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1 Objective
In the following, I assume basic knowledge in recursive functions and com-
putability properties of real numbers, of sequences of real numbers, of contin-
uous real functions and of basic facts in computability structures in Banach
spaces. References [3] and [12] will be useful in obtaining necessary knowledge.

Our objective in this report is to give a mathematical expression to the action
of drawing a graph which is not necessarily connected. (I insist on mathematical
treatment, and will not go into algorithmic foundations. I would like also to
emphasize that I wiil confine subsequent discussions to “our way” of such an
effort, that is, of myself as well as my colleagues. I warn the reader that ehre
are many other ways to treat such a subject, but I do not mention them here
in order to avoid deviation. )

The reason of need for such considerations is the following. (Here I consider
only unary real functions.) In drawing a graph of a function, one first computes
and plots some real numbers on the $x$-axis, usually some fractions. One then
computes the values of the function at such points and plots the corresponding
points in the plane. Finally, one connects these points as smoothly as possible.
Computer graphics would do similarly.

In sucn an action, computing the function value at a point is essential. (Here,
computation means approximating computation of arbitrary precision.) For a
continuous function, the notion of computability has been traditionally estab-
lished, and, for a computable function, it is theoretically possible to compute
its value at a computable input. On the other hand, it is a common practice
to draw a graph of a discontinuous function. It has also been systematically
studied in [3] how to view a discontinuous function to be computable. Their tool
is the Banach space, and they endow some functions which are not necessarily
continuous the notion of computability as points in a space.

A function in a Banach space is computable if it is effectively approximated
by a computable sequence of continuous functions with respect to the norm of
the space. Pour-El and Richards have formulated this notion in terms of an
axiom set.
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Stimulated by [3], I and some of my colleagues have investigated various
frameworks in analysis for use in dealing with discontinuous functions which
nevertheless can be regareded as having some algorithmic attributes. Examples
of such frameworks are the Fr\’echet space, the metric space and the uniform
topological space. See [4], [2], [6], [12], [5], [9], [10], [1], [11], [13].
Note The bibliography at the end of this article is not meant at all comprehen-
sive. In fact, I resetrict the references only to those in which I have myself been
involved or which I have closely followed. For other related works, the reader is
invited to the comprehensive list of references in the area at

http: $//\mathrm{w}\mathrm{w}\mathrm{w}$ . informatik.fernuni-hagen. $\mathrm{d}\mathrm{e}/\mathrm{c}\mathrm{c}\mathrm{a}/\mathrm{p}\mathrm{u}\mathrm{b}\mathrm{l}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{t}\dot{\mathrm{x}}\mathrm{o}\mathrm{n}\mathrm{s}/\mathrm{b}\mathrm{i}\mathrm{b}\mathrm{l}\mathrm{i}\mathrm{o}\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{p}\mathrm{h}\mathrm{y}$.html.

Subsequently, I present a brief exposition of our specuiations on a simple and
familiar step function, the $\mathrm{G}\mathrm{a}\mathrm{u}\mathrm{f}3\mathrm{i}\mathrm{a}\mathrm{n}$ function. I will also mention the Rademacher
functions, a sequence of step functions, which are important in Walsh analysis.
These functions are simple and innocent looking, but are good examples in
distilling the algorithmic features of discontinuous functions. If one can set up a
framework to talk about the computability properties of such functions, one can
apply it to many significant functions. There is another reason why I take up
these functions. Namely, step functions are essential tools for digital analysis,
and so it is important to discuss computability properties of such functions.

My belief is that examples to be used for analyzing certain properties be
simple and familiar looking, so that one needs not work hard to understand the
functions themselves.

2 Preliminaries
We first quote from Sections 1 and 2 of [8] to supply with some preliminary
information.

In studies of algorithm in analysis, one puts the basis of considerations on
computable reals. Here a real number $x$ is said to be computable if there is a
sequence of fractions $\{r_{n}\}$ which approximates $x$ and satisfies the following two
conditions.

(1) There is an algorithm which constructs the fractional sequence $\{r_{\tau\iota}\}$ .
(That is, one can write a program which, for each natural number $n$ , assigns a
fractional number $r_{n}.$ )

(2) There is an algorithm which measures the precision of approximation,
(That is, one can write a program which, for each natural number $p$ , assigns a
natural number $N_{p}$ such that for every natural number $m\geq N_{p}|x-r_{m}|\leq 1/2^{p}$

holds.)

