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Abstract

We give a geometric representation of the free algebras equipped with $m$ asso-
ciative and $n$ associative and commutative operation.

1 Introduction

Complement reducible graphs (or cographs, for short) and series-parallel graphs and par-
tial orders have arisen in several fields of mathematics and computer science. Efficient se-
quential and parallel algorithms have been developed for the recognition of both cographs
and series-parallel graphs, and to solve many problems that are intractable for graphs
in general. Such problems include chromatic number, clique, isomorphism, Hamiltonic-
ity, etc. Several characterizations of cographs are known. It was shown in [CLB81]
that a graph is a cograph iff it has no induced subgraph which is a $P_{4}$ , i.e., a path on
4 vertices. Moreover, it was shown in [CPB85] that a graph is a cograph iff it has a
(necessarily unique) representation by a cotree. An alternative formulation of the latter
result may be given using the language of universal algebra: For any set $A$ , (isomorphism
classes of) cographs whose vertices are labeled in $A$ form the free algebra generated by
$A$ equipped with two associative and commutative operations. The two operations are
disjoint union and its dual. The corresponding facts for (labeled) posets are the charac-
terization of the series-parallel posets by the $N$-condition, and the fact that for any set
$A$ , the $A$-labeled series-parallel posets form the free algebra on $A$ equipped with an as-
sociative and an associative and commutative operation, $\mathrm{v}\mathrm{i}\mathrm{z}$ . series and parallel product,
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see [Gra81, VTL82, Gis88]. The $\mathit{1}\mathrm{V}$-conditioll is of course related to the $P_{4}$-condition: A
partial order is $N$-free iff its symmetric closure is $P_{4}$-free, moreover, a graph is $P_{4}$-free iff it
has an orientation which an $N$-free poset, i.e., an $N$-free transitive digraph, cf. [VTL82].

A common generalization of labeled cographs and series-parallel posets appears in [Win86,
BC88]. The event structures defined in [BC88] are labeled sets equipped with a partial
order, called causality, and a disjoint irreflexive symmetric relation, called conflict. Each
event structure gives rise to a further irreflexive symmetric relation, called concurrency,
which colnplements the other two. The three relations determine three associative opera-
tions. The operations corresponding to the symmetric relations are also commutative. It
is shown in [BC88] that the $A$-labeled event structures generated from the singletons are
freely generated by $A$ in the variety of those algebras equipped with three associative oper-
ations, two of which are commutative. Generalizing the $P_{4}$-condition and the N-condition,
a graph theoretic characterization of event structures in the free algebras is also given in
[BC88]. Ftlrther examples of algebras with several associative operations related to con-
currency may be found in [ZJ94]. For generalizations of automata and language theory
over free algebras with two or more associative operations see [LW98, $\mathrm{L}\mathrm{W}\mathrm{a},$

$\mathrm{L}\mathrm{W}\mathrm{b}$] and
[KusOO].

In this note, extending the above ideas, we give a concrete geonletric description of the free
algebras with $m$ associative and $n$ associative and commutative operations, where $m,$ $n$

are any llonnegative integers. This description is based on labeled sets equipped with $m$

partial orders and $n$ irreflexive symmetric relations such that any two distinct elements
are related by exactly one of the relations. Each relation determines an operation and the
free algebras encompass those structures generated from the singletons by the operations.
These structures are in turn characterized by 3 conditions: the $N$-condition for each
partial order, the $P_{4}$-condition for each symmetric relation, and the “triangle condition”.
(See Theorem 2.14.)

2 The structures

Let $m$ and $?l$ denote nonnegative integers with $m+n\geq 1$ , and let $A$ denote a set of labels.
For an integer $k\geq 0$ , let $[k]=\{1, \ldots , k\}$ .

DEFINITION 2.1 An $(m, n)$-structure over $A$ , orjust $(m, n)$ -structure, for short, is a finite
set $P$ of vertices equipped with $m$ irreflexive transitive relations $<_{1},$

$\ldots,$ $<_{m;}n$ irreflexive
symmetric $relations\sim_{1},$

$\ldots,$ $\sim_{n\rangle}$ and a labeling function $\lambda$ : $Parrow A$ subject to the following
condition: For any two distinct vertices $x,$ $y\in P_{f}$ either there is a unique $i\in[m]$ with
$x<_{i}y$ or $y<_{i}x$ , or else there is a unique $\dot{j}\in[n]$ w\’ith $x\sim_{j}y.$ A morphism of $(m, n)-$
structures is a function which preserves the relations and the labeling. An isomorphism
is a bijective morphism.

