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Let K[t,t7!,s] = K[t1,t7",... ,tn,t;%, 5] denote the Laurent polynomial ring
over a field K. Let t®s = t1*t3?---t9s € K[t,t71, 5] if a = (ay,0a9,... ,a,) € Z™
We associate given a finite set {aj,ay,... ,ay} C Z" with the affine semigroup
ring R (C KJ[t,t™!, s]) generated by the monomials t*'s,t22s,... ,t®Vs. Let A =
Klz1,xs,...,zn] denote the polynomial ring over K and write I (C A) for the
kernel of the surjective homomorphism 7 : A — R defined by setting 7(z;) = t2s
for all 5. The ideal I, called the toric ideal of R, is generated by binomials. We
are interested in the questions when the toric ideal of an affine semigroup ring
is generated by quadratic binomials as well as when the toric ideal of an affine
semigroup ring possesses a quadratic initial ideal. Consult, e.g., [3] and [4].

Let ® C Z" be one of the root systems B,, C,, D, and BC, ([2, pp. 64 — 65])
and write Rg for the affine semigroup ring associated with the finite set consisting
of all positive roots of ® together with the origin of R®. The purpose of the present
paper is to show the existence of a squarefree quadratic initial ideal of the toric
ideal I of Res. In particular, the convex polytope which is the convex hull of the
positive roots of ® together with the origin of R™ possesses a regular unimodular
triangulation and, in addition, the affine semigroup ring Re is Koszul. We refer the
reader to [1] for related results on the root system A,_;.

To begin with, we discuss the toric ideal of the root system BC,. The affine
semigroup ring associated with (the finite set consisting of the origin of R" together
with the positive roots of) the root system BC, is the subalgebra Rgc, of K[t,t7!, 5]
generated by the monomial s together with the monomials ¢;t;s with 1 <1 < j < m,
tit;ts with 1 <i < j < m, and t;s with 1 < ¢ < n. Let Apc, denote the polynomial
rings ~

Agc, = K[{z} U{yi}1cicn U {ei hicicisn U {fiih1<iciznl
over K and write 7 : Apc, — Rsc, for the surjective homomorphism defined by
setting 7(z) = s, m(y;) = tis, w(ei;) = tit;s and «(f;;) = titj"ls. Let Igc, denote
the kernel of 7 and call Igc, the toric ideal of Rgc, .

We fix the reverse lexicographic monomial order <, on the polynomial ring Agc,
induced by the ordering of the variables

Y <Y< <Y< T< fin< fin1 < < fizg<fon< < frnoin
<eépn<eéin-1<--<ep<e;<eéyg,<--<eépin<eén-in-1<E€nn.

To simplify the notation below, we understand e;; = e;; if 7 < j. First of all, the
quadratic binomials v '

(1) eijere — eieejr, 1<7<k<Y
) €ikeie — €iglik, 1<j<k<{
) firfie— fiefin, 1<i<k<§
) fiifik —xfie, <7<k
) fikeie— firje, 1< <k
) fij€ik — Yilk, 1< J;
) Yieik — Viejk, 1 <J;
) Yifik — Yifik, 1<J<Kk;



(9) yifij — YT, 1< 7;
(10) zei; — iy, 1< 4,
belong to Igc, and their initial monomials
(1) eijere, 1<j<k<Y
(27) eixeje, 1<ji<k<y
(3") firfier 1<j<k<y
(4) fijfig, <3<k
) fj’kei,g, 1< ] < k‘;
") fij€iks 1< 7;
) Yj€iks 1< J;
) Yifiks 1<j<k
") yifigs 1< J;
(10) Z€ij, 1< 7,
belong to in., ., (Isc,)-

(5
(6
(7
(8
(9

Theorem 1. The initial idealin.,.,(Isc, ) of the toric ideal Ipc, with respect to the

reverse lexicographic monomial order <,e, is generated by the quadratic monomials
(1) - (10°) listed above.

