A Variational Problem Governed by a Differential Inclusion in a Banach Space

Toru Maruyama

Department of Economics, Keio University 2-15-45 Mita, Minato-ku, Tokyo 108-8345, JAPAN

1 Introduction

Let \mathcal{X} be a real separable reflexive Banach space. A correspondence (= multivalued mapping) $\Gamma: [0,T] \times \mathcal{X} \longrightarrow \mathcal{X}$ and a function $u: [0,T] \times \mathcal{X} \times \mathcal{X} \longrightarrow \overline{\mathbb{R}}$ are assumed to be given. A double arrow \longrightarrow indicates the domain and the range of a correspondence. The compact interval [0,T] is endowed with the Lebesgue measure dt. \mathcal{L} denotes the σ -field of the Lebesgue-measurable sets of [0,T].

Let $\mathcal{W}^{1,p}([0,T],\mathcal{X})$ be the Sobolev space consisting of functions of [0,T] into \mathcal{X} (cf. Appendix) And let $\Delta(a)$ be the set of all the solutions in the Sobolev space $\mathcal{W}^{1,p}([0,T],\mathcal{X})$ of a differential inclusion:

$$\dot{x}(t) \in \Gamma(t, x(t)), \ x(0) = a,$$

where \dot{x} denotes the derivative of x and a is a fixed vector in \mathcal{X} . And consider a variational problem:

(#) Minimize_{$$x \in \Delta(a)$$} $\int_0^T u(t, x(t), \dot{x}(t)) dt$.

The object of this paper is to discuss a couple of existence problems as follows:

- (i) the existence of a solution for the differential inclusion (*), and
- (ii) the existence of an optimal solution for the variational problem (#).

In Maruyama [14] [15], I presented a solution of these problems in the special case $\mathcal{X} = \mathbb{R}^{\ell}$ by making use of the convenient properties of the weak convergence in the Sobolev space $\mathcal{W}^{1,2}([0,T],\mathbb{R}^{\ell})$; i.e. if a sequence $\{x_n\}$ in $\mathcal{W}^{1,2}([0,T],\mathbb{R}^{\ell})$, weakly converges to some $x^* \in \mathcal{W}^{1,2}([0,T],\mathbb{R}^{\ell})$, then there exists a subsequence $\{z_n\}$ of $\{x_n\}$ such that

$$z_n \to x^*$$
 uniformly on $[0,T]$, and $\dot{z}_n \to \dot{x}^*$ weakly in $\mathcal{L}^2([0,T],\mathbb{R}^\ell)$.

However it deserves a special notice that this property does not hold in the space $W^{1,2}([0,T],\mathcal{X})$ if $\dim \mathcal{X} = \infty$. Taking account of this fact, I provided a new convergence result to overcome this difficulty in the case \mathcal{X} is a real separable Hilbert space in Maruyama [17]. And I also gave a existence theory for the problems (i) and (ii) being based upon this new tool in the framework of a separable Hilbert space in Maruyama [17],[18].

The purpose of the present paper is to generalize my previous results to the case \mathcal{X} is a real separable reflexive Banach space. Papageorgiou [19] also gave an elegant extension of my results in Maruyama [14],[15] to the infinite dimensional case. The present paper might be regarded as an alternative approach to Papageogiou's theory.

Let me mention about another improvement added on this occasion. In Maruyama [17], I imposed a very restrictive requirement on the continuity of the correspondence Γ ; i.e.

the correspondence $x \mapsto \Gamma(t,x)$ is upper hemi-continuous for each fixed $t \in [0,T]$ with respect to the weak topology for the domain and the strong topology for the range.

I have to admit frankly that this is a very unpleasant assumption. In the present paper, I propose the upper hemi-continuity of $x \mapsto \Gamma(t,x)$ with respect to the "weak-weak" combination of topologies instead of the "weak-strong" combination.

2 A Convergence Theorem in $\mathcal{W}^{1,p}([0,T],\mathcal{X})$

As I have already said, any weakly convergent sequence $\{x_n\}$ in the Sobolev space $\mathcal{W}^{1,2}([0,T],\mathbb{R}^{\ell})$ has a subsequence which satisfies the property (W) in section 1.

On the other hand, let \mathcal{X} be a real Banach space with the Radon-Nikodým property (RNP). Then any absolutely continuous function $f:[0,T] \to \mathcal{X}$ is Fréchet-differentiable a.e. (If the Banach space \mathcal{X} does not have RNP, this property does not hold. For a counter-example, see Komura [13].) Let $\{x_n\}$ be a sequence in $\mathcal{W}^{1,p}([0,T],\mathcal{X})$ which weakly converges to some $x^* \in \mathcal{W}^{1,p}([0,T],\mathcal{X})$.

We should keep in mind that it is not necessarily true that the sequence $\{x_n\}$ has a subsequence $\{z_n\}$ which satisfies the property (W) if $\dim \mathcal{X} = \infty$ even in the case p = 2.

Counter-Example (Cecconi[9], pp.28-29) Let \mathcal{H} be a real separable Hilbert space and $\{\varphi_n; n=1,2,\cdots\}$ a complete orthonormal system of \mathcal{H} . (cf. Yosida [28] P.89.) Define a sequence $\{x_n: [0,T] \to \mathcal{H}\}$ by

$$x_n(t) = t\varphi_n \quad (n = 1, 2, \cdots).$$

We also define the function $x^*:[0,1]\to\mathcal{H}$ by $x^*(t)\equiv 0$. Then x_n 's as well as x^* are elements of $\mathcal{W}^{1,2}([0,T],\mathcal{H})$. It follows from the Riemann-Lebesgue lemma that the sequence $\{x_n\}$ weakly converges to x^* in $\mathcal{W}^{1,2}([0,1],\mathcal{H})$. However there is no subsequence of $\{x_n\}$ which converges strongly (hence uniformly) to x^* in $\mathcal{L}^2([0,1],\mathcal{H})$.

The following theorem cultivated to overcome this difficulty is a generalization of Theorem 1 of Maruyama [18].

Henceforth we denote by \mathcal{X}_s (resp. \mathcal{X}_w) a Banach space \mathcal{X} endowed with the strong (resp. weak) topology.

THEOREM 1. Let \mathcal{X} be a real separable reflexive Banach space. And consider a sequence $\{x_n\}$ in the Sobolev space $\mathcal{W}^{1,p}([0,T],\mathcal{X})(p \geq 1)$. Assume that

- (i) the set $\{x_n(t)\}_{n=1}^{\infty}$ is bounded (and hence relatively compact) in \mathcal{X}_w for each $t \in [0, T]$, and
- (ii) there exists some function $\psi \in \mathcal{L}^p([0,T],(0,+\infty))$ such that

$$||\dot{x}_n(t)|| \leq \psi(t)$$
 a.e.