Thus, the relations $<_{i}$ and $\sim_{j}$ are pairwise disjoint. Moreover, each $(P, <_{i})$ is a (strict)
partial or( $\mathrm{l}\mathrm{e}\mathrm{r}$ , and each $(P, \sim_{j})$ is a graph. Below, when needed, we will add the superscript
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$P$ on the relations and labeling of an $(m, n)$-struct $\iota \mathrm{r}\mathrm{e}P$ . Note that any morphism $f$ :
$Aarrow B$ between $(m, 7l)$-strnctures is injective, and for any $x,$ $y\in A$ and $i\in[m],$ $j\in[n]$ ,
$x<_{i}y$ iff $f(x)<_{i}f(y)$ and $x\sim_{j}y$ iff $f(x)\sim_{j}f(y)$ .

In order to simplify the treatment, we introduce the notation $\rho_{i}$ for the relation $<_{i}\cup<_{i}-1$ ,
for all $i\in[m]$ , and define $\rho_{m+j}=\sim_{j}$ , for all $j\in[r]]$ . Note that for any $(m, n)$-structure
$(P, <_{1}, \ldots, <_{m}, \sim_{1}, \ldots, \sim_{l},.\lambda),$ $(P, \rho_{1}, \ldots,\rho_{m+n}, \lambda)$ is a $(0, m+n)$-structure. In $\mathrm{f}\mathrm{a}\mathrm{c}\cdot \mathrm{f}$ , for
every $i\in[m]$ , $(P, <_{1}, \ldots , <_{i}, p_{?+1}, \ldots , \rho_{m+n}, \lambda)$ is an $(\iota, \gamma\gamma+n-i)$-structure.

REMARK 2.2 A $(1, 0)$-strncture may be identified with a labeled total order. A $(0,1)-$

structure is a labeled conlplete graph (or a labeled set). Any $(1, 1)$-structure $(P, <, \sim, \lambda)$

may be identified with the labeled partial order $(P, <, \lambda)$ , and any $(0,2)- \mathrm{s}\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{c}\mathrm{t}\mathrm{u}\mathrm{l}\cdot \mathrm{e}(P,$
$\sim_{1}$

$,$
$\sim_{2},$

$\lambda)$ with the labeled graph $(P, \sim_{1}, \lambda)$ . However, the correspondence between $(2, 0)-$

structures and labeled partial orders is not bijective, since in general a labeleel $\mathrm{I}$) $\mathrm{a}\mathrm{r}\mathrm{t}\mathrm{i}\mathrm{a}\mathrm{l}$

order may be equipped with a second partial order in several different ways $\mathrm{b}\mathrm{l}\iota \mathrm{c}\mathrm{h}$ that
the resulting structure becomes a $(2, 0)$-structure. More generally, when $n>0$ , every
$(m, n)$-structure $P=(P, <_{1}, \ldots, <_{m}, \sim_{1}, \ldots, \sim_{n}, \lambda)$ may be identified with the $‘ \mathrm{b}\mathrm{t}\mathrm{r}n\mathrm{c}\mathrm{t}\iota \mathrm{l}\mathrm{r}\mathrm{e}$

$(P, <_{1}, \ldots, <_{m}, \sim_{1}, \ldots , \sim_{\mathrm{n}-1}, \lambda)$ having one less relation. ( $\mathrm{U}\mathrm{n}\mathrm{l}\mathrm{e}\mathrm{s}\mathrm{s}\sim_{n}$ is empty, this is not
an $(m, n-1)$-structure.)

To define operations on $(7’ l, n)$ -structures, we identify any two isomorphic structures, so
that in the definition below we may assume that $P$ and $Q$ are disjoint.

DEFINITION 2.3 Suppose that $P=(P, <_{1}^{P}, \ldots, <_{m}^{P}, \sim_{1}^{P}, \ldots, \sim_{n}^{P}, \lambda^{P})$ and $Q=(Q,$ $<_{1}^{Q}$

, . . . $,$

$<_{m}^{Q},$ $\sim_{1}^{Q}$ , . . .
$,$

$\sim_{n}^{Q},$
$\lambda^{Q}$ ) are disjoint $(m, n)$ -structures. For each $i\in[m]$ , we define

$P_{i}Q$ to be the $(m, n)$ -structure $(P\cup Q, <_{1}, \ldots, <_{m}, \sim_{1}, \ldots , \sim_{n}, \lambda)$ with

$<_{k}$ $=$ $<_{k}^{P}\cup<_{k}^{Q}$ , $k\neq i,$ $k\in[m]$

$<_{i}$ $=$ $<_{i}^{P}\cup<_{i}^{Q}\cup(P\cross Q)$

$\sim_{j}$
$=$ $\sim_{j}^{P}\cup\sim_{j}^{Q}$ , $j\in[n]$

$\lambda$ $=$
$\lambda^{P}\cup\lambda^{Q}$ .

