denote by {y1,y2, -, yx} the image of [0,T] by the
simple function z,, ; l.e.

xﬂ([OYT]) = {yly Y2, )yk}-
Furthermore if we define a correspondence ®; : {0, T} — &, ( = 1,2,---,k) by

D; it I'(t,y;),

then the graph G(®;) of ®; is obviously (£,B(X,))-measurable. The graph
G(Ty) of 'y, can be expressed as

G(ln) = Uf:lG[‘I)J' lx;‘({yj})]y
where @; Iz;‘({y,-}) is the restriction of the correspondence ®; to the

set 231({y;)) = {t € [0,T]|zn(t) = 55}. Since G[@jl 100, ]G = 1,2, k)
is (£, B(Xy))-measurable, so is G(T'y).

Since || zn(t) — z(t) || 0 for each ¢ € [0,7] as n — oo, the set
{z1(t), z2(t),--; z(t)} is weakly compact for each ¢t € [0,T]. Furthermore, by
the Assumptions 1-2, the correspondence I' is compact-valued and u.h.c. in the
second variable. Consequently the set

UnZiT(2, 2n (1))

is relatively compact in X,, (for each ¢ € [0,T7]). Taking account of the fact that
the weak topology of a weakly compact subset of a separable Banach space is
metrizable, we can conclude, by Baire’s category theorem, that the set

£(1) = N2y URen TG 2m(D)

is non-empty (for each ¢t € [0,T]), where — w denotes the closure operation
with respect to the weak topology.

The correspondence ¥ : [0,7] — X, is closed-valued and its graph is
(L, B(X,))-measurable. Finally the inclusion

o(t) C T(t,z(t)) foreach ¢€[0,T]

is clear because T' is compact-valued and u.h.c. ]

We can show the Next lemma in a similar way as in Maruyama[17], taking
account of [III] of the Remark on page 4.

LEMMA 2 Let A be a non-empty compact and convex set in X, and X

a subset of WLP([0,T], X)(p > 1) defined by
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X ={ze W[l 2(t) | Sp(t) ae, =(0)€ A},

where ¥ € LP([0,T],(0,+00)). Then X is non-empty convex and compact in
Xow.

Proof. Since it is obvious that X is non-empty and convex, we have only
to show the weak compactness of X.

It is not hard to show the boundedness of X. Let = be any element of X
Then = can be represented in the form

z(t) = a+ Ati(r)dr; t€[0,T]

(a is a point of A) by [III] of the Remark on page 3. It follows that

le@ll = fla+ / B(r)dr | S ]l + / Il #(r) || dr
t T
= Ha[l-i-/o Tﬁ(‘r)dréB-}-/o Y(7)dr,

where B = sup,¢ 4 || a |[|[< +c0. Consequently we have the evaluation :

sup =l = B+/ Y(r)drlP- T < +oo,

where || « ||, denotes the £P-norm. Slnce the right-hand side is independent of
z, X is bounded in £P. On the other hand, the set { |z € X}is also bounded
by || ¥ ||p- Therefore we can claim that X is bounded in W7, :

WP s reflexive because X is reflexive and p > 1. Hence the bounded set
X is weakly relatively compact in WP,

To show the weak compactness of X, we need only to show the weak closed-
ness of X. However X is weakly closed if and only if X is strongly closed since
X is convex. Let {z,} be a sequence in X which strongly converges to z* in

WP Then {z,} has a subsequence, say {%,}, which converges to z* a. e. Since
[| Zn:(t) || S9(t) a.e., it follows that

| &) [| =4(t) ae.

Finally it is clear that £*(0) € A. Then we obtain z* € X. This proves that X
is strongly closed in WP, ' o

We denote by B(0; X,) a neighborhood base of the zero element of X,
which consists of conves sets. The following lemma plays a crucial role in the



subsequent arguments although its proof is easy.

LEMMA 3 Suppose that the Assumptions 1-2 are satisfied. Let (t*,z*) be
any point of [0,T] x X. Define, for any V € B(0; Xy), a subset K (t*;z*,V), of
[0,T] x X by

K"z, V)={t,z)e[0,T] x X|z €z +V, t =t"}.

Then we have

F(t*,:c*) = ﬂveg(o;xw)EBF(K(t* s :l:*, V))
(Here we do not have to distinguish the convex closure with respect to the

strong topology and that with respect to weak topology. So I simply denote it
by <o.)