Then there exists a subsequence $\{z_n\}$ of $\{x_n\}$ and some $x^* \in \mathcal{W}^{1,p}([0,T],\mathcal{X})$ such that

- (a) $z_n \to x^*$ uniformly in \mathcal{X}_w on [0, T], and
- (b) $\dot{z}_n \to \dot{x}^*$ weakly in $\mathcal{L}^p(0,T],\mathcal{X}$).

Remark Since \mathcal{X} is separable and reflexive, the following results holds true. Assume that $p \geq 1$.

[I] $\mathcal{L}^p([0,T],\mathcal{X})$ is separable.

- [II] $\mathcal{L}^p([0,T],\mathcal{X})'$ is isomorphic to $\mathcal{L}^q([0,T],\mathcal{X}')$, where 1/p+1/q=1 and "," denotes the dual space.
- [III] Any absolutely continuous function $f:[0,T]\to\mathcal{X}$ is Fréchet-differentiable a.e. and the "fundamental theorem of calculus", i.e.

$$f(t) = f(0) + \int_0^t \dot{f}(\tau)d\tau \, ; \, t \in [0, T]$$

is valid.

Proof of Theorem 1. (a) To start with, we shall show the equicontinuity of $\{x_n\}$. Since ψ is integrable, there exists some $\delta > 0$ for each $\varepsilon > 0$ such that

$$||x_n(t) - x_n(s)|| \le \int_s^t ||\dot{x}_n(\tau)|| d\tau \le \int_s^t \psi(\tau) d\tau \le \varepsilon$$
 for all n

provided that $|t-s| \leq \delta$. This proves the equicontinuity of $\{x_n\}$ in the strong topology for \mathcal{X} . Hence $\{x_n\}$ is also equicontinuous in the weak topology for \mathcal{X} .

Taking account of this fact as well as the assumtion (i), we can claim, thanks to the Ascoli-Arzelà theorem (cf. Schwartz[21] p.78), that $\{x_n\}$ is relatively compact in $\mathcal{C}([0,T],\mathcal{X}_w)$ (the set of continuous functions of [0,T] into \mathcal{X}_w) with respect to the topology of uniform convergence.

By the assumption (i), $\{x_n(0)\}\$ is bounded in \mathcal{X} , say

$$\sup_{n} || x_n(0) || \leq C < +\infty.$$

And the assumption (ii) implies that

$$\|\int_0^t \dot{x}_n(\tau)d\tau\| \le \|\psi\|_1 \quad \text{for all} \quad t \in [0,T].$$

Hence

$$\sup_{n} \|x_{n}(t)\| = \sup_{n} \|x_{n}(0) + \int_{0}^{t} \dot{x}_{n}(\tau) d\tau\| \leq C + \|\psi\|_{1}$$
 for all $t \in [0, T]$.

Thus each x_n can be regarded as a mapping of [0,T] into the set

$$M = \{w \in \mathcal{X} \mid \parallel w \parallel \leqq C + \parallel \psi \parallel_1 \}.$$

The weak topology on M is metrizable because M is bounded and $\mathcal X$ is a

separable reflexive Banach space. Hence if we denote by M_w the space M endowed with the weak topology, then the uniform convergence topology on $\mathcal{C}([0,T],M_w)$ is metrizable.

Since we can regard $\{x_n\}$ as a relatively compact subset of $\mathcal{C}([0,T],M_w)$, there exists a subsequence $\{y_n\}$ of $\{x_n\}$ which uniformly converges to some $x^* \in \mathcal{C}([0,T],\mathcal{X}_w)$.

(b) Since

$$\|\dot{y}_n(t)\| \leq \psi(t)$$
 a.e.,

the sequence $\{w_n:[0,T]\to\mathcal{X}\}$ defind by

$$w_n(t) = \frac{\dot{y}_n(t)}{\psi(t)}$$
; $n = 1, 2, \cdots$

is contained in the unit ball of $\mathcal{L}^{\infty}([0,T],\mathcal{X})$ which is weak*-compact (as the dual space of $\mathcal{L}^{1}([0,T],\mathcal{X}')$) by Alaoglu's theorem. Note that the weak* topology on the unit ball of $\mathcal{L}^{\infty}([0,T],\mathcal{X})$ is metrizable since $\mathcal{L}^{1}([0,T],\mathcal{X}')$ is separable. Hence $\{w_n\}$ has a subsequence $\{w_{n'}\}$ which converges to some $w^* \in \mathcal{L}^{\infty}([0,T],\mathcal{X})$ in the weak* topology. We shall write $\dot{z}_n = \dot{y}_{n'} = \psi \cdot w_{n'}$.

If we define an operator $A: \mathcal{L}^{\infty}([0,T],\mathcal{X}) \to \mathcal{L}^p[0,T],\mathcal{X})$ by

$$A: g \mapsto \psi \cdot g$$

then A is continuous in the weak* topology for \mathcal{L}^{∞} and the weak topology for \mathcal{L}^{p} . In order to see this, let $\{g_{\lambda}\}$ be a net in $\mathcal{L}^{\infty}([0,T],\mathcal{X})$ such that $w^{*}-\lim_{\lambda}g_{\lambda}=g^{*}\in\mathcal{L}^{\infty}([0,T],\mathcal{X})$; i.e.

$$\int_0^T \langle \alpha(t), g_{\lambda}(t) \rangle \ dt \to \int_0^T \langle \alpha(t), g^*(t) \rangle \ dt \quad \text{for all} \quad \alpha \in \mathcal{L}^1([0, T], \mathcal{X}').$$

Then it is quite easy to verify that

$$\int_0^T \langle \beta(t), \psi(t) g_{\lambda}(t) \rangle \ dt = \int_0^T \langle \psi(t) \beta(t), g_{\lambda}(t) \rangle \ dt$$

$$\rightarrow \int_0^T \langle \psi(t) \beta(t), g^*(t) \rangle \ dt$$
for all
$$\beta \in \mathcal{L}^q([0, T], \mathcal{X}'), \ 1/p + 1/q = 1$$

since $\psi \cdot \beta \in \mathcal{L}^1([0,T],\mathcal{X}')$. This proves the continuity of A.

Hence

$$\dot{z}_n = \psi \cdot w_{n'} \to \psi \cdot w^*$$
 weakly in $\mathcal{L}^p([0,T],\mathcal{X}),$ (1)

which implies

$$\langle \theta, \int_{s}^{t} \dot{z}_{n}(\tau) d\tau \rangle = \int_{s}^{t} \langle \theta, \dot{z}_{n}(\tau) \rangle d\tau \to \int_{s}^{t} \langle \theta, \psi(\tau) \cdot w^{*}(\tau) \rangle d\tau \quad \text{for all} \quad \theta \in \mathcal{X}'.$$
(2)

On the other hand, since

$$z_n(t) - z_n(s) = \int_s^t z_n(\tau) d\tau$$
 for all n ,

and $z_n(t) - z_n(s) \to x^*(t) - x^*(s)$ in \mathcal{X}_w , we get

$$\langle \theta, \int_{s}^{t} \dot{z}_{n}(\tau) d\tau \rangle = \langle \theta, z_{n}(t) - z_{n}(s) \rangle \rightarrow \langle \theta, x^{*}(t) - x^{*}(s) \rangle \text{ for all } \theta \in \mathcal{X}'.$$
 (3)

(2) and (3) imply that

$$\langle heta, x^*(t) - x^*(s)
angle = \langle heta, \int_s^t \psi(au) \cdot w^*(au) d au
angle \quad ext{for all} \quad heta \in \mathcal{X}',$$

from which we can deduce the equality

$$x^*(t) - x^*(s) = \int_s^t \psi(\tau) \cdot w^*(\tau) d\tau. \tag{4}$$

By (1) and (4), we get the desired result:

$$\dot{z}_n \to \dot{x}^* = \psi \cdot w^*$$
 weakly in $\mathcal{L}^p([0,T],\mathcal{X})$.

