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COMMUTING DIFFERENTIAL OPERATORS OF TYPE B,

*) *x)
HirROYUKI OCHIAI ©~ AND TOSHIO OSHIMA

1. INTRODUCTION

1.1. Several integral systems are accidentally related to root systems. Olshanetsky-
Perelomov ([OP1], [OP2]) considered integrable n-particle models in dimension
one arising from root systems. The systems of differential operators satisfied by
zonal spherical functions give such integrable systems and these were generalized
by Sekiguchi and Heckman-Opdam ([Sj], [HOJ).

In [OOS] we announce a classification of integrable systems invariant under sim-
ple classical Weyl groups. The precise discussion has already been given by [OS]
and [O] except for the case of type B;. As is shown in [OS], the classification
problem for type Bs is reduced to a functional differential equation (2.1).

In §2 we give a complete list of solutions of this functional equation. Some
solutions have already been obtained, after [OP2], by Inozemtsev [IM], [T} (See also
[P]). The main result of §2 is Theorem 2.9, which is stated in §1.3 in a different

“form. .

In §3 we examine the reducibility of the system obtained in §2. We note that
if the system coincides with the system satisfied by zonal spherical functions of a
semisimple Lie group, the reducibility is related to degenerate series representations.

The final draft of this paper was completed when the authors were visiting
University of Leiden in the fall of 1994. The authors express their sincere gratitude
to Prof. dr. van Dijk for his hospitality during their stay there.

1.2. Now we give a quick review of the results in [OS, §6] concerning with type
B;. Let W(B;) be the Weyl group of type Bz, which is identified with the group
of coordinate transformations of (z1,72) generated by (z1,z2) — (z2,21) and
(z1,2z2) > (21, —22). Consider W (B,)-invariant differential operators

0 {a=@+%+m@

Py = 8?02 + lower order terms

which satisfies [Py, P,] = 0 and ‘P, = P,. Here we denote 0 = _8%1 and J, = 52—2

for simplicity and the map ! is the anti-automorphism of the algebra of differential
operators such that ta(z) = a(z) for functions a(z) and '9; = —0; for i =1
and 2. We assume that the coefficients of differential operators are extended to
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holomorphic functions on a Zariski open subset of an open connected neighborhood
of the origin of the complexification C* of R2.

The operators are proved to be expressed by even functions u and v of one
variable as follows ([OS, Proposition 6.3]):

Py =07 407 +u(x1 + x2) +u(zy — x2) +v(z1) + v(zs),

o — - 2
1) P = (904 UOEEME BN L 4 ufe)03

+o(zy)v(ze) + Tz, z2),

where T is determined by the following equations up to a constant.
(1.2)
{ 20,T = v'(z1)(u(z1 + z2) — u(z1 — 22)) + 2v(21) (v (21 + 22) — ' (21 — z2)),

261T = U’(.TQ)(’LL(.I‘l + 1'2) - u(x1 - .TQ)) + 2U($2)(Ul($1 + .1,‘2) -+ u'(a:l - :Cz))

As the compatibility condition for the existence of the solution T of the .e’quation
(1.2), we have an equation

(1.4) O, (v'(mg)(u(xl + 229) — u(z1 — 2)) + 2v(z2) (v (21 + z2) +u'(z1 — wz)))

=0 (v'(xl)(u(xl + 22) — u(z1 — 22)) + 2v(z1) (v (21 + 22) — ' (2; —_acz))>,

which have been posed in [OS, Proposition 6.3] (cf. [P, §2.2.C]).
Conversely for any solution (u,v) of (1.4) and the pair (P, P;) of the operators
which are given by (1.1) with ‘

(1.3) T= %(af - a_;%) <V(x1)(U(x1 +22) + Uz — 22)) . G(fcl))

under the notation in Remark 2.1 and Lemma 2.2, we have [Py, P,] = 0

1.3. We give a complete list of solutions of the functional equation (1.4). Remind
that the Schrodinger operator Py is explicitly expressed as in (1.1) using u and v.

1) (Trivial case) u = constant, v = an arbitrary even function,

19) w = an arbitrary even function, v = constant.

Let w; and wy denote the primitive half periods of the Weierstrass elliptic function
p(t) and put ws = —w; —wy and wy = 0.