LEMMA 4 Suppose that the Assumptions 1,2 and 4 (with p > 1) are
satisfied. Let A be a non-empty convex compact subset of X,,. Then the set

H={(a,z,y) € Ax X x X 1y(t) e T(t,z(t)) ae. .and z(0) = y(0) = a}

is weakly compact in A x X x X. (The set X is defined in Lemma 2.)

Proof. Since we have already known that A x X x X is weakly compact
in X x Wh? x WHP it is enough to show that H is a weakly closed subset of
Ax X x X.

Since WP is a reflexive Banach space, the dual of which is separable, the
weak topology on the bounded set X is metrizable. So we are permxtted to use
a sequence argument.

Let {qn = (an,Zn,Yn)} be a sequence in H which weakly converges to some
¢* = (a*,z*,y*) in Ax X x X. We have to show that ¢* € H. And it is enough
to check that

J*(t) e T(t,z*(t)) ae.
The set {:z:,,(t)} is relatively compact in X, (for each t € [0,T]) since we

have the evaluation:

1 T
Il zn () Iléllall+/o Il 2n(7) |l dfélla'll+/0 ¥(r)dr

by the Assumption 4. Hence, thanks to Theorem 1, {g,} has a subsequence (no
change in notation) such that

z,(t) — z"(t) uniformlyin X, and (1)
Un(t) — ¢"(t) weaklyin LF. (2)
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Then applying Mazur’s theorem, we ‘can choose, for each j € N, some finite
elements

’gnj-i'la yn,'-}-?; CT ?]nj+m(j)

of {gn} and numbers

m(j)
=20, ISsz]) Za.] =1
=1
such that
m(j)
Y- Z QijYn; +i ”p 'T y 41 > 1y + m(j).
Denoting
, m(j)
ni(t) = > @ijYn,+i(t),
i=1 ‘ ’
we obtain

ni(t) € co(URYT(2, xn,+,<t))

Since {n;} has a subsequence which converges to y* a.e., we may assume,
without loss of generality, that

;@) —y* @) |- 0 ae. - - (3)

" On the other hand, for each Ve B(O X ) there exists some ng(V) e
such that :

zo(l) €27(1) +V | -
for all n =ng(V) and forall ¢ e [0,T).

That is ,
(t,za(t)) € K(t; z°(t),V) forall n=ne(V) and for all ¢ € [O,T].v

Hence we have

n;(t) € coF(I;{(t; z*(t),V) ae.

for sufficiently large j. Passing to the limit, we obtain

7 (8) € WL(K(L; 2°(t), V) ae. @



by (3). Since (4) holds true for all V € B(0; Xy), it follows that
y*(t) € Nven(o;x.)OL(K (t; 2*(t), V) =T(t, 2" (1)) ae.

The last equality in (5) comes from Lemma 3. Thus we have proved that
(a*,z*,y*) € H. 0

4 Differential Inclusions (2)

X is still assumed to be a real separable reflexive Banach space in
this section.

We are now going to find out a solution of (%) in the Sobolev space
W22([0,T), X),p > 1. Define a set A(a) in WP by

Aa) = {z € WP |z satisfies (x) a.e.}

for a fixed a € X. The following theorem tells us that A(a) # 0 and that A
depends continuously, in some sense, upon the initial value a.

THEOREM 2. Suppose that the correspondence I' satisfies the Assump-
tions 1-4. Let A be a non-empty, convex and compact subset of X, . Then

(i) A(a*) # 0 for any a* € A, and

(ii) the correspondence & : A — WP is compact-valued and wh.c. on Ay,
in the weak topology for Wh2. ‘

The proof is essentially the same as in Maruyama [17].

Proof. (i) Fix any a* € A. If we define aset X(a*) C X by X(a*) = {z €
X |z(0) = a*}, then X(a*) is convex and weakly compact in W'”. Furthermore
we define a correspondence ® : X (a*), — X(a")y by

®(z) = {y € X(a*)|y(t) € T(t,z(t)) ae}.

Then the problem is simply reduced to finding out a fixed point of .
1°  &(z) # 0 for every =z € X (a*) — This fact can be proved through the
Measurable Selection Theorem.