In the proof of our Theorem 1, we are making use of some ideas of Aubin and Cellina [1] (pp.13-14). However their reasoning does not seem to be perfectly sound.

3 Differential Inclusions (1)

In this section, we prepare several lemmas which are to play crucial roles in the existence theory for differential inclusions.

Throughout this section, \mathcal{X} is assumed to be a real separable reflexive Banach space.

Let us begin by specifying some assumptions imposed on the correspondence $\Gamma: [0,T] \times \mathcal{X}_w \longrightarrow \mathcal{X}_w$. Special attentions should be paid to the fact that both of the domain and the range of Γ are endowed with the weak topologies.

Assumption 1. Γ is compact-convex-valued; i.e. $\Gamma(t,x)$ is a non-empty, compact and convex subset of \mathcal{X}_w for all $t \in [0,T]$ and all $x \in \mathcal{X}$.

Assumption 2. The correspondence $x \mapsto \Gamma(t,x)$ is upper hemi-continuous (abbreviated as u.h.c.) for each fixed $t \in [0,T]$; i.e. for any fixed $(t,x) \in [0,T] \times \mathcal{X}_w$ and for any neighborhood V of $\Gamma(t,x) \subset \mathcal{X}_w$, there exists some neighborhood U of x such that $\Gamma(t,z) \subset V$ for all $z \in U$.

Assumption 3. The graph of the correspondence $t \mapsto \Gamma(t,x)$ is $(\mathcal{L},\mathcal{B}(\mathcal{X}_w))$ measurable for each fixed $x \in \mathcal{X}$ where $\mathcal{B}(\mathcal{X}_w)$ denotes the Borel σ -field on \mathcal{X}_w .

(For the concept of "measurability" of a correspondence, the best reference is
Castaing-Valadier [8] Chap.III.)

Assumption 4. Γ is \mathcal{L}^p -integrably bounded; i.e. there exists $\psi \in \mathcal{L}^p([0,T],(0,+\infty))(p>1)$ such that $\Gamma(t,x) \subset S_{\psi(t)}$ for every $(t,x) \in [0,T] \times \mathcal{X}$, where $S_{\psi(t)}$ is the closed ball in \mathcal{X} with the center 0 and the radius $\psi(t)$.

The following lemma is essentially due to Castaing [5].

LEMMA 1 (Castaing [5]) Suppose that a correspondence $\Gamma: \mathcal{X} \longrightarrow \mathcal{X}$ satisfies the Assumptions 1-3, and that a function $x: [0,T] \to \mathcal{X}$ is Bochner-integrable. Then there exists a closed-valued correspondence $\Sigma: [0,T] \longrightarrow \mathcal{X}_w$ such that

$$\Sigma(t) \subset \Gamma(t, x(t))$$
 for all $t \in [0, T]$,

and the graph $G(\Sigma)$ of Σ is $(\mathcal{L}, \mathcal{B}(\mathcal{X}_w))$ -measurable.

Proof. Let $\{x_n:[0,T]\to\mathcal{X}\}$ be a sequence of simple functions which satisfies that

$$||x_n(t) - x(t)|| \to 0$$
 for each $t \in [0,T]$ as $n \to \infty$.

(For the existence of such a sequence, see Yosida [28] p.133.) Define a correspondence $\Gamma_n:[0,T] \longrightarrow \mathcal{X}_w$ by

$$\Gamma_n: t \mapsto \Gamma(t, x_n(t)); n = 1, 2, \cdots.$$

Then it can be shown that the graph $G(\Gamma_n)$ of each Γ_n is $(\mathcal{L}, \mathcal{B}(\mathcal{X}_w))$ -measurable. In order to confirm it, we denote by $\{y_1, y_2, \dots, y_k\}$ the image of [0, T] by the simple function x_n ; i.e.

$$x_n([0,T]) = \{y_1, y_2, \cdots, y_k\}.$$

Furthermore if we define a correspondence $\Phi_j:[0,T]\longrightarrow \mathcal{X}_w\ (j=1,2,\cdots,k)$ by

$$\Phi_j:t\longmapsto \Gamma(t,y_j),$$

then the graph $G(\Phi_j)$ of Φ_j is obviously $(\mathcal{L}, \mathcal{B}(\mathcal{X}_w))$ -measurable. The graph $G(\Gamma_n)$ of Γ_n can be expressed as

$$G(\Gamma_n) = \bigcup_{j=1}^k G[\Phi_j|_{x_n^{-1}(\{y_j\})}],$$

where $\Phi_j \mid_{x_n^{-1}(\{y_j\})}$ is the restriction of the correspondence Φ_j to the set $x_n^{-1}(\{y_j\}) = \{t \in [0,T] \mid x_n(t) = y_j\}$. Since $G[\Phi_j \mid_{x_n^{-1}(\{y_j\})}](j=1,2,\cdots,k)$ is $(\mathcal{L}, \mathcal{B}(\mathcal{X}_w))$ -measurable, so is $G(\Gamma_n)$.

Since $||x_n(t) - x(t)|| \to 0$ for each $t \in [0,T]$ as $n \to \infty$, the set $\{x_1(t), x_2(t), \dots, x(t)\}$ is weakly compact for each $t \in [0,T]$. Furthermore, by the Assumptions 1-2, the correspondence Γ is compact-valued and u.h.c. in the second variable. Consequently the set

$$\bigcup_{n=1}^{\infty} \Gamma(t, x_n(t))$$

is relatively compact in \mathcal{X}_w (for each $t \in [0,T]$). Taking account of the fact that the weak topology of a weakly compact subset of a separable Banach space is metrizable, we can conclude, by Baire's category theorem, that the set

$$\Sigma(t) \equiv \bigcap_{n=1}^{\infty} \cup_{m=n}^{\infty} \overline{\Gamma(t, x_m(t))}^w$$

is non-empty (for each $t \in [0,T]$), where — w denotes the closure operation with respect to the weak topology.

The correspondence $\Sigma:[0,T] \longrightarrow \mathcal{X}_w$ is closed-valued and its graph is $(\mathcal{L},\mathcal{B}(\mathcal{X}_w))$ -measurable. Finally the inclusion

$$\Sigma(t) \subset \Gamma(t, x(t))$$
 for each $t \in [0, T]$

is clear because Γ is compact-valued and u.h.c.