2) (Elliptic case) For wy, we < oo

{ U(t) = Cﬁp(t) + C’7E,
v(t) = Yies Ciplt +wi) + Cs,
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24)
{ u(t) = Y1, Cip(t +wi) + Cs,

2)" (Trigonometric case)
u(t) = Cssinh™? X\t + C+,
v(t) = Cy sinh™? Mt 4 Cy sinh ™2 2\t 4+ Cj sinh® M + Cy sinh? 2\t + Cs,

2d)/
u(t) = Cy sinh™2 M\t + Cy sinh ™2 2\t + Cy sinh? M + Cy sinh? 2\t + Cs
v(t) = Cgsinh™? 2X\t + Cr.

2)" (Rational case)
u(t) = Cet™2 + Cr,
v(t) = C1#72 + Cy + C3t? + Cyt* + Cst5,

2d)n
u(t) = Cltnz + CQ + 03t2 + C4t4 + C5t6,
v(t) = Cet™% + Cr.

3) (Elliptic case) For wy, we < 00
{ u(t) = Ci(p(z +wi) + p(5 +w2)) + Cap(t) + Cs,
’l)(t) = C'4p(t) + C5p(t + LU3) + 05.

3)" (Trigonometric case)
u(t) = Ch sinh ™2 %t + Cysinh™? Mt + Cs,
v(t) = Cysinh™? Mt + Cs sinh® At + C,

3d)/
u(t) = Cy sinh™2 At + Cj sinh? A\t + Cs,
v(t) = Cy sinh™> At + Co sinh ™% 2Xt + Cs.

3)" (Rational case)
u(t) = C1t72 + Cy + Cat?,
’U(t) = C4t_2 + C5 -+ C(,'tz.
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1.4. Although we deal with the commuting differential operators of type B, with
the Weyl group symmetry in the main body of this paper, we will give a brief

summary of the related works.

The commuting differential operators of type A have been studied very well. The
commuting differential operators of type A with the Weyl group invariant condi-
tion are classified in [OS]. This work is generalized to the commuting differential

operators of type A, without Weyl group invariant condition

Ay =01 + 0s + s,
Ay =010y + 0205 + 0501 + R(z),
A3 = 040,05 + lower order terms.



To classify the potential function R(z), we may assume that A3 = —A;. Then
there exist one-variable functions u; = uj(z2 — 23), upy = ug(z3 — x1) and uz =

u3(z1 — x2) such that R(z) = —uj — up — u3, and
1 1 1
(1.6) ui(z) wuz(y) us(z)|=0 forz+y+2=0.

1
ui(z) uy(y) usg(z)

For the Weyl group invariant case, we have u1(z) = ua(2) = u3(z) and the proof
of this fact is given in Proposition 4.2 (with m = 3) of [OS], which is valid for the
general case with no change. For the Weyl group invariant case, the functional dif-
ferential equation (1.6) is solved in [WW] and the solution is a Weierstrass elliptic
function p. The corresponding potential R(z) is of Calogero-Moser type. For the
general case, the equation (1.6) is solved in [BP] and [BB]. Besides the p solutions,
we also have solutions expressed by exponential functions. The corresponding po-
tential is known as of type periodic/non-periodic Toda, which can be regarded as
a degenerating limit of a Weyl group invariant potential [vD].

For type Bs, the classification of the commuting differential operators (1.0) with-
out the Weyl group symmetry has not been done yet. It is known that the similar
functional differential equation (see (2.4’)) is related to such operators. The follow-
ing results are obtained in [Oc]:

(i) We have the expression of the (non Weyl group invariant) operators P; and
P, by using four functions u; = ui(z1 + z2), ue = us(zy — z2), v1 = vi(z;) and
v2 = vg(z2) with one-variable. Actually, if we replace u(z; + z2) by uy(z; + z3),
u(z1 —z2) by ug(z1 —2), and so on, the formula (1.1) is also valid for non-invariant
operators. These functions satisfy the functional differential equation like (1.4).

(ii) Suppose P, be non-trivial (c.f. Lemma 2.4 1)). If P; is holomorphic at some
point, then P; and P, can be meromorphically continued to whole plane C?. The
orders of poles of P; are at most two.

(iii) Suppose, moreover, that v,(z) has poles at three points z = z1, 22, 23 such
that z; — 2z and 2z, — 23 are linearly independent over Q. Then the function v, can
be expressed as

4
va(2) = Y Cip(z + wi) + C5,
=1

with an elliptic function p and constants C4, ..., Cs.