Let = be any element of X(a*). Then by Lemma 1, there exists a clsoed-
valued correspondence £ : [0,7] — X, such that X(t) C I'(¢,z(t)) for all
t € [0,T), and its graph is (£, B(Xy))-measurble. We also note that Xy is a
Souslin space. Thanks to Saint-Beuve’s measurable selection theorem (Saint-
Beuve [20]), & admits a (£, B(X,,))-measurable selection o : [0,T] — X. Since
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X is separable, o is (£, B(X,))-mesurable. (cf. Yosida [28] p.131.) By the |

Assumption 4, o is clearly integrable. If we define a function y : [0,7] — X by

oy =a+ [ otrar

then y € ®(z).

2° & is convex-compact-valued. — This is not hard.

3° & is wh.c. — If we define the a*-selection H,. of H by Hg. =
{(a,z,y) € H|a = a*}, then H,. is obviously weakly compact in A x X x X.
And the graph G(®) of ® is expressed as G(®) = projx x Ha+, the projection
of H,» into X x X, which is also closed.

Summing up — @ is convex-compact-valued and u.h.c. Applying now

the Fan-Glicksberg Fixed-Point Theorem to the correspondence P, we obtam
an z* € X(a*) such that z* € ®(z*) ; i.e.

#*(t) € T(t,z*(t)) ae. and z*(0) = a*.
This proves (i).

(ii) Since the compactness of A(a)(a € A) can be verified by applying

Mazur’s theorem and making use of the Assumptions 1-2, we may omit the
details. Hence we have only to show the u.h.c. of A. However it is also obvious
because the graph G(A) of A can be expressed as

G(A) = proijx{(a,x,y) € H I = y}:
which is closed in A x X.

I am much mdebted to Castaing-Valadier [7] for various 1mportant 1deas
embodied in the proof of Theorem 2.

Remark. Among other things, the assumption that the set I'(¢,z) is al-
ways convex is seriously restrictive, especially from the viewpoint of applications.
However there seems to be no easy way to wipe out the convexity assumption.

(See De Blasi [10] and Tateishi [23].)

Here it may be suggestive for us to glimpse the special case in which T is
a (single-valued) mapping. A related result was obtained by Szep [23]. (I am
indebted to Professor Tosio Kato for this reference.)

COROLLARY 1. Let f:[0,T]x Xy — Xy bea (smgle valued) mapping

which satisfies the following three conditions.
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(i) The function z — f(t,z) is continuous for each fixed ¢ € [0,7].
(ii) The function t — f(t,z) is measurable for each fixed z € X.

(iii) There exists ¥ € LP([0,T], (O +00)),p > 1 such that f(t,z) € Sy for
every (t,z) € [0,T] x X ; ie. supgex || f(t,2) || S9(2) for all t € [0, T].

Then the differential equation
(* %) &= f(t,z), z(0) = a (fixed vector in X)

has at least a solution in W?([0,7],X). (A solution of (% *) is a function
¢ € WP which satisfies (% *) a.e.) ‘

5 Variational problém governed by an Differ-
ential Inclusion

Let X be a real separable reflexive Banach space throughout this
section, too. Assume that u : [0,7] x Xy X &; — (—00, +00] is a given proper
function. Consider a variational problem :

§ o T
OER . Minimizeseagd (z) = /0 u(t,=(0) i(1))dt

where A(a) is the set of all the solutions of the dlfferentlal inclusion (%)
discussed in the preceding sections. : :

In order to examine the existence of a solution of the problem (), we have
to check a couple of points as usual ; i.e.

(I) the compactness of A(a) for some suitable topology, and
(II) the lower semi-continuity of the functional J for the same topology.

Since we have already proved that A(a ) is weakly compact in. WI'P([O T] X)
under certain conditions, we are concentrating on the second point (II) in this
section. In this context, the theorem due to Castaing-Clauzure [6] provides the
most crucial key. Related results are also obtained by Balder [2], Maruyama

[16] and Valadier [25].

DEFINITION Let (2,&, 1) be a measure space, S a 'tgpological space,
and V a real Banach space. A function f: 2 x S xV — R is assumed to
be given. We denote by M(Q,S) the set of all the (£ ® B(S))-measurable

functions. (B(S) denotes the Borel o-field on S.) f is said to have the lower

compactness property if {f~(w,¢n(w), 0. (w))} is weakly relatively compact

in £L1(Q,R) for any sequence {(¢n,f)} in M(Q,S) x LP(, V)(p 2 1) which

satisfies the following three conditions:
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(a) {¥n} converges in measure to some ¢* € M(Q,S),
(b) {0.} converges weakly to some 8* € LP(Q,V), and