We can show the Next lemma in a similar way as in Maruyama[17], taking account of [III] of the Remark on page 4.

LEMMA 2 Let A be a non-empty compact and convex set in \mathcal{X}_w , and X a subset of $\mathcal{W}^{1,p}([0,T],\mathcal{X})(p>1)$ defined by

$$X = \{x \in \mathcal{W}^{1,p} | || \dot{x}(t) || \le \psi(t) \text{ a.e., } x(0) \in A\},$$

where $\psi \in \mathcal{L}^p([0,T],(0,+\infty))$. Then X is non-empty convex and compact in \mathcal{X}_w .

Proof. Since it is obvious that X is non-empty and convex, we have only to show the weak compactness of X.

It is not hard to show the boundedness of X. Let x be any element of X. Then x can be represented in the form

$$x(t) = a + \int_0^t \dot{x}(\tau)d\tau \, ; \, t \in [0,T]$$

(a is a point of A) by [III] of the Remark on page 3. It follows that

$$|| x(t) || = || a + \int_0^t \dot{x}(\tau) d\tau || \le || a || + \int_0^t || \dot{x}(\tau) || d\tau$$

$$\le || a || + \int_0^t \psi(\tau) d\tau \le B + \int_0^T \psi(\tau) d\tau,$$

where $B = \sup_{a \in A} ||a|| < +\infty$. Consequently we have the evaluation:

$$\sup_{x \in X} ||x||_p^p \le [B + \int_0^T \psi(\tau)d\tau]^p \cdot T < +\infty,$$

where $\|\cdot\|_p$ denotes the \mathcal{L}^p -norm. Since the right-hand side is independent of x, X is bounded in \mathcal{L}^p . On the other hand, the set $\{\dot{x} \mid x \in X\}$ is also bounded by $\|\psi\|_p$. Therefore we can claim that X is bounded in $\mathcal{W}^{1,p}$.

 $\mathcal{W}^{1,p}$ is reflexive because \mathcal{X} is reflexive and p > 1. Hence the bounded set X is weakly relatively compact in $\mathcal{W}^{1,p}$.

To show the weak compactness of X, we need only to show the weak closedness of X. However X is weakly closed if and only if X is strongly closed since X is convex. Let $\{x_n\}$ be a sequence in X which strongly converges to x^* in $\mathcal{W}^{1,p}$. Then $\{\dot{x}_n\}$ has a subsequence, say $\{\dot{x}_{n'}\}$, which converges to \dot{x}^* a.e. Since $\|\dot{x}_{n'}(t)\| \leq \psi(t)$ a.e., it follows that

$$||\dot{x}^*(t)|| \le \psi(t)$$
 a.e.

Finally it is clear that $x^*(0) \in A$. Then we obtain $x^* \in X$. This proves that X is strongly closed in $\mathcal{W}^{1,p}$.

We denote by $\mathcal{B}(0; \mathcal{X}_w)$ a neighborhood base of the zero element of \mathcal{X}_w which consists of conves sets. The following lemma plays a crucial role in the

subsequent arguments although its proof is easy.

LEMMA 3 Suppose that the Assumptions 1-2 are satisfied. Let (t^*, x^*) be any point of $[0, T] \times \mathcal{X}$. Define, for any $V \in \mathcal{B}(0; \mathcal{X}_w)$, a subset $K(t^*; x^*, V)$, of $[0, T] \times \mathcal{X}$ by

$$K(t^*; x^*, V) = \{(t, x) \in [0, T] \times \mathcal{X} \mid x \in x^* + V, \ t = t^*\}.$$

Then we have

$$\Gamma(t^*, x^*) = \bigcap_{V \in \mathcal{B}(0; \mathcal{X}_w)} \overline{\operatorname{co}} \Gamma(K(t^*; x^*, V)).$$

(Here we do not have to distinguish the convex closure with respect to the strong topology and that with respect to weak topology. So I simply denote it by \overline{co} .)

LEMMA 4 Suppose that the Assumptions 1,2 and 4 (with p > 1) are satisfied. Let A be a non-empty convex compact subset of \mathcal{X}_w . Then the set

$$H \equiv \{(a, x, y) \in A \times X \times X \mid \dot{y}(t) \in \Gamma(t, x(t)) \text{ a.e. and } x(0) = y(0) = a\}$$

is weakly compact in $A \times X \times X$. (The set X is defined in Lemma 2.)

Proof. Since we have already known that $A \times X \times X$ is weakly compact in $\mathcal{X} \times \mathcal{W}^{1,p} \times \mathcal{W}^{1,p}$, it is enough to show that H is a weakly closed subset of $A \times X \times X$.

Since $W^{1,p}$ is a reflexive Banach space, the dual of which is separable, the weak topology on the bounded set X is metrizable. So we are permitted to use a sequence argument.

Let $\{q_n \equiv (a_n, x_n, y_n)\}$ be a sequence in H which weakly converges to some $q^* = (a^*, x^*, y^*)$ in $A \times X \times X$. We have to show that $q^* \in H$. And it is enough to check that

$$\dot{y}^*(t) \in \Gamma(t, x^*(t))$$
 a.e.

The set $\{x_n(t)\}$ is relatively compact in \mathcal{X}_w (for each $t \in [0,T]$) since we have the evaluation:

$$||x_n(t)|| \le ||a|| + \int_0^t ||\dot{x}_n(\tau)|| d\tau \le ||a|| + \int_0^T \psi(\tau)d\tau$$

by the Assumption 4. Hence, thanks to Theorem 1, $\{q_n\}$ has a subsequence (no change in notation) such that

$$x_n(t) \rightarrow x^*(t)$$
 uniformly in \mathcal{X}_w , and (1)

$$\dot{y}_n(t) \rightarrow \dot{y}^*(t)$$
 weakly in \mathcal{L}^p . (2)

Then applying Mazur's theorem, we can choose, for each $j \in \mathbb{N}$, some finite elements

$$\dot{y}_{n_j+1},\dot{y}_{n_j+2},\cdots,\dot{y}_{n_j+m(j)}$$

of $\{\dot{y}_n\}$ and numbers

$$\alpha_{ij} \ge 0, \ 1 \le i \le m(j), \sum_{i=1}^{m(j)} \alpha_{ij} = 1$$

such that

$$||\dot{y}^* - \sum_{i=1}^{m(j)} \alpha_{ij} y_{n_j} + i||_p \leq \frac{1}{j}, n_{j+1} > n_j + m(j).$$

Denoting

$$\eta_j(t) = \sum_{i=1}^{m(j)} \alpha_{ij} \dot{y}_{n_j+i}(t),$$

we obtain

$$\eta_j(t) \in \operatorname{co}(\bigcup_{i=1}^{m(j)} \Gamma(t, x_{n_j+i}(t)).$$

Since $\{\eta_j\}$ has a subsequence which converges to y^* a.e., we may assume, without loss of generality, that

$$||\eta_{j}(t) - y^{*}(t)|| \rightarrow 0$$
 a.e. (3)

On the other hand, for each $V \in \mathcal{B}(0; \mathcal{X}_w)$, there exists some $n_0(V) \in \mathbb{N}$ such that

$$x_n(t) \in x^*(t) + V$$
 for all $n \ge n_0(V)$ and for all $t \in [0, T]$.