When the condition (2) holds, we say that $x$ if effectively approximated by
$\{r_{n}\}$ . In general, we use the expression effective when a condition similar to (2)
is satisfied.

One might say that a computable real number can be approximated by
fractional numbers with guarantee of infinite precision.
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A computable sequence of reals can also be defined in a similar manner. One
needs computability of a sequence of real numbers when one has to refer to the
limit.

The computability of a continuous real function on a compact interval can be
defined in a natural manner. There are several alternatives, but they are all more
or less the same. A real function $f$ (on a compact interval) is computable if (1)
$f$ preserves the sequential computability, that is, for any input of a computable
sequence of reals, its output by $f$ is also a computable sequence; (2) $f$ has a
recursive modulus of uniform cotinuity.

The definition can easily be extended to fractional functions.
Computability on an open interval can be defined in terms of an approxima-

tion of the interval by a sequence of compact intervals and a modulus of uniform
continuity which is recursive in the approximating intervals.

As for the computability of a discontinuous function, one has to start with
speculation of what an effective approximation at a discontinuity means, and
there are several alternatives for it.

Typical and simple discontinuous functions which may contain some com-
putational information are step functions (with computable jump points and
computable values).

Here we will take up a very simple step function, the Gauiian function or
the integer part function, as an example, and propose some ways of dealing with
its computability properties. Indeed, this is a most exemplary case with respect
to which our problem can be distilled.

The $\mathrm{G}\mathrm{a}\mathrm{u}\mathrm{f}3\mathrm{i}\mathrm{a}\mathrm{n}$ function can be defined as

$[x]=n$ if $n\leq x<n+1$

and hence the value can be determined byjudging $<\mathrm{a}\mathrm{l}\mathrm{o}\mathrm{n}\mathrm{e}$ unless $x$ be an integer.
When $x$ is an integer, $x=n$? is usually undecidable (even for a computable $x$ ),
and hence there is no general computation algorithm for $[x]$ .

In what sort of viewpoint can one discuss the computability of a function
which has such an attribute?

In Sections 2 and 3 of [9], this problem is discussed in detail. For explanation,
we quote Section 3 of [8]. In Sections 2 and 3 of [13], a similar problem is
discussed for the system of Rademacher functions.

3 Computing $[x]$

Let $x$ be a computable real number and let us consider how to compute its value
$[x]$ , the Gaussian of $x$ . For the sake of simplicity, we assume $x>0$ .

For $n=0,1,2,3,$ $\cdots$ , keep asking $x<n?$ . (In fact, we compute with respect
to a computable sequence of fractions $\{r_{m}\}$ which approximates $x.$ ) One will
infallibly hit an $n$ satisfying $n<x<n+2$ .

If one is fortunate so that one hits an $n$ satisfying $n<x<n+1$ , then put
$[x]=n$ and the computation halts.
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Otherwise, one checks

$r_{\alpha(p)}<(n+1)-2^{p}\overline{1}$

for $p=1,2,$ $\cdots$ . ( $\alpha$ is a recursive modulus of convergence of $\{r_{n}\}$ to $x.$ ) Accord-
ing to its answer, we define a sequence of integers $\{N_{p}\}$ as follows.

While the answer is $No$ , put $N_{p}=n+1$ . Once the answer becomes Yes at
$p$ , then put $N_{q}=n$ for all $q$ satisfying $q\geq p$ .

The sequence $\{N_{p}\}$ is well-defined and recursive, and it can be classically
shown that, if $N_{p}=n+1$ holds for all $p$ , then the limit of the sequence is $n+1$ ;
otherwise, the limit is $n$ . In either case, the sequence approximates the value
$[x]$ effectively.

Now, we have to be careful here to note that it is not decidable whether the
limit is $n$ or $n+1$ . It is true that one of the two cases definitely holds, the limit
$is$ the value $[x]$ , and there $is$ a recursive modulus of convergence. Only we do
not know which case holds.

This undecidability indicates that, although there is a computation algo-
rithm for each $x$ , it does not guarantee a master program to compute $[x]$ . In-
deed, there is a computable sequence of real numbers whose values do not form
a computable sequence of reals.

As an example of a sequence of step functions, I have taken up the Rademacher
function system $\{\phi_{n}\}$ , which is defined as follows.