For each $j\in[m]$ , we let $P\otimes_{j}Q$ to be the $(m, n)- structure(P\cup Q,$ $<_{1},$
$\ldots,$ $<_{m},$ $\sim_{1},$ $\ldots$ $,$

$\sim_{n}$

, $\lambda)$ with

$<_{i}$ $=$ $<_{i}^{P}\cup<_{i}^{Q}$ , $i\in[m]$

$\sim_{k}$ $=$ $\sim_{k}^{P}\cup\sim_{k}^{Q}$ , $k\neq j,$ $k\in[n]$

$\sim_{j}$ $=$ $\sim_{\dot{J}}^{P}\cup\sim_{j}^{Q}\cup(P\cross Q)\cup(Q\cross P)$

$\lambda$ $=$
$\lambda^{P}\cup\lambda^{Q}$ .

Moreover, we define 1 to be the empty structure.

It is clear that all of the operations are associative and that the operations $\otimes_{j}$ are $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{l}-$

mutative. Moreover, 1 is a unit for all operations.
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REMARK 2.4 Identifying $(1, 1)$-structures with the corresponding labeled partial orders,
$_{1}$ corresponds to the series product of labeled partial orders and $\otimes_{1}$ corresponds to
parallel product or disjoint union, cf. [VTL82]. In Definition 2.10 we will denote these
two operations by $\cdot \mathrm{a}\mathrm{n}\mathrm{d}\otimes$ . For $(0,2)$-structures, i.e., labeled graphs, $\otimes_{1}$ is the operation
of taking the disjoint union and connecting each vertex in any of the two graphs with
all vertices of the other. Operation $\otimes_{2}$ is just disjoint union. In Definition 2.12, the
operations $\otimes_{1}$ and $\otimes_{2}$ will be denoted as. and $\otimes$ .

DEFINITION 2.5 An $(m, n)$-semigroup is a set $M$ equipped with $m$ associative product
operations $_{i,}i\in[m],$ $n$ associative and commutative product operations $\otimes_{j},$ $j\in[n]$ . An
$(m, n)$-monoid is an $(m, n)$ -semigroup equipped with a constant 1 which is a unit for all
operations. A morphism of $(\gamma n, n)$ -semigroups is a function that preserves the operations.
Morphisms of $(m, n)$ -monoi&also preserve the unit.

Thus, $(m, n)$-structures over $A$ form an $(m, n)$-monoid denoted $\mathrm{S}_{A}$ . Note that a $(1, 0)-$

semigroup is just a semigroup and a $(0,1)$-semigroup is a commutative semigroup. $(1, 1)-$

monoids are called bimonoids in [BE96], double monoids in [Gra81] and dioids in [BC88].
A $(2, 0)$-semigroup is termed a binoid in [Has99].

DEFINITION 2.6 An $(m, n)$ -structure is reducible if it can be generated from the singletons
corresponding to the letters in $A$ by the $m+7l$ product operations, $i.e.$ , when it can be
reduced to a singleton by decomposition with respect to the operations.

Thus, the reducible $(m, n)$-structures form the least subalgebra of $\mathrm{S}_{A}$ containing the
singletons. We let $\mathrm{R}\mathrm{S}_{A}$ denote this $(m, n)$ -semigroup.

REMARK 2.7 When $m+n=1$ , every nonempty $(m, n)$-structure is reducible. The
reducible $(1, 1)$-structures over $A$ correspond to the series-parallel $A$-labeled posets, and
the reducible $(0,2)$-structures to the $A$-labeled cographs defined below.

Call an $(m, n)$-structure $P$ decomposable with respect to $_{i}$ , where $i\in[m]$ , if there exist
nonempty structures $Q$ and $R$ with $P=Q_{i}R$ . Similarly, call $P$ decomposable with
respect $to\otimes_{j}$ , where $j\in[n]$ , if there exist nonempty structures $Q$ and $R$ with $P=Q\otimes_{j}R$ .
Otherwise call $P$ indecomposable (with respect to $_{i}$ $or\otimes_{j}$ , respectively). It is clear that
each reducible structure $P$ is either a singleton, or there is a unique $i$ that $P$ has a
nontrivial decomposition

$P$ $=$ $P_{1}_{i}\ldots _{i}P_{k}$ , (1)

where the $P_{t}$ are reducible and indecomposable with respect to $_{i}$ , or else there is a unique
$j$ such that $P$ has a nontrivial decomposition

$P$ $=$ $P_{1}\otimes_{j}\ldots\otimes_{j}P_{k}$ , (2)

where the $P_{t}$ are reducible and indecomposable with respect to $\otimes_{j}$ . Using this fact, we
immediately obtain
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THEOREM 2.8 $\mathrm{R}\mathrm{S}_{A}$ is freely generated by the set $A$ in the variety of all $(m, n)$ -semigroups.

