0000000000
1166 0 20000 207-215 207

Quantum Oracles and Computational Complexity

HARUMICHI NISHIMURA (PGA) {58), MAsSANAO Ozawa (/NEIFHE)
Graduate School of Human Informatics and School of Informatics and Sciences
Nagoya University, Nagoya 464-8601, Japan

Abstract

In this paper, we consider the following problem (the subroutine problem). If the
operation performed by an oracle is efficiently computable, can a non-oracle quantum
computer simulate a quantum computer with this oracle efficiently ? Bennett et al.
and Aharonov et al. respectively solved the subroutine problem when their oracles
evaluate deterministic and probabilistic functions. However, both of them considered
only the case where machines enter the query mode deterministically. We extend
the notion of an oracle of a quantum computer to a device for performing a unitary
transformation, and solve the subroutine problem in the general setting where a query
state and a nonquery state may superpose. Using this result, we show that EQP and
BQP are robust in the general setting, which extends the robustness of BQP shown
by Bennett et al. in the case where machines enter the query mode deterministically.
Moreover, we prove the robustness of ZQP by i 1mprovmg the method of Bennett et
al. employed for the above BQP result.

1 Introduction

In computational complexity theory, an oracle may. be described informally as a device for
evaluating some Boolean function f at unit cost per evaluation. This allows us to formu-
late questions such as, “If we add the power of computing f to a Turing machine, which
functions could be efficiently computed by that Turing machine ?”. Computer theorists
have used relativizations by oracles as a powerful tool in studying complexity theory. In
quantum computations, many researchers have investigated the power of quantum compu-
tations using a quantum Turing machine (QTM) with an oracle which computes a Boolean
function. Berthiaume and Brassard [5] recast the promise problem of Deutsch and Jozsa
[6] in complexity theoretic terms, constructing an oracle relative to which the QTM is
exponentially more efficient than any deterministic Turing machine. Bernstein and Vazi-
rani [4] subsequently constructed an oracle which produces a superpolynomial gap between
the quantum and probabilistic Turing machines. This result was improved by Simon [11],
who constructed an oracle which produces an exponential gap between the quantum and
probabilistic Turing machines.. Extending Simon’s idea and using some new techniques,
Shor [10] gave quantum polynomial time algorithms for factoring problems and discrete
logarithms. On the other hand, Bennett et al. [2] showed that relative to an oracle chosen
uniformly at random, with probability 1, NP-complete problems cannot solved by a QTM
in polynomial time.

Lately, Aharonov et al. [1] considered a quantum 01rcu1t with an oracle that computes
a probabilistic function instead of a Boolean function which is computed deterministically.
We generalize these notions of oracles in terms of unitary operators. Our quantum oracle
is defined as a device for implementing a unitary operator U at unit cost per evaluation.

208

This allows us to formulate questions such as, “If we add the power of computing U to a
QTM, which functions could be efficiently computed by that QTM 77,

If a unitary transformation U is efficiently computable, an oracle QTM with U seems to
have no more power than a non-oracle QTM. In fact, in the classical case, if a language L is
efficiently computable, a non-oracle Turing machine can simulate an oracle Turing machine
with L efficiently by substituting a machine computing L for a query to L. However,
in the case of quantum computing, we need to consider a superposition in which some
configurations are in the query mode but others are not. Moreover, quantum states with
query strings of different lengths may superpose, even if each element of the superposition
is in the query mode. In these case, if we merely substitute a QTM computing U for a
query to U, quantum coherence will collapse. In this paper, we discuss this problem. The
problem is stated as follows. “If a unitary transformation U is efficiently computable by
a QTM, is there a QTM simulating a oracle QTM with U efficiently ?”. This problem is
called the subroutine problem. We will solve the subroutine problem positively. Bennett
et al. [2] solved the subroutine problem when an oracle evaluates a deterministic function.
Aharonov et al. [1] solved the subroutine problem for quantum circuits instead of QTMs
when an oracle evaluates a probabilistic function. However, deterministic and probabilistic
functions can be represented by unitary transformations and moreover both of them have
considered only the case where machines enter the query mode deterministically. Thus
our result can be considered to be a generalization of their results. We can also solve the
subroutine problem by using the simulation of QTMs by quantum circuits, generalized
quantum controls, and the simulation of quantum circuits by QTMs [7, 8, 12]. However,
our method using a quantum analogue of a time constructible function is simple and it can
reduce the polynomial slowdown as much as possible, comparing with the method using
duantum circuits.