$\phi_{n}(x)=\{$ $-11,$’ $x \in x\in[\frac{\frac{2i}{3_{i2}^{n}}\dotplus_{1}}{n},\frac{n2i+21)}{2^{n}})[\frac{2i+}{2}$

where $i=0,1,2,$ $\cdots,$
$2^{n-1}-1$ .

As for the computation of this sytem, for any single, computable real number
$x\in[0,1)$ , the sequence of function values at $x$ forms a computable sequence of
reals ([13]).

4 Functional approach
In order to regard a (step) function as a computable element in a functional
space, one has to select a space appropriately. For the function $[x]$ , we have
chosen two Fre’chet spaces. One is to view the function as a sequence of values
(at integer points) and the other is to view it as a locally integrable function.

We quote from Sections 4 and 5 of [8].
Taking this into account, for a step function $f$ whose jump points are inte-

gers, we identify $f$ with the sequence $\{f(n)\}_{0,\pm 1,\pm 2},\cdots$ . Let $R^{\mathrm{Z}}$ denote the space
of integer-indexed number sequences.

For an element in this space,

$x=\{\cdots, \xi_{-k}, \cdots, \xi_{-1}, \xi_{0}, \xi_{1}, \cdots, \xi_{k}, \cdots, \}$ ,
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define a sequence of semi-norms by

$p_{m}(x)= \max\{|\xi_{k}|:|k|\leq m\}$ (1)

Then the space becomes a Fr\’echet space.

On the other hand, let $\Sigma$ denote the family of the right-continuous step
functions whose jump points are integers. Then

$q_{m}(f)=p_{m}(\{f(k)\})$ (2)

becomes a sequence of semi-norms. A function on $\Sigma$ can be completely deter-
mined by the values at integer points.

It is obvious that $\langle\Sigma, \{q_{m}\}\rangle$ is isomorphic with $\langle \mathrm{R}^{\mathrm{Z}}, \{p_{m}\}\rangle$ . In the latter
space, a computable element is a (an integer-indexed) computable sequence of
reals. So, it will be natural to define a computable element of $\Sigma$ to be the one
whose sequence of values is computable.

The Gaussian function is certainly a $\Sigma$-function, and the sequence of its
values $\{n\}_{n}$ is computable. So, it is computable in the sense above.

One can draw a graph of the Gaussian function according to the idea above.
That is, in the $x-y$ plane, mark the point $(n, n)$ (or a vertical arrow from $(n, 0)$

to $(n, n))$ for each integer $n$ , and then draw an arrow from that point (from the
tip of the arrow) to the right in a manner that its tip does not reach the next
point $(n+1, n+1)$ .

We next proceed to the space of locally integrable functions.
a R\’echet space with the sequence of semi-norms

$p_{k}(f)= \int_{[-k,k]}|f|dx$

Let us denote this space with $\langle L_{loc}^{1}(\mathrm{R}), \{p_{k}\}\rangle$ , or Cfor short.
As a generating set of the space $\mathcal{L}$ , take for example the family of step

functions whose jump points and values are rationals and which have compact
supports of integer end-points. One can also take the sequence of monomials
1, $x,$ $x^{2},$ $x^{3},$

$\cdots,$ $x^{n},$ $\cdots$ as a generating set.
Similarly, a function in $\mathcal{L}$ can be defined to be $\mathrm{c}\mathrm{o}\dot{\mathrm{m}}$putable if it is effectively

approximated by a recursive enumeration of rational coefficient polynomials
with respect to the semi-norms $\{p_{k}\}$ . The sequence of monomials can therefore
be regarded as an effectively generating set in $\mathcal{L}$ .

The family of step functions as above can also be an effective generating set.
The Gaussian function can be effectively approximated by such step func-

tions, and so it must be computable in this space.
In order to draw a graph of the Gaussian function according to this idea,

one would draw an open segment between two integer points (and put a white
circle at the integer point if desired). A white circle indicates that one needs
not take into account the value there.

For the Rademacher function system, we employ the Banach space of p-
integrable functions on $[0,1]$ for any computable number $p,$ $1\leq p<\infty$ .
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5Uniform topological space and computability
So far, the functions in question were defined on sets of real numbers, in which
the usual distance metric is available. In [1], another metric for the interval
$[0,1)$ has been used in order to discuss the computability properties of the
Rademacher and Walsh function systems.