That is,

$$(t, x_n(t)) \in K(t; x^*(t), V)$$
 for all $n \ge n_0(V)$ and for all $t \in [0, T]$.

Hence we have

$$\eta_j(t) \in \operatorname{co}\Gamma(K(t; x^*(t), V))$$
 a.e.

for sufficiently large j. Passing to the limit, we obtain

$$\dot{y}^*(t) \in \overline{\text{co}} \Gamma(K(t; x^*(t), V))$$
 a.e. (4)

by (3). Since (4) holds true for all $V \in \mathcal{B}(0; \mathcal{X}_w)$, it follows that

$$y^*(t) \in \bigcap_{V \in \mathcal{B}(0; \mathcal{X}_w)} \overline{\operatorname{co}} \Gamma(K(t; x^*(t), V) = \Gamma(t, x^*(t))$$
 a.e.

The last equality in (5) comes from Lemma 3. Thus we have proved that $(a^*, x^*, y^*) \in H$.

4 Differential Inclusions (2)

 \mathcal{X} is still assumed to be a real separable reflexive Banach space in this section.

We are now going to find out a solution of (*) in the Sobolev space $\mathcal{W}^{1,p}([0,T],\mathcal{X}), p>1$. Define a set $\Delta(a)$ in $\mathcal{W}^{1,p}$ by

$$\triangle(a) = \{x \in \mathcal{W}^{1,p} \mid x \text{ satisfies (*) a.e.}\}$$

for a fixed $a \in \mathcal{X}$. The following theorem tells us that $\Delta(a) \neq \emptyset$ and that Δ depends continuously, in some sense, upon the initial value a.

THEOREM 2. Suppose that the correspondence Γ satisfies the Assumptions 1-4. Let A be a non-empty, convex and compact subset of \mathcal{X}_w . Then

- (i) $\triangle(a^*) \neq \emptyset$ for any $a^* \in A$, and
- (ii) the correspondence $\Delta: A \longrightarrow \mathcal{W}^{1,p}$ is compact-valued and u.h.c. on A_w , in the weak topology for $\mathcal{W}^{1,p}$.

The proof is essentially the same as in Maruyama [17].

Proof. (i) Fix any $a^* \in A$. If we define a set $X(a^*) \subset X$ by $X(a^*) = \{x \in X \mid x(0) = a^*\}$, then $X(a^*)$ is convex and weakly compact in $\mathcal{W}^{1,p}$. Furthermore we define a correspondence $\Phi: X(a^*)_w \longrightarrow X(a^*)_w$ by

$$\Phi(x) = \{ y \in X(a^*) \mid \dot{y}(t) \in \Gamma(t, x(t)) \quad \text{a.e.} \}.$$

Then the problem is simply reduced to finding out a fixed point of Φ .

1° $\Phi(x) \neq \emptyset$ for every $x \in X(a^*)$ — This fact can be proved through the Measurable Selection Theorem.

Let x be any element of $X(a^*)$. Then by Lemma 1, there exists a clsoed-valued correspondence $\Sigma:[0,T] \longrightarrow \mathcal{X}_w$ such that $\Sigma(t) \subset \Gamma(t,x(t))$ for all $t \in [0,T]$, and its graph is $(\mathcal{L},\mathcal{B}(\mathcal{X}_w))$ -measurable. We also note that \mathcal{X}_w is a Souslin space. Thanks to Saint-Beuve's measurable selection theorem (Saint-Beuve [20]), Σ admits a $(\mathcal{L},\mathcal{B}(\mathcal{X}_w))$ -measurable selection $\sigma:[0,T] \to \mathcal{X}$. Since

 \mathcal{X} is separable, σ is $(\mathcal{L}, \mathcal{B}(\mathcal{X}_s))$ -mesurable. (cf. Yosida [28] p.131.) By the Assumption 4, σ is clearly integrable. If we define a function $y:[0,T]\to\mathcal{X}$ by

$$y(t) = a^* + \int_a^t \sigma(\tau) d\tau,$$

then $y \in \Phi(x)$.

2° Φ is convex-compact-valued. — This is not hard.

3° Φ is u.h.c. — If we define the a^* -selection H_{a^*} of H by $H_{a^*} = \{(a,x,y) \in H \mid a=a^*\}$, then H_{a^*} is obviously weakly compact in $A \times X \times X$. And the graph $G(\Phi)$ of Φ is expressed as $G(\Phi) = \operatorname{proj}_{X \times X} H_{a^*}$, the projection of H_{a^*} into $X \times X$, which is also closed.

Summing up — Φ is convex-compact-valued and u.h.c. Applying now the Fan-Glicksberg Fixed-Point Theorem to the correspondence Φ , we obtain an $x^* \in X(a^*)$ such that $x^* \in \Phi(x^*)$; i.e.

$$\dot{x}^*(t) \in \Gamma(t, x^*(t))$$
 a.e. and $x^*(0) = a^*$.

This proves (i).

(ii) Since the compactness of $\Delta(a)(a \in A)$ can be verified by applying Mazur's theorem and making use of the Assumptions 1-2, we may omit the details. Hence we have only to show the u.h.c. of Δ . However it is also obvious because the graph $G(\Delta)$ of Δ can be expressed as

$$G(\Delta) = \operatorname{proj}_{A \times X} \{ (a, x, y) \in H \mid x = y \},$$

which is closed in $A \times X$.

I am much indebted to Castaing-Valadier [7] for various important ideas embodied in the proof of Theorem 2.

Remark. Among other things, the assumption that the set $\Gamma(t,x)$ is always convex is seriously restrictive, especially from the viewpoint of applications. However there seems to be no easy way to wipe out the convexity assumption. (See De Blasi [10] and Tateishi [23].)

Here it may be suggestive for us to glimpse the special case in which Γ is a (single-valued) mapping. A related result was obtained by Szep [23]. (I am indebted to Professor Tosio Kato for this reference.)

COROLLARY 1. Let $f:[0,T]\times\mathcal{X}_w\to\mathcal{X}_w$ be a (single-valued) mapping which satisfies the following three conditions.

- (i) The function $x \mapsto f(t, x)$ is continuous for each fixed $t \in [0, T]$.
- (ii) The function $t \mapsto f(t, x)$ is measurable for each fixed $x \in \mathcal{X}$.
- (iii) There exists $\psi \in \mathcal{L}^p([0,T],(0,+\infty)), p > 1$ such that $f(t,x) \in S_{\psi(t)}$ for every $(t,x) \in [0,T] \times \mathcal{X}$; i.e. $\sup_{x \in \mathcal{X}} \| f(t,x) \| \leq \psi(t)$ for all $t \in [0,T]$.