"EQP, BQP, and ZQP are respectively the classes of languages which are recognized by
polynomial time QTMs carrying out error-free, Monte Carlo, and Las Vegas algorithms. We
investigate the robustness of these quantum complexity classes. Bennett et al. [2] showed
the robustness of BQP in the case where machines enter the query mode deterministically.
Using a solution for the subroutine problem and the method of the proof of Bennett et
al., we can show easily that EQP and BQP are robust in the general case where a query
state and a nonquery state may superpose. The method of Bennett et al. is as follows.
Instead of querying an oracle, they runs a QTM M that outputs the same answer as
the oracle’s with high probability, copies the output, and reverses the computation of M.
This procedure allows us to carry out a computation that given a query string y as input,
outputs only y and the oracle’s answer with high probability. Thus a query step of an
oracle QTM can be substitited by a Monte Carlo non-oracle QTM. However, in the case of
Las Vegas algorithms, if we use the same procedure, we cannot distinguish correct answers
from wrong ones. Then the algorithm will not be Las Vegas. We prove the robustness of
ZQP by keeping a witness to distinguish the case where a QTM queries an oracle correctly
from the other case in addition to the method of [2].

This paper is organized as follows. In Section 2 we give definitions and basic theorems
on'QTMs. In Section 3 we introduce a stationary time constructible function, and solve
the subroutine problem by using this function. This section also contains the rigorous
formulation of oracle QTMs. In Section 4 we show that EQP, BQP, and ZQP are
robust in general form, improving the method of Bennett et al. and using a solution of the

209

subroutine problem.

2 Preliminaries

A quantum Turing machine (QTM) M is a quantum system consisting of a processor, a
bilateral infinite tape, and a head to read and write a symbol on the tape. The formal defi-
nition of a QTM as a mathematical structure is given as follows. An processor configuration
set is a finite set with two specific elements denoted by g and gf, where g represents the
initial processor configuration and gy represents the final processor configuration. A symbol
set is a finite set of the cardinality at least two with a specific element denoted by B and
called the blank. A Turing frame is a pair (Q,X) of a processor configuration set ¢ and a
symbol set X. In what follows, let (@, %) be a Turing frame. A tape configuration from a
symbol set ¥ is a function T from the set Z of integers to ¥ such that T'(m) = B except
for finitely many m € Z. The set of all the possible tape configurations is denoted by
Y#. The set I# is a countable set. The configuration space of (Q, %) is the product set
C(Q,X) = Q x ¥ x Z. A configuration of (Q,X) is an element C = (q, T, &) of C(Q,X).
Specifically, if ¢ = go and £ = 0 then C is called an initial configuration of (@, %), and if
q = ¢y then C is called a final configuration of (@, X). The quantum state space of (Q, X) is
the Hilbert space H(Q, X) spanned by C(Q, X) with the canonical basis {|C)|C € C(Q,X)}
called the computational basis. A quantum transition function for (Q,X) is a function from
R XIxQxXx{-1,0,1} into the complex number field C. A (single tape) prequantum
Turing machine is defined to be a triple M = (Q, X, §) consisting of a Turing frame (Q,)
and a quantum transition function ¢ for (@,).

Let M = (Q,%,0) be a prequantum Turing machine. An element of @ is called a
processor configuration of M, the set ¥ is called the alphabet of M, the function § is called
the quantum transition function of M, and a (initial or final) configuration of (Q,%) is
called the (initial or final) configuration of M. A unit vector in H(Q,X) is called a state
of M. The evolution operator of M is a linear operator Ms on H (@, L) such that

M5|q7T7£) = Z 6(q’T(§)ava7d)lp7 Tga§+d>

p€Q7T€E’dE{_17071}

for all (¢,T,€) € C(Q, %), where Ty is a tape configuration defined by

Tg(m)=7 (m=¢), T(m) (m#g).
The domain of Mj is defined to be the set of all |1)) such that

> KO PIIMs|C)|I? < oo

Cec(Q.x)

A (single tape) prequantum Turing machine is said to be a (single tape) quantum Turing
machine (QTM) if the evolution operator is unitary. We can also define multi-tape QTMs
and multi-track QTMs similarly. ‘

The following theorem proved in [9] characterizes the quantum transition functions that
give rize to QTMs. If it is assumed that the head must move either to the right or to
the left at each step, condition (c) of Theorem 2.1 is automatically satisfied. In this case,
Theorem 2.1 is reduced to the result to Bernstein and Vazirani [4].