In working with computability problems of real-valued step functions, how-
ever, one finds that the metric of the domain is not indispensable. It is only
the uniformity of the topology as well as the computability structure of the
codomain that are essential. For this reason, it is worth the effort to find out
how we can work with computability properties of some real-valued functions
from a uniform topological space (with countable index set). Although a uniform
topological space with a countable index set can be converted to a metric space
(and certainly vice versa), and also that two kinds of convergence are equivalent,
it is important how things look like in the uniform topology directly so that the
circumstances under which a function becomes computable will become clear.

A computability structure on a uniform topological space and its applications
will be explained below very, very briefly.

An effective uniform topological space is a uniform topological space in which
the axioms of open basis are effectivized. The computability structure on such
a space is defined by three axioms.

We will quote from [11] for thesdefinitions of an effective uniform topological
space and a computability structure on it.

A uniform topology $\{V_{n}\}$ on $X$ is called an effective uniform topology if there
are recursive functions $\alpha_{1},$ $\alpha_{2},$ $\alpha_{3}$ which satisfy the following.

For every $n,$ $m\in \mathrm{N}$ and every $x\in X,$ $V_{\alpha_{1}(n,m)}(x)\subset V_{n}(x)\cap V_{m}(x)$ (effective
$A_{3})$ .

For every $n\in \mathrm{N}$ and every $x,$ $y\in X,$ $x\in V_{\alpha_{2}(n)}(y)$ implies $y\in V_{n}(x)$

(effective $A_{4}$ ).
For every $n\in \mathrm{N}$ and every $x,$ $y,$ $z\in X,$ $x\in V_{\alpha_{3}(n)}(y),$ $y\in V_{\alpha_{3}}(z)$ implies

$x\in V_{n}(z)$ (effective $A_{5}$ ).
A double sequence $\{x_{l,k}\}$ from $X$ is said to effectively converge to a sequence

$\{x_{l}\}$ if there is a recursive function $\beta$ satisfying

$\forall n\forall l\forall k\geq\beta(l, n)(x_{l,k}\in V_{n}(x_{l}))$

Let $S$ be a family of sequences from X. (As usual, we include multiple
sequences, such as double sequences, triple sequences, when we talk about se-
quences.)

$S$ is called a computability siructure if it satisfies the following.
Cl: (Non-emptiness) $S$ is nonempty.
C2: ( ${\rm Re}$-enumeration) If $\{x_{k}\}\in S$ and $\alpha$ is a recursive function, then

$\{x_{\alpha(i)}\}_{i}\in S$ .
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C3: (Limit) If $\{x_{l,k}\}$ belongs to $S,$ $\{x_{l}\}$ is a sequence from $X$ , and if $\{x_{l,k}\}$

converges to $\{x_{l}\}$ effectively, then $\{x_{l}\}\in S$ . That is, $S$ is closed with respect
to effective convergence.

A sequence belonging to $S$ is called a computable sequence. An element of
$X$ is called computable if the sequence $\{x, x, \cdots\}$ is computable.

The tree topology of a binary tree is a uniform topology of clopen sets, and
the space is compact. The family of all the recursive paths in the binary tree
forms a computability structure. Furthermore, an effective enumeration of all
the eventually zero paths is an effective separating set.

As an application, we can show that the system of Rademacher functions
defined on the binary tree forms a uniformly computable sequence of functions.

The next space of our concern, denoted by $A$ is an amalgamation of the
discrete space of integers and the union of all the open intervals with integer
end points with relativized open interval topology. As a set, $A$ is identical with
the set of real numbers, but it becomes a uniform topological space.

We can also show that the amalgamated space is not complete. In regards
to the computability structure, however, we know that it is effectively complete
and, in particular, $A$ is effectively equi-totally bounded.

The function $[x]$ is continuous in $A$ .
The set of computable sequences of $A$ is defined as follows. Let $\{x_{n}\}$ be a

seuqnece of the set $\mathrm{A}_{\mathrm{R}}$ , where $x_{n}\in J_{n}$ ( $J_{n}$ is either $\mathrm{J}^{\mathrm{Z}}$ or $\mathrm{J}^{k}$ for some $k$ ) . $\{x_{n}\}$

is called computable if there is a double sequence of rationals $\{r_{nl}\}$ such that
$\{r_{nl}\}$ is a computable sequence in the usual sense, for all $lr_{nl}\in \mathrm{J}_{\mathrm{n}}$ , and $\{r_{nl}\}$

converges effectively to $\{x_{n}\}$ in the usual topology of R.
The computable sequences in the sense above form a computability structure

for $A$ , and the uniform computability of $[x]$ with respect to this computability
structure follows.
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