Then the differential equation

$$(**)$$
 $\dot{x} = f(t, x), x(0) = a \text{ (fixed vector in } \mathcal{X}\text{)}$

has at least a solution in $\mathcal{W}^{1,p}([0,T],\mathcal{X})$. (A solution of (**) is a function $x \in \mathcal{W}^{1,p}$ which satisfies (**) a.e.)

5 Variational problem governed by an Differential Inclusion

Let \mathcal{X} be a real separable reflexive Banach space throughout this section, too. Assume that $u:[0,T]\times\mathcal{X}_w\times\mathcal{X}_s\to(-\infty,+\infty]$ is a given proper function. Consider a variational problem:

(#)
$$\operatorname{Minimize}_{x \in \Delta(a)} J(x) = \int_0^T u(t, x(t), \dot{x}(t)) dt,$$

where $\triangle(a)$ is the set of all the solutions of the differential inclusion (*) discussed in the preceding sections.

In order to examine the existence of a solution of the problem (#), we have to check a couple of points as usual; i.e.

- (I) the compactness of $\Delta(a)$ for some suitable topology, and
- (II) the lower semi-continuity of the functional J for the same topology.

Since we have already proved that $\Delta(a)$ is weakly compact in $\mathcal{W}^{1,p}([0,T],\mathcal{X})$ under certain conditions, we are concentrating on the second point (II) in this section. In this context, the theorem due to Castaing-Clauzure [6] provides the most crucial key. Related results are also obtained by Balder [2], Maruyama [16] and Valadier [25].

DEFINITION Let (Ω, ξ, μ) be a measure space, S a topological space, and V a real Banach space. A function $f: \Omega \times S \times V \to \overline{\mathbb{R}}$ is assumed to be given. We denote by $\mathcal{M}(\Omega, S)$ the set of all the $(\xi \otimes \mathcal{B}(S))$ -measurable functions. $(\mathcal{B}(S))$ denotes the Borel σ -field on S.) f is said to have the lower compactness property if $\{f^-(\omega, \varphi_n(\omega), \theta_n(\omega))\}$ is weakly relatively compact in $\mathcal{L}^1(\Omega, \overline{\mathbb{R}})$ for any sequence $\{(\varphi_n, \theta_n)\}$ in $\mathcal{M}(\Omega, S) \times \mathcal{L}^p(\Omega, V)(p \geq 1)$ which satisfies the following three conditions:

- (a) $\{\varphi_n\}$ converges in measure to some $\varphi^* \in \mathcal{M}(\Omega, S)$,
- (b) $\{\theta_n\}$ converges weakly to some $\theta^* \in \mathcal{L}^p(\Omega, \mathcal{V})$, and
- (c) there exists some $C < +\infty$ such that

$$\sup_{n} \int_{\Omega} f(\omega, \varphi_n(\omega), \theta_n(\omega)) d\mu \leq C.$$

The following theorem is a variation of a result due to Castaing-Clauzure [6] in the spirit of Ioffe [12]. See also Valadier [27].

THEOREM 3 Let (Ω, ξ, μ) be a finite complete measure space, S a metrizable Souslin space, and \mathcal{V} a separable reflexive Banach space. Suppose that a proper function $f: \Omega \times S \times \mathcal{V} \to \overline{\mathbb{R}}$ satisfies the following conditions:

- (i) f is a normal integrand; i.e.
 - (a) f is $(\xi \otimes \mathcal{B}(S) \otimes \mathcal{B}(\mathcal{V}), \mathcal{B}(\overline{\mathbb{R}}))$ -measurable, and
 - (b) the function $(\xi, v) \mapsto f(\omega, \xi, v)$ is lower semi-continuous for any fixed $\omega \in \Omega$,
- (ii) the function $v \mapsto f(\omega, \xi, v)$ is convex for any fixed $(\omega, \xi) \in \Omega \times S$, and
- (iii) f has the lower compactness property.

Let $\{\varphi_n\}$ be a sequence in $\mathcal{M}(\Omega, S)$ which converges in measure to some $\varphi^* \in \mathcal{M}(\Omega, S)$. Let $\{\theta_n\}$ be a sequence in $\mathcal{L}^p(\Omega, \mathcal{V})(1 \leq p < +\infty)$ which converges weakly to some $\theta^* \in \mathcal{L}^p(\Omega, \mathcal{V})$. Then we have

$$\int_{\Omega} f(\omega, \varphi^*(\omega), \theta^*(\omega)) d\mu \leq \liminf_{n} \int_{\Omega} f(w, \varphi_n(\omega), \theta_n(\omega)) d\mu.$$

Remark 1° A normal integrand $f: \Omega \times S \times \mathcal{V} \to \overline{\mathbb{R}}$ which also satisfies the condition (ii) is called a *convex normal integrand*.

2° Ioffe [8] established a fundamental theorem on the lower semi-continuity of a nonlinear integral functional as above in the case both of S and V are finite dimensional Euclidean spaces. Theorem 3 is an extension of Ioffe's result to the case of nonlinear integral functional defined on the space of Bochner integrable functions.

LEMMA 5 Suppose that the Assumptions 1-4 are satisfied. Let $\{x_n\}$ be a sequence in $\Delta(a) \subset \mathcal{W}^{1,p}([0,T],\mathcal{X})(p>1)$. Let $u:[0,T]\times\mathcal{X}_w\times\mathcal{X}_s\to\overline{\mathbb{R}}$ be a proper convex normal integrand with the lower compactness property. Then there exists a subsequence $\{z_n\}$ of $\{x_n\}$ and $x^*\in\Delta(a)$ such that

$$J(x^*) \le \liminf_n J(z_n), \tag{1}$$

where

$$J(x) = \int_0^T u(t, x(t), \dot{x}(t)) dt.$$

Proof. By the Assumption 4, all the images of x_n 's are contained in some closed ball \overline{B} with the center 0; i.e.

$$x_n(t) \in \overline{B}$$
 for all $t \in [0,T]$ and n .

Hence we may restrict the domain of u to $[0,T] \times \overline{B}_w \times \mathcal{X}_s$ provided that the sequence $\{x_n\}$ is concerned. Denoting $\overline{u} = u|_{[0,T] \times \overline{B} \times \mathcal{X}}$, (restriction of u to $[0,T] \times \overline{B} \times \mathcal{X}$) we have to show that there exists a subsequence $\{z_n\}$ of $\{x_n\}$ and some $x^* \in \Delta(a)$ such that

$$\int_0^T \overline{u}(t, x^*(t), \dot{x}^*(t))dt \leq \liminf_n \int_0^T \overline{u}(t, z_n(t), \dot{z}_n(t))dt,$$

which is equivalent to (1).