Proof. Let g denote the set of standard monomials of Rgc, with respect to the ideal
generated by the quadratic monomials (1’) — (10°) listed above. Thus a monomial

u = 5%(tk,8) - -+ (th,5) (tay t, 8) - - (a, b, ) iy 5,'8) - - (tht; s),
of Rpc,,, where
Yk, Srev """ Srev Uke Srev Sirgi Srev " Srev figjg Srev €arpy Srev =+ Srev apyby
belongs to G if and only if the following conditions are satisfied:
(BC-1) a1<a2 <+ <ap<by<--- < by < by

(BC-2) If £ < n then either i¢ <4y < jy < je OF 4 < Je < iy < Jn;
(BC—3) iq S a;

(BC4) k<~ <k <ay

(BC-5) iy < ke < jy for no € and no n;

(BC-6) {ki1,... ,kry01,...,0p,b1,...,0,} N {j1,... ,Jq} = 0;
(BC-7) If o # 0, then p = 0.

To obtain the required result, what we must prove is that if the monomial u above
and
u' = 5% (ty;) -+ (th, 8) (tay ey, s) -+ (ta;,tb;,,s)(tigtj_{ls) e (ti;,t;;,ls)

belong to G and if u = ¥’ in Rpc,, then

/ ! — —
a=a,r=r,p=p,q9=4g,

/ — L
k=K, ... k =k,

/ — ! — W . N
a1=a1,...,ap—ap,bl—bl,...,bp—bp,
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1=, g =1 g1 = g = Gl
First, one has ¢ = ¢, a+r+p =o'+ 7" +p' and r + 2p = v + 2p'. Hence, if
a=a =0,thenp=p andr=1".Ifa>d >0, then p=p' =0 by (BC-7); thus
r=r"anda=d. Ifa=0and &/ >0,thenr+p=0c'+7" and r + 2p = r'. Thus
o' +p =0, a contradiction.

Second, in case a = & =0 and ¢ = ¢ > 0, Weprovezq—z and]q—j Let
iy < zq Then j, < j, by (BC-2). Thus by (BC-5) there is no kz with i < ke < Jq
( jn for some 7). Hence there is no kj with kj, = 4,. Note, in particular, that g = iq
if p=p' =0. Thus either a; = i, or b = i, for some £. Hence by (BC—2) (BC—3)
(BC—4) and (BC-5) one has k. <4; <i; < af <ig < jg = j,l Since 1, < 1y (< 14q)
for all u, the total number of Va,r1ables t5 with 6 > 4, appearing in u' is at most 2p.
Since i, < a;, the total number of variables ts with § > i, appearing in u is at least
2p + 1. This contradicts u = v’ in Rpc,. Hence i = i,. Suppose Bg =1g < Jg < Jg-
If t6 appears in u, then either § > j, or 6 < zq Thus t ; never appears inv, a

contradiction. Hence jq = Jq- Thus one has zq =i, and j, = ]q, as desired. It follows
by induction (on g) that 4, = i1,... 49y = ig, 51 = ji,... ,Jq = ]q fa=d =0
and ¢ = ¢’ = 0, then (BC-1), (BC—4) together with p = p’, r = 1’ guarantee that
ki=k,... ,ky=Fk and a; =aj,... ,ap = a;, by = by, ... , by = by,

Finally, when oo = o/ > 0, since p = p’ = 0, in the discussion above we already
know i = 4, and, in addition, j, = j,. Moreover, if @« = o > 0, p = p' = 0 and

g =¢ =0, then obviously k; = k,... , k, = k., as required. O

We now turn to the study of the toric ideal of the root system B,,. With the same
notation as in the discussion of in.,,,(Isc,), just note that none of t2s,... ,t2s
appears in Rp, and that none of e;1,... ,e,, appears in Ag,,.

Theorem 2. The initial ideal in<,,(Is,) of the toric ideal Ig, with respect to the
reverse lexicographic monomial order <,., is generated by the quadratic monomials
listed below:

(17) e jex.e, i<j<k<¥

) €i k€, i<j<k<¥

) firfie,  1<j<k<{
)f'tj.f]k) 1< <k

’)f],kem 1<j<k,i#L jH#Y
)fuejlca i<j,j7ék;

) yieik, 1<J,1Fk, JFK

8 ) yifir, 1<i <k

) yifigy 1 <J;

(10”) ze; 5, i<j.