(c) there exists some C' < +o0 such that
sup /ﬂ £, 0n(), 6(w))du= C.
n ‘

The following theorem is a variation of a result due to Castaing-Clauzure [6]
in the spirit of Ioffe [12]. See also Valadier [27]. :

THEOREM 3 Let (9, f p) be a finite cornpleté measure space, S a

metrizable Souslin space, and V a separable reflexive Banach space. Suppose

that a proper function f: 2 x S x V — R satisfies the followmg conditions:
(i) fis a normal integrand ; i.e

(a) fis (6 ®B(S)® B(V), B’(TR;))-measurable,‘ and

(b) the function (£, v) — f(w,§,v) is lower semi-continuous for any fixed

(ii) the function v f(w,&,v) is convex for any fixed (w {) € 0 x S
and

(iii) f has the lower compactness property.'

Let {¢n} be a sequence in M(, S) which converges in measure to some o' €
M(R,S). Let {6} be a sequence in LP(Q,V)(]1 = p < +00) which converges
weakly to some 6* € LP(§2, V). Then we have _

[ 197 0),0°@)dus timin | F(,0n(), 0n(0))di.
a a

Remark 1° A normal integrand f : @ x S x V — R which also satisfies
the condition (ii) is called a convez normal integrand.

2°  Joffe [8] established a fundamental theorem on the lower semi-continuity
of a nonlinear integral functional as above in the case both of S and V are finite
dimensional Euclidean spaces. Theorem 3 is an extension of Ioffe’s result to the
case of nonlinear integral functional defined on the space of Bochner integreble
functions.

LEMMA 5 Suppose that the Assumptions 1-4 are satisfied. Let {z,} be
a sequence in A(a) C WHP([0,T),X) (p > 1). Let u: [0,T) x Xy x Xy — R be
a proper convex normal integrand with the lower compactness property. Then
there exists a subsequence {z,} of {z,} and z* € A(a) such that
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J(m*)élin}‘inf J(zn), (1)

where

T
J(z) = / u(t, o(1), $(t)) dt.
0
Proof. By the Assumption 4, all the images of z,,’s are contained in some
closed ball B with the center 0 ; i.e.
z,(t)€B forall t€[0,7] and n.

Hence we may restrict the domain of u to [0,7] x By, x X, provided that
the sequence {z,} is concerned. Denoting u = u|[0 T)xBxx » (restriction of u to

[0,T] x B x X) we have to show that there exists a subsequence {z,} of {zn}
and some z* € A(a) such that

T

T
/0 T(t, =" (1),4* (1))dt S liminf /0 (L, 2 (2), in (1)),

which is equivalent to (1).
The set B endowed with the weak topology is metrizable and compact.
Hence it is a Polish space. According to Theorem 1, there exists a subsequence

{2} of {z,.} and z* € WHP([0,T], X) such that
(a) z, — z* uniformly in B,,, and
(b) z, — 2* weakly in LP([0,T], X).

(a) implies, of course, that z, — z* in measure. Thus applying Theorem 3, we
obtain the relation

T T
/ a(t, 2" (), & (£))dt < liminf / (L, 20 (1), in(2)) .
0 n 0
Finally we have to prove that z* € A(a). By (a), it follows that

lim (2 (8),n(t) = (2" (2), 9(1))

for any t € [0,T] and n € LI([0,T],X’), where 1/p + 1/g = 1. Since
z,(t) € B, there exists some positive constant C' < oo such that

| {zn (@), n@) [ =C [ a@) I -
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" Hence we have, by the Bounded Convergence Theorem, that

T
lim / (m(D),n(0)) dt = / &* (1), n(t)) dt
.
for any 7€ £([0,T],x").

This proves that z,, — z* weakly in £LP.
Comblmng this result with (b), we can conclude that {z,,} weakly converges
to z* in WP, Since A(a) is weakly closed, z* € A(a). 0

Let {z,} be a minimizing sequence of the problem (}). Then, by Lemma 5,
{z,} has a subsequence (without change of notaion) such that

J(z*) =liminf J(z,)

for some z* € A(a). It is also obvious that

G1‘r§f J(z) = lim 1nf](a:,,) = J(z*).

Thus we have proved that z* is a solution of the problem (f). Summing up‘

THEOREM 4 Suppose that Assumptions 1-4 with p > 1 are satisfied for
a correspondence I : [0,7] x X —- X. Furthermore let u : [0,T] x Xy, x X, — R
be a normal convex integrand with the lower compactness property. Then the
problem (}) has a solution.