The set \overline{B} endowed with the weak topology is metrizable and compact. Hence it is a Polish space. According to Theorem 1, there exists a subsequence $\{z_n\}$ of $\{x_n\}$ and $x^* \in \mathcal{W}^{1,p}([0,T],\mathcal{X})$ such that

- (a) $z_n \to x^*$ uniformly in \overline{B}_w , and
- (b) $\dot{z}_n \to \dot{x}^*$ weakly in $\mathcal{L}^p([0,T],\mathcal{X})$.
- (a) implies, of course, that $z_n \to x^*$ in measure. Thus applying Theorem 3, we obtain the relation

$$\int_0^T \overline{u}(t, x^*(t), \dot{x}^*(t))dt \leq \liminf_n \int_0^T \overline{u}(t, z_n(t), \dot{z}_n(t))dt.$$

Finally we have to prove that $x^* \in \Delta(a)$. By (a), it follows that

$$\lim_{n\to\infty} \langle z_n(t), \eta(t) \rangle = \langle x^*(t), \eta(t) \rangle$$

for any $t \in [0,T]$ and $\eta \in \mathcal{L}^q([0,T],\mathcal{X}')$, where 1/p + 1/q = 1. Since $z_n(t) \in \overline{B}$, there exists some positive constant $C < \infty$ such that

$$|\langle z_n(t), \eta(t)\rangle| \leq C ||\eta(t)||.$$

Hence we have, by the Bounded Convergence Theorem, that

$$\lim_{n\to\infty} \int_0^T \langle z_n(t), \eta(t) \rangle \ dt = \int_0^T \langle x^*(t), \eta(t) \rangle \ dt$$
for any $\eta \in \mathcal{L}^q([0,T], \mathcal{X}')$.

This proves that $z_n \to x^*$ weakly in \mathcal{L}^p .

Combining this result with (b), we can conclude that $\{z_n\}$ weakly converges to x^* in $\mathcal{W}^{1,p}$. Since $\Delta(a)$ is weakly closed, $x^* \in \Delta(a)$.

Let $\{x_n\}$ be a minimizing sequence of the problem (\sharp). Then, by Lemma 5, $\{x_n\}$ has a subsequence (without change of notation) such that

$$J(x^*) \le \liminf_n J(x_n)$$

for some $x^* \in \Delta(a)$. It is also obvious that

$$\inf_{x \in \Delta(a)} J(x) = \liminf_{n} j(x_n) \leq J(x^*).$$

Thus we have proved that x^* is a solution of the problem (#). Summing up

THEOREM 4 Suppose that Assumptions 1-4 with p > 1 are satisfied for a correspondence $\Gamma: [0,T] \times \mathcal{X} \longrightarrow \mathcal{X}$. Furthermore let $u: [0,T] \times \mathcal{X}_w \times \mathcal{X}_s \longrightarrow \mathbb{R}$ be a normal convex integrand with the lower compactness property. Then the problem (\sharp) has a solution.

Appendix Banach Space-valued Sobolev Spaces

This appendix aims at a brief summary of the concepts and basic facts in the theory of Banach space-valued Sobolev spaces. (cf. Schwartz [22], Barbu [3].)

1. Let $p = (p_1, p_2, \dots, p_{\ell})$ be an ℓ -tuple of non-negative integers. The number $|p| = p_1 + p_2 + \dots + p_{\ell}$ is called the order of p. We denote by D^p the differential operator

$$D^p = \frac{\partial^{p_1 + p_2 + \dots + p_{\ell}}}{\partial x_1^{p_1} \partial x_2^{p_2} \cdots \partial x_{\ell}^{p_{\ell}}}$$

Let Ω be an open set of \mathbb{R}^{ℓ} and K a compact subset of Ω . We denote by $\mathcal{D}_K(\Omega)$ the set of all the infinitely differentiable real-valued functions $\varphi:\Omega\to\mathbb{R}$ whose supports are contained in K; i.e.

$$\mathcal{D}_K(\Omega) = \{ \varphi \in \mathcal{C}^{\infty}(\Omega, \mathbb{R}) | \operatorname{supp} \varphi \subset K \}.$$

Under the topology generated by the family of seminorms:

$$p_{K,m}(\varphi) = \sup_{\substack{x \in K \\ |p| \leq m}} |D^p \varphi(x)|, \ m = 1, 2, \cdots,$$

 $\mathcal{D}_K(\Omega)$ becomes a locally convex Hausdorff topological vector space (LCHTVS).

The space $\mathcal{D}(\Omega) = \bigcup \{\mathcal{D}_K(\Omega) \mid K \text{ is a compact subset of } \Omega \}$ is also a vector space. And the space $\mathcal{D}(\Omega)$ endowed with the strict inductive limit topology defined by $\{\mathcal{D}_K(\Omega) \mid K \text{ is a compact subset of } \Omega \}$ is a LCHTVS, called the Schwartz space. It is well-known that a net $\{\varphi_{\alpha}\}$ in $\mathcal{D}(\Omega)$ converges to some $\varphi^* \in \mathcal{D}(\Omega)$ if and only if there exists some compact subset K of Ω with

$$\operatorname{supp} \varphi_{\alpha} \subset K \quad \text{for all} \quad \alpha,$$

and

$$D^p \varphi_{\alpha} \to D^p \varphi^*$$
 uniformly on Ω

for every index $p = (p_1, p_2, \dots, p_\ell)$

2. Let \mathcal{X} be a real Banach space. Any continuous linear operator $S: \mathcal{D}(\Omega) \to \mathcal{X}$ is called a \mathcal{X} -valued distribution and the set of all the \mathcal{X} -valued distributions is denoted by $\mathcal{D}'(\Omega \mid \mathcal{X})$.

If $f:\Omega\to\mathcal{X}$ is a locally Bochner-integrable function, the operator $S_f:\mathcal{D}(\Omega)\to\mathcal{X}$ defined by

$$S_f: \varphi \mapsto \int_{\Omega} f(\omega)\varphi(\omega)d\omega, \ \varphi \in \mathcal{D}(\Omega)$$

is an \mathcal{X} -valued distribution. ($d\omega$ is the Lebesgue measure on Ω .) Identifying f and S_f , we can safely say that any locally Bochner-integrable function is an \mathcal{X} -valued distribution.

The value of $S \in \mathcal{D}'(\Omega \mid \mathcal{X})$ at $\varphi \in \mathcal{D}(\Omega)$ is sometimes denoted by $\langle S, \varphi \rangle$ instead of $S(\varphi)$.

Let S be an \mathcal{X} -valued distribution and D^p an differential operator. Then the operator $D^pS:\mathcal{D}(\Omega)\to\mathcal{X}$ defined by

$$\varphi \mapsto (-1)^{|p|} \langle S, D^p \varphi \rangle, \, \varphi \in \mathcal{D}(\Omega)$$

is also an \mathcal{X} -valued distribution, called the distributional derivative (or the derivative in sense of distribution) of S; i.e.

$$\langle D^p S, \varphi \rangle = (-1)^{|p|} \langle S, D^p \varphi \rangle, \ \varphi \in \mathcal{D}(\Omega).$$

An \mathcal{X} -valued distribution is infinitely differentiable in the sense of distribution.

