
Formalized Mathematics, Proof Animation,
and Limit Computable Mathematics

Susumu Hayashi*
Department of Computer and Systems Engineering,

Faculty of Engineering, Kobe University,
1-1 Rokko-dai, Nada, Kobe, Japan

July 19, 2000

1 Formal Proof Developments

Formalized mathematics or formal proof developments are activities to build
formal proofs checked on computers for applications to formal methods or its
own sake. Formal proof developments by proof-checkers, HOL, Coq, Mizar,
etc are becoIning realistic thanks to accumulation of proof libraries and with
help of some high-tech efforts.

Bugs in softwares for some safety critical systems, such as traffic control
systems, medical devices, nuclear power stations, are very risky. Even bugs
in ordinary commercial softwares and hardwares can cost much for users and
firms. Thus, formal methods, which is a technology for verifying correctness
of such systems, are used. Formal methods use some kind of formal logics
to verify these systems. Since human beings make errors, formal proofs on
papers may be incorrect. Thus, it is recommended to verify via formal proofs
on computers.

Formal methods are comparable with the activity of traditional applied
mathematics. In applied mathematics, real worlds are “formalized” by dif-

*Supported by No. 10480063, Monbusyo, Kaken-hi (the aid of Scientific Research, The
Ministry of Education)

数理解析研究所講究録
1169巻 2000年 102-108 102

ferential equations as formal methods describe the world by logical formulas
of formal logics. Verifying softwares are comparable with solving differential
equations.

2 Proof Animation
Developments of formal proofs are costly and heavy tasks. We may compare
developments of formal proofs with finding exact solutions of differential
equations. Mathematicians solve differential equations numerically and guess
exact solutions by observing numerical solutions. This way of research is
often easier than guessing exact solutions by bare hands.

We have proposed proof animation [4], a methodology for proof devel-
opments, which is analogous to this activity. We “execute” proofs under
developments to find bugs in proofs just as programmers execute programs
under developments to find bugs in programs. This technology is expected
to make formal proof developments much easier.

“Executing proofs” means to follow proofs on examples as every mathe-
matician does. Such an execution may be automatically done when proofs
are represented as data on computers. Actually, it is known that execution
of proofs are possible, when proofs are constructive. A proof is constructive,
when the law of excluded middle is not used in the proof. The law of excluded
middle is the logical principle that every proposition is true or false: $A\vee\neg A$

in symbol. There are some proof checkers which execute proofs. by the prin-
ciple of “Curry-Howard” isomorphism or related concepts, e.g. realizability
interpretations [5].

However, these proof checkers may not be very useful for proof anima-
tions, since majority of proofs are non-constructive. In mathematics, classical
logic is freely used. Restricting logic to constructive fragments are not very
natural form the standpoint of ordinary mathematics. For example, it is
not allowed to say that 0123456789 appears in the expansion of π or not.
Existence proofs by contradiction is basically non-constructive. Thus, even
if you can prove that it is contradictory that 0123456789 does not appear in
the expansion of π , you cannot conclude that 0123456789 appears.

Many mathematical propositions in computer science are constructive.
However, there are some important propositions on concurrent processing
and combinatorics for which non-constructive arguments are much more nat-

103

ural.
In the late $80’ \mathrm{s}$, an extension of Curry-Howard isomorphism was found by

Tim Griffin. He extended Curry-Howard isomorphism to classical logic and
programs with continuation, which is a control mechanism used in functional
programming languages.

After his work, number of theories aiming to bridge classical proofs and
programs have been proposed. However, none of them looked fine for proof
animation. Curry-Howard isomorphism is a rather straightforward corre-
spondence. It is not difficult to predict outlines of programs associated to
formal proofs. By such a correspondence, we can locate bugs in proofs from
the location of bugs of programs associated.

However, the new Curry-Howard isomorphisms for classical logic did not
provide such correspondences. The programs associated to standard proofs
$\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ their behavior are extremely complicated and difficult to understand.
Since proof animation is a mean to understand proofs via observations of
the behaviors of programs associated, these theories are not good enough for
proof animation.

It should be noted that these theories can be practical for other aims. For
example, some implementations of $\lambda\mu$-calculus, which is one of such calculi
associated to classical logic, show that it is good for a kernel of functional
languages with continuation.