Proof. We need to show that for any $(m , n)$ -semigroup $M$ and function $h:Aarrow M$ there
is a unique morphism $h\#$ : $\mathrm{R}\mathrm{S}_{A}arrow M$ extending $h$ . (We identifv any letter $a\in A$ with
the corresponding singleton structure $\mathrm{l}\mathrm{a}\dagger$) $\mathrm{e}\mathrm{l}\mathrm{e}\mathrm{d}a.$ ) Since each $P\in \mathrm{R}\mathrm{S}_{\Lambda}$ can be generated
from the singletons by the operations, it follows that $h\#$ is unique. $\mathrm{A}/\mathrm{s}$ for the existence,
define $h\#(P)$ , for $P\in \mathrm{R}\mathrm{S}_{A}$ , in the following way: If $P=a$ , for some $a\in A$ , define
$h\#(P)=h((l)$ . Suppose that $P$ has two or more elements. Then either there is a unique
$i\in[m]$ such that $P$ has a decomposition (1), or else there is a unique $j\in[m]$ such that
$P$ has a decomposition (2). In the first case, we define $h\#(P)=h^{\#}(P_{1}).)i\cdots _{i}h\#(P_{k})$ . In
the second. we let $h\#(P)=h\#(P_{1})\otimes_{j}\ldots\iota)_{j}h\#(P_{k})$ . It is a routine matter to verify that $h\#$

preserves the operations. $\square$

Let $\mathrm{R}\mathrm{S}_{A}^{1}$ denote the $(m, n)$-monoid $\mathrm{R}\mathrm{S}_{A}\cup\{1\}$ .

COROLLARY 2.9 $\mathrm{R}\mathrm{S}_{A}^{1}$ is freely generated by the set $A$ in the variety of all $(m^{h},n)$ -monoids.

DEFINITION 2.10 We call an $A$ -labeled poset $P=(P, <, \lambda)\mathrm{s}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{e}\llcorner \mathrm{s}$ -parallel if $P$ can be
generated from the singletons by the operations $\cdot and\otimes of$ series and parallel product.
Moreover, we say that $P_{f}$ or the underlying poset of $P$ satisfie.$>the$ $N$-condition if there
exist no distirlct vertices $x,$ $y,$ $u,$ $v$ in $P$ such that the only order relations between these
vertices are $x<u,$ $y<u$ and $y<v$ .

THEOREM 2.11 Grabowski, Valdes et al [Gra81, VTL82] An $A$ -labeled poset is series-
parallel iff it satisfies the N-condition.

DEFINITION 2.12 An $A$ -labeled graph $P=(P, \sim, \lambda)$ is $a$ cograph if it can be generated
from the the singletons by the two product operations $\cdot and\otimes defined$ on labeled graphs (cf.
Remark 2.4). $Moreover_{f}$ we say that $P$ satisfies the $P_{4}$-condition if $P$ does not contain
an induced subgraph which is a path of length 4, $i.e.,$ $P$ does not have distinct vertices
$x,$ $y,$ $u,$ $v$ such that the only relations between these vertices are $x\sim y,$ $y\sim u,$ $u\sim v$ .

It is well-known that $P$ is a cograph iff $P$ can be generated from the singletons by the
operations of disjoint union and complementation. Note that the $P_{4}$-condition is equiva-
lent to the requirement that any two vertices $x$ and $y$ are either disconnected, or there is
a path of length 1 or 2 between $x$ and $y$ , i.e., the distance between $x$ and $y$ is at most 2.

THEOREM 2.13 Corneil et al. [CLB81] An $A$ -labeled graph is a cograph iff it satisfies the
$P_{4}$ -condition.

Using the above results we now prove:
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THEOREM 2.14 A nonempty $(m, n)$ -structure $P=(P, <_{1}, \ldots , <_{m}, \sim_{1}, \ldots, \sim_{n})\iota s$ re-
ducible iff th. $e$ following conditions hold.

1. For each $i\in[m]$ , the poset $(P, <_{i})$ satisfies the N-condition.

2. For each $j\in[n]$ , the graph $(P, \sim_{j})$ satisfies the $P_{4}$ -condition.

3. There exist no distinct vertices $x,$ $y,$ $z$ and dsstinct integers $i,j,$ $k\in[m+n]$ with
$xp_{i}y,$ $y\rho j^{Z}$ and $z\rho_{k}x$ . (Triangle condition.)