210

Theorem 2.1 A prequantum Turing machine M = (Q,%,0) is a QTM if and only if ¢
satisfies the following condition.
(a) For any (¢,0) € Q X I,

> |6(q,0,p,T,d)|*> = 1.

PEQ,TEX,de{-1,0,1}
(b) For any (q,0),(¢',0") € @ X ¥ with (g,0) # (¢, 0"),

Z 5(51,,0,7177 Tv d)*(s((Lo-ap) 7—, d) = O

péQ,TEE,dE{—l,O,I}
(c) For any (q,0,7),(¢d,0',7') € Q x 2,

> 68,0 \p7,d—1)*6(g,0,p,T,d) = 0.
P€Q,d=0,1

(d) For any (q,0,7),(¢',0',7') € Q x X2,

> 6(d,o',p, 7", —1)*6(g,0,p,T,1) = 0.
PEQ

Let M = (Q,%,0) be an m-track QTM. Then ¥ can be factorized as ¥ = ¥; x
Y3 X --+ X Xy and T € E# can be written in the form (T%,72,...,T™), where T €
Zz# for i = 1,...,m. T*is called an i-th track string. In what follows, for a string
T = zoT - - Tk of length k, we denote by t[z] a tape configuration such that tz =
z; (0 < i < k—1), B (otherwise). For any tape configuration T, we will write
T=(T,...,79) if T = (T,...,T7,t[e],..., t[e]) where £ denotes the empty string. We
will abbreviate a configuration (g, (T%,...,T*,t[¢],...,),(0,...,0)) as (q, (T%,...,T*),0).
Let E(€ = j), E(§ = p), E(T = T,) and E‘(TZ = Tp) be respectively projections on
span{lg, T, j)lg € Q, T € E#}, span{[p,T,&)|T € =¥, ¢ € Z}, span{lg,To,€)lg €
Q, £ € Z} and span{|q, T, &g € Q, T = (T%,---,Tp,--+,T™) € £#, € € Z}. A
QTM M = (Q,%,0) is said to be stationary, if given an initial configuration C, there
exists some ¢ € N satisfying ||[E(§ = 0)E(§ = ¢;)MIC)||2 = 1 and for all s < ¢
HE(G = q7)M§|C)||> = 0. The positive integer ¢ is called the computation time of M
for input state |C), and M{|C) is called the final state of M for |C). Specifically, if
|C) = |qgo,t[z],0), the integer ¢ is called the computation time on input z. A polynomi-
al time QTM is a stationary QTM such that the computation time on every input is a
polynomial in the length of the input.

3 Oracle Quantum Turing Machines

A stationary time constructible (ST-constructible) QTM of a function f : N — N is defined
to be a stationary QTM such that if the initial state is |qo, t[z],0), then the final state is
las, t{z], 0) and that the computation time is f(|z|), where |z| denotes the length of z. A
function f : N — N is said to be stationary time constructible (ST-constructible) if there
exists a stationary time constructible QTM of f. An ST-constructible function has the
following nice property.

211

Lemma 3.1 For any k-dimensional polynomial p, there is an ST-constructible function f .
such that p+ f is an ST-constructible (and monotone increasing) k-dimensional polynomial.

Bennett et al. [2] defined an oracle quantum Turing machine as the following special
QTM. An oracle quantum Turing machine has a special tape called an oracle tape and
its processor configuration set includes special elements g, and g,, which are respectively
called the prequery processor configuration and the postquery processor configuration. For
convenience, the processor enters g, only when the head position of the oracle tape is zero.
Given a language L called an oracle language, this machine evolves as follows.

(1) If the processor configuration is g, and the string written on the oracle tape is
(z,b) € {0,1}* x {0, 1}, the processor enters g, while the content of the oracle tape changes
to (z,b @ L(z)) deterministically in a single step, where “@® ” denotes the exclusive-or.

(2) If the processor configuration is not g,, then M evolves according to the quantum
transition function.

In this paper, we give a formal definition of more general oracle quantum Turing ma-
chines, which has an oracle unitary transformation instead of an oracle language.