Although, these works look hopeless for proof animation, Berardi’s theory
of approximation theory was an exception. Unlike to the other theories, it was
aimed to understand computational contents of actual proofs. By his theory,
Berardi gave an interesting computational meaning to a classical proof of the
following theorem:

$\forall f\in Natarrow Nat.\exists n\in.\forall x\in Nat.f(n)\leq f(x)$

The “algorithm” which Berardi associated was an algorithmic process
“guessing” the solution. It is described as follows:

Regard the function f as a stream $f(1),$ $f(2),$ $f(3),$ \cdots . Have a
box of a Natnumber. Put $f(1)$ in the box. Compare the content
of the box with the next element of the stream. If the new one
is smaller than the number in your box, put the new one in the
box. Repeat it infinitely.

104

In what sense the algorithm compute the answer? The process does not
stop and we will never know when we should stop. However, the box will
eventually contain the correct answer. Once the box contains the correct
answer, then the content will never been changed. In this sense, this non-
terminating process computes the right answer in the limit.

This kind of “limit process” is used as a model of learning by Gold [3]
and Putnum [?]. The value v of a limit $\lim_{t}f(t)$ is defined by the condition
“there is N such that $f(N+i)=v$ for all $i\in Nat.$ If $f(x)= \lim_{t}g(x, t)$

holds for a recursive function g , then f is called limiting recursive. We may
think the sequence $g(x, 1),$ $g(x, 2),$ \cdots is a trace of guessing the value of

,
$f(x)$

on a discrete time $t=1,2,$ \cdots .
Berardi’s interpretation uses infinitary proof figures and higher order

functional etc. and so was not really intuitive. He extracted the algorithm
above from a standard classical proof of the proposition. However, he did not
give an algorithm by which one can extract the algorithm explained above.
The algorithm was obtained by an analysis of his interpretation and was not
given directly from the interpretation.

3 Limit Computable Mathematics
We have found that Berardi’s idea of utilizing limiting function as a kind
of execution of classical proofs enables direct interpretation of a fragment of
classical logic. The fragment is obtained by restricting the law of excluded
middle (LEM) to $\Sigma_{1^{-}}^{0}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{u}\mathrm{l}\mathrm{a}\mathrm{s}$. \cdot

This restricted form of LEM, Σ_{1}^{0}-LEM, coincides with E. Bishop’s “the
limited principle of omni-science.” It is essentially the algorithm explained
above, i.e. Σ_{1}^{0}-LEM maintains that we may know if $nf(n)=0$ holds for all
n or there is a counterexample for $f(n)=0$. For example, we may conclude
123456789123456789 appears in the decimal expansion of π or not by $\Sigma_{1^{-}}^{0}$

LEM.
E. Bishop wrote in his monograph of constructive analysis [2], if Σ_{1}^{0}-LEM

(the limited principle of omniscience in his terminology) is allowed, “theorem
after theorem of classical mathematics” can be proved. The examples he
gave were the ergodic theorem, the Hahn-Banach theorem, the fixed-point
theorems, etc. We also found that D. Hilbert’s early work on invariant theory
is also proved by the principle.

105

Thus, we conjecture that

Limit Computable Mathematics (LCM) would cover a large part
of practical classical mathematics, e.g., mathematics for theoret-
ical computer science (theory of algorithms), applied mathemat-
ics, and mathematics before pure abstract mathematics of 20th
century.

From theoretical point of view, extracting “semi-algorithms” from con-
structive proofs by Σ_{1}^{0}-LEM is fairy simple. We simply replace recursive
functions in Kleene’s realizability interpretation with limit-recursive func-
tions. Then everything works just as it was. This is because of “limiting
computable calculus” is also a “computable calculus”. For example, if a
“limit” of computational structure ω-BRFT is again ω-BRFT. ω-BRFT is
known as one of the most general framework for recursion theory [7].

4 Hilbert’s invariant theory: a target for case
study

There are several interesting targets of case studies of proof animation by
LCM. From computer science and related finite mathematics, concurrent
algorithms, e.g. Dekker algorithm, and some combinatorial principles, e.g.
Higman’s lemma, look interesting. From works by Herbelin and Coquand,
we suspect that ordinary classical proof of Higman’s lemma might be beyond
of feasible LCM.