2

Proof. Since our work is to modify the proof of Theorem 1, only a brief sketch will
be given below. With the same notation as in the proof of Theorem 1, a monomial
u belongs to G if and only if the following conditions are satisfied:
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(B“'l) Either a; S <ag < <-: S < bp S - < b2 < b1 or
a1§a2< <ap1<bp1= ——-bg—bl
= Qpy+1 = Opy+2 = =ap <bp<bp1 <o+ < bpi+1;

(B-2) If £ < n then either 3¢ < iy < jiy < Je or i < Je < 1y < Jn;
(B-3) Either ¢; < a; or

ip<a1<ap< Koy <lgpr=ligre=-=ig=by = =by=b
=ap1+1=‘1p1+2="'=ap<bp§bp—15"'5bp1+1§

(B-4) Either ky <--- <k, <a or
by < <kn<a1<ap<--Lap <k =knp=-=k
=by=-=b=b=app=0psa= =0 <b < b1 < < bp

(B—5) in < k¢ < jn for no £ and no 7;
(B‘—G) {kl,... ,kr,al,... ,ap,bl,... ’bp}ﬂ{jly"' ,jq} = @;
(B-7) If o #0, then p=0.

Now, suppose that u and v’ belong to G with u = ¢’ in Rg,. Then one has a =
o,;r=rp=p andg=¢. Incasea =o' =0 and ¢ = ¢ > 0, we prove i, = i
and j, = jq Let i, < 4g. Then i, < éf <ig < jq = j,. Hence there is no k, with
ig <k, < Jg- Thus aj < i, First, it a1 < 14, then by (B 3) for each & either ag = 4
or b = i;. Thus the total number of the variable ¢; appearing in u is at least p + 1;
while the total number of variable ¢;, appearing in u is at most p since k, = i, for no
. Second, let 44 < a1. If k) < ig, then the total number of variables 173 with £ > 1,
appearing in u (resp. ') is at least 2p + 1 (resp. at most 2p). Let (z;7 <)ig < k.
Then (5} =) jq < k;. In addition, if k;, < k;, then kj, < i; since k, < aj < jy. Hence
the total number of variables ¢, with k #* 5 > g appearmg in o 1s at most p. Since
elther iqg < an # ki orig < by # Ky for each 7, the total number of variables t; with

k. # g > 14 appearing in u is at least p—+1. This complete the proof of i; = 4. Hence
Jq = Jq by the same reason as in the case of BC,. Let a =a’ =0and g =¢ = 0.
If k; < a; and k] < a}, then k; = k{. If a1 < k;, then by (B—4) the total number of
the variable t;, appearing in w is r +p. Hence ki = k1. Let a =o' =0, 7 =7"=0
and ¢ = ¢’ = 0. If #f divides u for no &, thena; < -+- < ap <bp < --- < by I
for some £, t) divides u, then either a; = ¢ < b¢ or a¢ < £ = b for each . Hence
ay = ay and b, = bj, for all . The final step of the proof is completely analogous to
that of the proof given for in., ., (Isc,)- O

The study of the initial ideal in<, ., (Ic,) (resp. in<,.,(Ip,)) of the root system C,
(resp. D,,) is much easier than that of BC, (resp. B,); only ignoring the variables
Y1, Y2, - - - ,Yn in the polynomial ring Apc, (resp. Ag,) and ignoring t;s,t28,... ,t,8
in the affine semigroup ring Rgc, (resp. Rg,).

Theorem 3. The initial ideal in., ., (Ic,) of the toric ideal Ic, with respect to the
reverse lexicographic monomial order <,e, is generated by the quadratic monomials
(1') — (6) listed above.

Theorem 4. The initial ideal in.,,, (Ip,) of the toric ideal Ip, with respect to the
reverse lezicographic monomial order <., is generated by the quadratic monomials
(17) - (6”) listed above.
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We conclude the present paper with a remark that the role of the origin of R",
i.e., the variable z of the polynomial ring is essential in our discussions. In fact, the
toric ideal of the affine semigroup ring associated with the set of positive roots of
each of the root systems A,,_;, B,, C,, D, and BC, with n > 6 is not generated
by quadratic binomials.
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