Let @ be a processor configuration set including g, and g,, let ¥ be a symbol set,
let § be a function from (Q\{g,}) X £ x (Q\{¢a}) x T x {-1,0,1} to C, and let U be
a unitary transformation such that U|z) € span{|z)|z € {0,1}"} for any z € {0,1}"™
Then M = (Q,%,4,U) is said to be an oracle prequantum Turing machine (with U). The
evolution operator of M is defined to be a linear operator Ups on H(Q,X) such that

EjDEQ\{qa,},1’€E,d€{—l,0,1} 6(Q) T(&),pa T, d) |pa Tg) é- + d) (q 7& Qq)
Umlg, T,&) = Zye{o,l}lzl (y|U|z)|gq, t[y],0) (g = 0, T = t[z], € = 0)
|90, T,€) (otherwise).

M is said to be an oracle quantum Turing machine (oracle QTM) if Uy, is unitary. Then
we can obtain the following necessary and sufficient conditions by the similar way to the
proof of Theorem 2.1 [9)].

Theorem 3.2 An oracle prequantum Turing machine M = (Q, X, 6,U) is an oracle QTM
if and only if the following quantum transition function &' for ((QU{r})\{¢,, ¢},) satisfies
conditions (a)—(d) of Theorem 2.1. Here r is an element that does not belong to Q.

(900,45, 7,d) (g=p=r)

(9a,0,q,7,d) (g=71, p#T)
(9,0,45,7,d) (p=r1, ¢#T1)
(g,0,p,7,d) (qg#7r, pF#r).

Similarly we can define a multi-tape oracle QTM. For example, if M is a k-tape oracle
QTM and a state |¢) of M is |g,, (T, ..., T% 1 t[z]), (d1,...,dr_1,0)), the state Ups|t))
is defined to be 3, c(01y1=1 (Y|U|2)|ga, (T, ..., T* 1, t[y]), (d1, ..., dk-1,0)). Then the k-th
tape is called an oracle tape. We can consider an oracle QTM with a language L, defined
by Bennett et al., to be a multi-tape oracle QTM with the unitary transformation Uy, such
that Ug|z,b) = |z,b® L(z)) for all (z,b) € {0,1}* x {0,1}. In what follows, we denote by
MY (and M") an arbitrary oracle QTM with a unitary transformation U (and a language
L). '

§'(¢q,0,p,7,d) =

S O O O

212

We introduce a notion of supersimulation necessary for a solution of the subroutine prob-
lem. For a stationary QTM, we can consider supersimulation as a special case of simulation
defined in [8]. We denote by D(M, z) the set {C € C(Q,Z)|Ts < t [(C| M|, t[z], 0) # 0]},
where t is the computation time of M on input z. Let M = (Q, X, d) be a stationary QTM
and M' = (Q', 2, x X3, ¢") be a single tape QTM such that Q@ x ¥ C Q' x X;. We say that
M' supersimulates M with slowdown f, if there exists a function f : N — N such that for
any input z of M and C € D(M,) there exists some T" € ># (depending on z), and that

Moy = Y (M50 e T,
C'eC(Q,x)

where |C)|T") ‘denotes |g, (T,T"),&) for C = (q,T,£). We can extend a similar notion to
multi-tape QTMs and oracle QTMs. For any QTM M = (Q,%,0) and any r € Q, we can
obtain the following oracle QTM MY = (@', %, ', U) with Q' = ((Q\{r}) x{0,1})U{qqg, ¢ }-

6I((qa 0)?0’ (pa 1),7-7 d) = (5((],0',]), T, d)7
§'((g,1),0,(q,0),0,0) =1,
'((q,0),0,4q,7,d) = 6(¢,0,7,7,d),
¢'(¢a, 0, (p, 1), 7,d) = 6(r,0,p, 7, d),
8'(4a, 0,94, 7,d) = 6(r,0,7,7,d).

In particular, if U is the identity operator, then MY supersimulates M. Thus, we can
consider a QTM to be a special case of an oracle QTM.

We say that a unitary transformation U is polynomial time computable by a QTM M if the
final state of M for the initial state |qo, t[z],0) with |z| = n is Xyeq0,13» (¥|U|7)lgs, t[y], 0),
and the computation time of M is a polynomial in n.

Using ST-constructible functions, we can solve the subroutine problem of QTMs.

Theorem 3.3 If a unitary transformation U is polynomial time computable by a QTM
M, there are a polynomial p and a polynomial time QTM M' such that M' supersimulates
a polynomial time oracle QTM MY with slowdown p.

The degree of the polynomial slowdown in Theorem 3.3 is reduced as much as possible.
It is same as the case of deterministic or probablistic Turing machines.