From mathematics, Hilbert’s invariant theory in the late 19th century

seems most interesting. In his 1890 paper, Hilbert proved a theorem called
“finite basis theorem”. (He called it “general finiteness theorem”.) In his
formulation, it read that

If $F_{1},$ $F_{2},$ \cdots is a stream (sequence) of forms (homogeneous poly-
nomials) with a fixed number of variables, then there is m such
that every F_{i} is denoted as $A_{1}F_{1}+A_{2}F_{2}+\cdots+A_{m}F_{m}$ by some
forms $A_{1},$ $A_{2},$ $\cdots,$

A_{m} .

Note that m is limiting recursive in the stream $F_{1},$ $F_{2},$ \cdots , as far as the
theorem holds. We can just “search” such m by try-and-error process. (If

106

we find there is F_{i} which cannot be represented in the form, we increment
m so that $m\geq i$. This can be seen as an animation of the statement of the
theorem. However, this is not the thing we should do.

We are planning to animate Hilbert’s proof rather than the statement of
the theorem. We have analyzed Hilbert’s proof and found that the proof uses
only Σ_{1}^{0} -LEM. This may be interesting, since the proof is known as one of
the first transcendental proofs in algebra. Hilbert solved the long standing
“Gordan’s problem” once and for all by this simple lemma. Then Gordan is
said to reply that “It’s not a mathematics but a theology” [9].

Hilbert proved the theorem by induction on the number of variables. For
the base case, the stream $F_{1},$ $F_{2},$ \cdots is $c_{1}x^{i_{1}},$ $c_{2}x^{i_{2}},$ $\cdots.\mathrm{H}\mathrm{i}\mathrm{l}\mathrm{b}\mathrm{e}\mathrm{r}\mathrm{t}$ pointed out
that the “basis” is given by a single formula $c_{m}x^{i_{m}}$, where i_{m} is the smallest
number of the degree of the forms $i_{1},$ $i_{2},$ \cdots . This is the same algorithm as
Berardi’s.

After giving the proof of the base case, he gave an interesting specific
proof for the case of two variables, and then proved the general induction
step again by Σ_{1}^{0}-LEM. These proofs for the cases of two or more variables
contain several applications of Σ_{1}^{0}-LEM. It is not very difficult to read its
computable contents intuitively from the proofs. Each instance of Σ_{1}^{0}-LEM
generates its own guessing sequence of a series of algebraic forms or so. Since
our realizability interpretation merge all “local time” in a global time, the
extracted term by the interpretation might not be good to understand the
computable content. The algorithm read intuitively from Hilbert’s proof
suggest that there are some complicated interactions between these instances
of Σ_{1}^{0}-LEM. Thus, for “legible” proof animaiton, the algorithm would have
to be presented in a network of some basic guessing functions corresponding
to Σ_{1}^{0}-LEM.

We are now planning to formalize Hilbert’s invariant theory including his
finite basis theorem via Coq proof checker and extract limiting algorithms
from its proofs.

References
[1] S. Baratella and S. Berardi, Constructivization via Approximations and

Examples, Theories of Types and Proofs, M. Takahashi, M. Okada and
M. Dezani-Ciancaglini eds., MSJ Memories Vol. 2, pp.177-205.

107

[2] E. Bishop, Foundations of Constructive Mathematics, $\mathrm{M}\mathrm{c}\mathrm{G}\mathrm{r}\mathrm{a}\mathrm{w}$-Hill, 1970.

[3] E. M. Gold, Limiting Recursion, The Journal of Symbolic Logic, 30
(1965), pp.28-48.

[4] S. Hayashi, R. Sumitomo and K. Shii, Towards Animation of Proofs -

testing proofs by examples-, Theoretical Computer Science, to appear.

[5] S. Hayashi and H. Nakano, PX: A Computational Logic, (The MIT Press,
1988)

[6] S. C. Kleene, On the interpretation of intuitionistic number theory, The
Journal of Symbolic Logic, 10 (1945), pp.109-124.

[7] P. G. Odifreddi, Classical Recursion Theory, North-Holland.

[8] H. Putnam, Trial and Error Predicates and the Solution to a Problem of
Mostowski, The Journal of Symbolic Logic, 30 (1965), pp.49-57.

[9] C. Reid, Hilbert, Springer-Verlag, New York, 1996

[10] A. S. Troelstra and D. van Dalen, Constructivism In Mathematics, Vol.
I and II, North-Holland.

108