$P\mathrm{r}oo\mathrm{f}$ The necessity of the conditions follows by a straightforward induction argument
on the number of vertices of $P$ . As for the sufficiency, we may assume that $m+n>1$ ,
since if $m+n=1$ then every $(m, n)$-structure is reducible. Our claim is clear if $P$ has a
single vertex. Suppose now that $P$ has two or more vertices. We prove that one of the
graphs $(P, \rho_{i}),$ $i\in[m+n]$ is connected. Indeed, if this condition does not hold, then let $Q$

denote a maximal subset of $P$ such that for some $i,$ $(Q, p_{i})$ is connected. By assumption,
there is a vertex $v\in Q-P$ . Let $u_{0}\in Q$ , and for $n=1,2,$ $\ldots$ let $U_{n}$ denote the set
of vertices $u_{n}\in Q$ at distance $n$ from $u_{0}$ , i.e., such that the minimal path between $u_{0}$

and $u_{n}$ in $(Q, \rho_{i})$ is of length $n$ . Let $u_{0}pjv$ , say. Since $(Q\cup\{v\}, \rho_{i})$ is not connected, we
have $i\neq j$ . It follows now by a straightforward induction argument using the triangle
condition that $u_{n}\rho jv$ for all $u_{n}\in U_{n}.$ But $\bigcup_{n\geq 0}U_{n}=Q$ , so that $up_{j}v$ , for all $u\in Q$ . But
then $(Q\cup\{v\}, \rho j)$ is connected, contradicting our assumption on $Q$ .

Thus, at least one of the $(P, p_{i})$ is connected. If $i\leq m$ , then $(P, <_{i})$ is a partial order
satisfying the $N$-condition. Thlls, by Theorem 2.11, $P$ has nonempty disjoint subsets $R,$ $S$

with

$(P, <_{i})$ $=$ $(Q, <_{i})\cdot(R, <_{i})$ ,

so that $Q\cup R=P$ . It is now clear that the $(m, n)$ -structure $P$ satisfies

$P$ $=$ $(Q, <_{1}, \ldots, <_{m}, \sim_{1}, \ldots, \sim_{n}, \lambda)_{i}(R, <_{1}, \ldots, <_{m}, \sim_{1}, \ldots, \sim_{n}, \lambda)$ .

Since the $(m, n)$-structures $Q$ and $R$ also satisfy the conditions of the Theorem and have $\cdot$

fewer vertices than $P$ , it follows from the induction hypothesis that $Q$ and $R$ are reducible,
so that $P$ is also reducible. If $i>m$ , then $(P, \sim_{j})$ is a graph satisfying the $P_{4}$-condition,
where $j=i-m$ . Thus, by Theorem 2.13, $(P, \sim_{j})$ has a nontrivial decomposition

$(P, \sim_{j})$ $=$ $(Q, \sim_{j})\otimes(R, \sim_{j})$ .

Using the induction hypothesis it follows as before that the $(m, n)$-structure $P$ is reducible.
$\square$

REMARK 2.15 Suppose that $P=(P, <_{1}, \ldots, <_{m}, \sim_{1}, \ldots, \sim_{n})$ is an $(m, n)$-structure. If
$n>0$ then $P$ is reducible iff $P$ satisfies the triangle condition, the first condition of
Theorem 2.14 for all $i\in[m]$ , and the second condition for all $i\in[n-1]$ . Similarly, if
$m>0$ , then $P$ is reducible iff $P$ satisfies the triangle condition, the first condition for all
$i\in[m-1]$ , and the second for all $i\in[n]$ .

57



REMARK 2.16 When $m=1$ and $n=2$ , the conditions involved in Theorem 2.14 may be
replaced by the following $X$-condition [BC88]: For all $i,\dot{)}=1,2,3$ with $i\neq j$ and for all
vertices $v_{0},$ $v_{1},$ $v_{2}$ and $v_{3}$ , if $u_{0}p_{i}v_{1},$ $v_{1}p_{i}v_{3}$ but $\mathrm{t}^{)}0p_{i^{\mathfrak{j}}2}$’ and $\mathrm{t}_{1}’ p_{i^{\mathrm{t})}3}$ do not hold, and if $u_{0}p_{j}v_{3}$ ,

then $v_{0}pjv_{2},$ $v_{1}\rho jv_{2}$ and $\iota_{1}’ p_{j}v_{3}$ .
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