Appendix
Banach Space-valued Sobolev Spaces

This appendix aims at a brief summary of the concepts and basic facts in
the theory of Banach space-valued Sobolev spaces. (cf. Schwartz [22], Barbu

(3].)

1. Let p = (p1,p2, - -,pe) be an L-tuple of non-negative integers. The
number |p| = p1 + p2 + - -+ + pe 1s called the order of p. We denote by DP the
differential operator ‘ '

oritrattpe
dzt0zh? - - - 9zl

Let Q be an open set of R® and K a compact subset of Q. We denote by
Dx () the set of all the infinitely differentiable real-valued functions ¢ : Q@ — R
whose supports are contained in K ; i.e.

DP =
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Dk () = {p € C*(Q,R)[supp ¢ C K }.
Under the topology generated by the family of seminorms :

Prm(p) = sup IDPp(@)], m=1,2,---,
z€ .
Il =m

Dk () becomes a locally convex Hausdorff topological vector space (LCHTVS).

The space D(2) = U{Dk(Q)| K is a compact subset of 2} is also a vec-
tor space. And the space ’D(Q) endowed with the strict inductive limit topol-
ogy defined by {DK(Q)[K is a compact subset of Q} is a LCHTVS, called the
Schwartz space. It is well-known that a net {goa} in D(Q) converges to some
¢* € D(Q) if and only if there exists some compact subset K of {2 with

sxipp Yo CK for all a,

and . .
DPpo — DPp*  uniformly on

for every index pP= (pl)p2> cee ;Pl)

2. Let X be a real Banach space. Any continuous linear operator S :
D(f2) — X is called a X-valued distribution and the set of all the &X’-valued
distributions is denoted by D'(Q | X).

If f:Q — X is a locally Bochner-integrable function, the operator Sf :
D(Q) - X deﬁned by

$y5pm [ el v D)

is an X-valued distribution. (dw is the Lebesgue measure on §2.) Identifying
f and Sy , we can safely say that any locally Bochner-integrable function is an
X-valued distribution:

The value of S € D'(Q2| X) at ¢ € D(Q) is sometimes denoted by (S, ¢
instead of S(p).

Let S be an X-valued distribution and D? an . differential operator. Then
the operator D?.S : D(2) — X defined by

p — (=1)PI(S, DPy), p € D()

is also an [t-valued distribution, called the distributional derivative (or
the derivative in sense of distribution) of S ; i.e.

(DPS, o) = (=1)IPI(S, DPyY, € D(R).
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An X-valued distribution is infinitely differentiable in the sense of distribu-
tion.

3. The X-valued Sobolev space W"’P(Q X)(p = 1) is the set of all
the functions f : @ — X such that its distributional derivative D f exists and
belongs to LP(S, X) for all s = (s1,s2,---,5¢) with |s| = k.

WHP(Q, X) is clearly a vector space. In fact, it becomes a Banach space
under the norm :

I f Hlep=( Z / [l D’f(w) 1id dw)llp

Is| < k

If X is a Hilbert space and p=2, W”c 2(Q,X) is also a Hilebert space under the
inner product : .

(fL9rp = Z /(D fw) D’g(w)) dw.

sl =k .
Finally, we state three results which are e to play some roles in this paper.

FACT 1 If X is a separable Banach space, then W*P(Q, X)(p = 1) is
also separable. R .

FACT 2 If X is a separable reflexive Banach space and p > l then
WEP(Q, X) is reflexive.

Let Q = (0,T). We denote by Wk'?([O,T]-,X) the set « 1 the funcﬁons
f:[0:T)— X such that v

a The derivatives D’ f (defined a.e.) are absolutely conunuous for j =
1,2,---,k—1, and “

b Dife Lr([0,T],X) forj:0,1,2,...,k.;

FACT 3 Let X be a Banach space with the Radon-Nikodym property.
Then the following two statements are equivalent for afunction f € £LP({0,T],X)(p = 1).
(i) fewkr((0,T],X).
(ii) There exists some f; € W*?([0, T] X) such that f(t) = fi(t) ae. w €
(0,7). v ,

Thus we may assume, without loss of generality, that each element of W¥?((0, T) X)
is defined on the closed interval [0, T} rather than (0,7"). When we wish to em-
phasize this aspect, we use the notation W*P([0, T}, X) rather than W*?((0,T), X).
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