Corollary 3.4 If a unitary transformation U is computable by a QTM M in linear time,
there is a polynomial time QTM M’ such that M' supersimulates a linear time oracle QTM
MV in quadratic time.

We say that a unitary transformation U is approzimately polynomial time computable
by a QTM M if (1) U|z) € span{|z)|z € {0,1}"} for any = € {0,1}", (2) there is a
family of unitary transformations {U]} such that the final state of M for the initial state
g0, t[z, 1Y],0) with |z| = n is

S WUy, tly, 14, 0)

ye{0,1}*

and ||U|z) — U/|z)|| < 1/2! for any z € {0,1}*, and (3) the computation time of M is a
polynomial in n and .

213

Let M = (Q,%,0) be a stationary QTM and M’ = (Q',X; x X5,0") be a single tape
QTM such that Q@ x ¥ C Q' x X;. We say that M’ supersimulates M with bounded error
and slowdown f, if there exists a function f : N> — N such that for any input y = (z, 1})
of M, where [€ N, and any C € D(M,y) there exists some T € ># (depending on y),
and that || MIV0|CYT") — (M;|C)) @ |T")|| < 1/2. The following theorem holds by the
similar way to the proof of Theorem 3.3.

Theorem 3.5 If a unitary transformation U is approzimately polynomial time computable
by a QTM M, for anyl € N there are a polynomial p(n,l) and a polynomial time QTM M
that supersimulates a polynomial time oracle QTM MV with bounded error and slowdown
.

4 The Robustness of Quantum Complexity Classes

We can apply Theorems 3.3 and 3.5 to the robustness of the quantum complexity classes
EQP, BQP, and ZQP. We shall now define complexity classes for oracle QTMs. These
definitions are natural extensions of complexity classes for QTMs [4, 8]. In what follows,
the ranges of quantum transition functions are the polynomial time computable numbers.

We say that an oracle QTM M accepts (rejects) xz € {0,1}* with probability p if the final
state |¢) of M for the initial state |qo, t[z],0) satisfies

|B(T" = t[a) E(T? = s =p (IE(T* = tle) B(T? = tlo])[9)I[* = p).

We say that M recognizes a language L with probability p if M accepts z with probablhty
of at least p for any z € L and rejects z with probability of at least p for any =z ¢ L.
Moreover, we say that M recognizes L with probability uniformly larger than p, if there is
a constant 0 < n < 1 — p such that M recognizes L with probability p + 7. A language
L' is in BQPY (EQPY) if there is a polynomial time oracle QTM ML = (Q,%,6,UL)
that recognizes L' with probability uniformly larger than ; (with probability 1). Then the
QTM MY is called BQP type. A language L' is in ZQP’ if there is a polynomial time
QTM ME = (Q,X,6,U;) satisfying the following conditions: (1) M’ recognizes L with
probability uniformly larger than %, (2) If M accepts (rejects) z with a positive probability,
M rejects (accepts) z with probability 0. Such a QTM MT is called ZQP type. For classes
C and D of languages, let C? = UpepCE. If C¢ = C, the class C is said to be robust for
subroutines.

If L is in EQP, then we can construct a polynomial time oracle QTM such that only the
input = and the answer L(z) are written on the tape of the final state with probability 1
by the method of [3] (concretely, by using the reversal lemma of [4]). Thus, EQP is robust
for subroutines by Theorem 3.3.

Corollary 4.1 EQPPQP = EQP.

Bennett et al. [2] showed the following theorem to use a Monte Carlo quantum algorithm
as a subroutine of another quantum algorithm.

Theorem 4.2 If a language L is in BQP, for any ¢ > 0 there is a QTM M which
recognizes L with probability 1 — ¢ and has the following property. The computation time of
M for |qo, t[z],0) is a polynomial in |z| and log1/e, and the final state is a|qs, T, 0) + [),
where |a|? > 1 —¢ and T = (t[z], t[L(z)]).

214

Theorem 4.2 guarantees that without loss of generality a BQP type QTM recognizing L
has a clean tape with only the input z and the answer L(z) with arbitrary large probability
after the computation. In other words we can assume that a BQP type QTM has only
one accepting configuration. Bennett et al. [2] insisted that BQP is robust for subroutines
as the corollary of Theorem 4.2, since this theorem allows us to use a QTM recognizing
an oracle language instead of the oracle itself. However, they considered the case where
machines enter the query mode deterministically, and thus they did not discuss the pos-
sibility that the coherence of different computation paths collapses by the insertion of a
QTM recognizing an oracle language. We have already solved this problem by Theorem
3.5, so that we can show that BQP is robust for subroutines in the general setting where
a query state and a nonquery state may superpose.