3. The \mathcal{X} -valued Sobolev space $\mathcal{W}^{k,p}(\Omega,\mathcal{X})(p \geq 1)$ is the set of all the functions $f:\Omega\to\mathcal{X}$ such that its distributional derivative D^sf exists and belongs to $\mathcal{L}^p(\Omega,\mathcal{X})$ for all $s=(s_1,s_2,\cdots,s_\ell)$ with $|s|\leq k$.

 $\mathcal{W}^{k,p}(\Omega,\mathcal{X})$ is clearly a vector space. In fact, it becomes a Banach space under the norm:

$$|| f ||_{k,p} = (\sum_{|s| \le k} \int_{\Omega} || D^s f(\omega) ||^p d\omega)^{1/p}$$

If \mathcal{X} is a Hilbert space and p=2, $\mathcal{W}^{k,2}(\Omega,\mathcal{X})$ is also a Hilbert space under the inner product:

$$\langle f, g \rangle_{k,p} = \sum_{|s| \leq k} \int_{\Omega} \langle D^s f(\omega), D^s g(\omega) \rangle d\omega.$$

Finally, we state three results which are to play some roles in this paper.

FACT 1 If \mathcal{X} is a separable Banach space, then $\mathcal{W}^{k,p}(\Omega,\mathcal{X})(p \geq 1)$ is also separable.

FACT 2 If \mathcal{X} is a separable reflexive Banach space and p > 1, then $\mathcal{W}^{k,p}(\Omega,\mathcal{X})$ is reflexive.

Let $\Omega = (0,T)$. We denote by $\mathcal{W}^{k,p}([0,T],\mathcal{X})$ the set \mathfrak{C} l the functions $f:[0:T] \to \mathcal{X}$ such that

- a The derivatives $D^j f$ (defined a.e.) are absolutely continuous for $j = 1, 2, \dots, k-1$, and
- b $D^{j} f \in \mathcal{L}^{p}([0,T], \mathcal{X}) \text{ for } j = 0, 1, 2, \dots, k.$

FACT 3 Let \mathcal{X} be a Banach space with the Radon-Nikodým property. Then the following two statements are equivalent for a function $f \in \mathcal{L}^p([0,T],\mathcal{X})(p \ge 1)$.

- (i) $f \in \mathcal{W}^{k,p}([0,T],\mathcal{X})$.
- (ii) There exists some $f_1 \in \mathcal{W}^{k,p}([0,T],\mathcal{X})$ such that $f(t) = f_1(t)$ a.e. $\omega \in (0,T)$.

Thus we may assume, without loss of generality, that each element of $\mathcal{W}^{k,p}((0,T),\mathcal{X})$ is defined on the closed interval [0,T] rather than (0,T). When we wish to emphasize this aspect, we use the notation $\mathcal{W}^{k,p}([0,T],\mathcal{X})$ rather than $\mathcal{W}^{k,p}((0,T),\mathcal{X})$.

References

- [1] Aubin, J.P. and Cellina, A., Differential Inclusions. Springer, Berlin, 1984.
- [2] Balder, E.J., An extension of Prohorov's theorem for transition probabilities with applications to infinite dimensional lower closure problem, *Rendiconti del Circolo Matematico di Parermo*, Serie II, 34 (1985), 427-447.
- [3] Barbu, V., Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff, Leyden, 1976.
- [4] Buttazo, G., Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations. Longman Scientific & Technical, Harlow, 1989.
- [5] Castaing, C., Sur les équations différentielles multivoques, C.R. Acad. Sc. Paris, Serie A, 263 (1966), 63-66.
- [6] Castaing, C. and Clauzure, P., Semi continuité des fonctionelles intégrales, Acta Math. Vietnam., 7 (1982), 139-170.
- [7] Castaing, C. and Valadier, M., Equations différentielles multivoques dans les éspaces vectoriels localement convexes, Rev. Française Informat. Recherche Opérationelles, 3 (1969), 3-16.
- [8] Castaing, C. and Valadier, M., Convex Analysis and Measurable Multifunctions, Springer, Berlin, 1977.
- [9] Cecconi, J.P., Problems of the calculus of variations in Banach spaces and classes BV, L.Cesari ed., Contributions to Modern Calculus of Variations, Longman Scientific & Technical, Harlow, 1987.
- [10] De Blasi, F.S., Differential inclusions in Banach spaces, J. Differential Equations, 66 (1987) 208-229.
- [11] Diestel, J. and Uhl, J.J., Vector Measures, Amer. Math. Soc., Providence. 1977.
- [12] Ioffe, A.D., On lower semicontinuity of integral functionals I, SIAM J. Control, 15 (1977) 521-538.
- [13] Komura, Y., Nonlinear semi-groups in Hilbert space, J. Math. Soc. Japan, 19 (1967), 493-507.
- [14] Maruyama, T., On a multi-valued differential equation: an existence theorem, *Proc. Japan Acad.*, 60A (1984), 161-164.
- [15] Maruyama, T., Variational problems governed by a multi-valued differential equation, *Proc. Japan Acad.*, 60A (1984), 212-214.

- [16] Maruyama, T., Lower semi-continuity theorems for nonlinear integral functionals on spaces of Bochner-integrable functions, preprint (1989).
- [17] Maruyama, T., Weak convergence theorem in Sobolev spaces with application to Filippov's evolution equations, *Proc. Japan Acad.*, **66A** (1990) 217-221.
- [18] Maruyama, T., A variational problem governed by a multi-valued differential equation in a separable Hilbert space, S. Elaydi ed., Differential Equations Stability and Control, Marcel Dekker, New York, 1990.
- [19] Papageorgiou, N.S., Existence and variational problems for nonlinear evolution inclusions, *Math. Japonica*, 38 (1993).433-443.
- [20] Saint-Beuve, M.F., On the extension of von Neumann-Aumann's Theorem, J. Functional Anal., 17 (1974), 112-129.
- [21] Schwartz, L., Functional Analysis, Couran Institute of Mathematical Sciences, New York, 1964.
- [22] Schwartz.L., Théorie des distributions, Hermann, Paris, 1966.
- [23] Szep, A., Existence theorem for weak solutions of ordinary differential equations in reflexive Banach spaces, Studia Scientiarum Mathematicarum Hungarica, 6 (1971), 197-203.
- [24] Tateishi, H., Nonconvex-valued differential inclusions in a separable Hilbert space, *Proc. Japan Acad.*, 68A (1992) 296-301.
- [25] Tolstonogov, A.A., On the structure of the solution set for differential inclusions in a Banach space, *Math. USSR Sbornik*, 46 (1983), 1-15.
- [26] Valadier, M., Application des mesures de Young aux suites uniformément intégrables dans un Banach séparable, Sém. Anal. Convexe Montpellier, exposé 3, 1990.
- [27] Valadier, M., Young measures, A. Cellina ed., Methods of Nonconvex Analysis, Springer, Berlin / Heidelberg / New York, 1990
- [28] Yosida, K., Functional Analysis, 3rd ed., Springer, Berlin, 1971.