Corollary 4.3 BQPBQF — BQP.

Now we consider the robustness of ZQP. If we apply Theorem 4.2 to a language in
ZQP, the obtained algorithm will not be Las Vegas. Thus we need the following theorem,
which means that we can also assume that a ZQP type QTM has only one accepting
configuration.

Theorem 4.4 If a language L is in ZQP, for any € > 0 there is a QTM M which
recognizes L with probability 1 — & and has the following property. The computation time of
M for |qo, t[z],0) is a polynomial in |z| and log1/e, and the final state is algs, T, 0) + |¢),
where o> > 1 —¢, T = (t[z], t[L(z)]), and E(G = ¢;)E(T? = t[x]))|¢) = [). Here, we
denote by x a special symbol of the second track of M.

Let M = (Q,%,4) be a stationary QTM and M’ = (Q',X; x £5,8') be a single tape
QTM such that @ x ¥ C Q' x £;. We say that M’ supersimulates M with zero error and
slowdown f, if there exists a function f : N2 — N such that for any input y = (z,1') of M,
where | € N, and any C € D(M,y) there exists some T" € ©¥ (depending on y) satisfying
the following condition: If M*M|CYT") = |) + |41) and E(T? = t[x])(Ig) + 1) = [v1),
then (M5|C)) ® |T") = |9) + [2), lllv1) — [92)|| < 1/2!, and E(T? = t[x])|¢h5) = 0. Using
Theorem 4.4 we can show the following lemma by the similar way to the proof of Theorem
3.3.

Lemma 4.5 If L is in ZQP, there are a polynomial p(n,l) and a polynomial time QTM
M that supersimulates a polynomial time oracle QTM MY with Uy, with zero error and
slowdown p.

We can show that ZQP is robust for subroutines by using Lemma 4.5. Then we need to
construct our algorithm so that we cannot erase the symbol * written as a witness of an
error in the subsequent steps.

Theorem 4.6 ZQPZQP =ZQP.

215

References

[1] D. Aharonov, A. Kitaev, and N. Nisan, Quantum circuits with mized states, in:
Proceedings of the 31th Annual ACM Symposium on Theory of Computing (1998)
20-30.

[2] C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, Strengths and weaknesses
of quantum computing, SIAM J. Comput. 26 (1997) 1510-1523.

[3] C. H. Bennett, Logical reversibility of computation, IBM J. Res. Develop. 17 (1973)
525-532.

[4] E. Bernstein and U. Vazirani, Quantum complezity theory, in: Proceedings of the 25th
Annual ACM Symposium on Theory of Computing (1993) 11-20. Journal version
appeared in SIAM J. Comput. 26 (1997) 1411-1473.

[6] A. Berthiaume and G. Brassard, The quantum challenge to structural complexity
theory, in: Proceeding of the 7th Annual Structure in Complexity Theory Conference
(1992) 132-137.

[6] D. Deutsch and R. Jozsa, Rapid solution of problems by quantum computation, Proc.
Roy. Soc. London Ser. A 439 (1992) 553-558.

[7] A. Kitaev, Quantum computations: algorithms and error correction, Russian Math.
Surveys 52 (1997) 1191-1249.

[8] H. Nishimura and M. Ozawa, Computational complezity of uniform quantum circuit
families and quantum Turing machines, preprint available from the LANL quant-ph
archive 9906095. ‘

[9] M. Ozawa and H. Nishimura, Local transition functions of quantum Turing machines,
preprint available from the LANL quant-ph archive 9811069.

[10] P. W. Shor, Algorithms for quantum computations: Discrete log and factoring, in:
- Proceedings of the 35th Annual IEEE Symposium on Foundations of Computer Sci-
ence (1994) 124-134. Journal version, Polynomial-time algorithms for prime factoriza-
tion and discrete logarithms on a quantum computer, appeared in SIAM J. Comput.

26 (1997) 1484-1509.

[11] D. Simon, On the power of quantum computation, in: Proceeding of the 35th Annu-
al IEEE Symposium on Foundations of Computer Science (1994) 116-123. Journal
version appeared in SIAM J. Comput. 26, 1474-1483 (1997).

[12] A. Yao, Quantum circuit complezity, in: Proceedings of the 34th Annual IEEE Sym-
posium on Foundations of Computer Science (1993) 352-361.