2. FUNCTIONAL DIFFERENTIAL EQUATION FOR TYPE Bs

2.1. In this section we solve the functional differential equation (1.4)
(2.1) 0, (v’(mg)(u(wl + z2) —u(zy — 22)) + 2v(22) (v (21 + 22) + (21 — wz)))
=0 (v'(;{:l)(u(:z:l + 22) — u(z1 — z2)) + 20(z1) (w21 + 22) — ' (21 — xg)))

Remark 2.1. For even holomorphic functions v and v on 0 < |[t| < 1, there exist
unique odd holomorphic functions U and V with U’ =w and V' =von 0 < |¢| < 1.
Then the equation (2.1) is equivalent to

(22) 0105(8F = B)(V(21)(Ula1 +22) + Ular — 7))

+ V(22) (U2 + 22) — Ulzy — x2))) = 0.
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Lemma 2.2. Odd holomorphic functions U and V' on a small punctured disk satisfy
the equation (2.2) if and only if there exist even holomorphic functions F and G on
a small punctured disk such that

V(zl)(U(xl +z2)+ U(z1 — xz)) + V(x2)<U(a:1 +z2) — Uz — :1:2))

(2.3) = F(z1 + z2) + F(z1 — 22) + G(21) + G(z2)-

Proof. The “if” part is clear. Now we assume (2.2) and set the left hand side of
(2.3) to be W(zy,22) € O({(z1,22) € C?| 0 < |z1| < €/2,0 < |aa| < €/2, 21 #
+25}). Then the function 8;(8? — 32)W € O({(z1,72) € C*| 0 < |z1| < £/2,0 <
|z2| < /2, z1 # £2,}) is locally constant with respect to z; and consequently it is
constant with respect to z1. Then this is an element of O({z2 € C| 0 < |z2| < €/2}).
Moreover, the residue Resg,—g 02(0? — 02)W = f7 05(0% — 2)W(z1,x2)dzs = 0.
Hence we have a holomorphic function ga(z3) € O({zy € C| 0 < |z2| < €/2})
such that 8,(0? — 02)W (zy1,22) = D2g2. Then the difference (07 — 02)W — gs is
locally constant with respect to x5. The same argument tells us that there exists
a holomorphic function g; € O({z1 € C| 0 < |z1| < €/2}) such that (87 — 82)W =
g1 + g2.

Next we change the coordinates & = (z1 + 22)/2, {2 = (21 — 22)/2 and write

= 3‘2—1—, ) = 8%2 for short. Then 0],W = g1(&1 +&2) + g2(&1 — €2). The residue

Resg,=—¢, g1(61 + &2) = f7 010, Wd€y — fﬁ/gz(& — €2)dé; = 0. Then we have an
integral gs(t) € O({t € C| 0 < |t| < ¢/2}) such that g5 = ¢g1. Similarly we have
g4 with gj = g2, and 0] (O, W — g5 — g4) = 0. Then g5 := O4W — g5 — g is locally
constant with respect to &, that is, g5 is constant with respect to £;. As before g3, g4
and g5 have integrals G5, G4 and Gs, and the difference Gg := W — G3 — G4 — G5
depends only on &;.

Taking the averages of G3, G4, G5 and G¢ under the action of the Weyl group
W(Bz), we get functions F' and G with required property. O

This lemma can be generalized to the case when the Weyl group invariance is
not imposed. In fact, the functional equation mentioned in Section 1.4(ii) can be
expressed as

(24) 018;(9F — 33)(Vi(21)(Vr(21 +32) + Ua (a1 — 22)

+ Vz(il?z)(Ul(:m + z9) — Uz(z1 — xQ))) =0.
This can be integrated as

Vi(z1)(Ui(z1 + 22) 4+ Uz(zy — 22)) + Va(22) (U (21 + 22) — Ua(z1 — 22))

(2.5 = Fi(z1 + 22) + Fa(z1 — 22) + G1(21) + Ga(22).

For detail, see Proposition 2.4 of [Oc].

Remark 2.3. The same argument holds for type A;. The equation (1.6) with u; =
ug = ug is equivalent to the equation

(2.6) 8:0,(0: - 8,) (U(2) + U(y) + U(~z ~y))*) =0,
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where U is the odd primitive function of u. By the same argument as in the proof
of the previous lemma this is also equivalent to

(27) (U@ +U@y) +U(2)" = F(z) + F(y) + F(z) fora+y+z=0

with some even function F. Remark that u = p satisfies (1.6) and that U = —(
and F' = p satisfy (2.7).

Lemma 2.4. i) If u or v is constant, then (u,v) is a solution of (2.1). A solution
of this form s called a trivial solution.
ii) If there are functions Fy and Gy such that

(2.8)  (U(z1 +22) + V(~21) + V(—SE2))2 = Fi(21 + 22) + G1(z1) + G1(z2),

then (U, V) is a solution of (2.3).
iii) If u=v = p, then (u,v) is a solution of (2.1).

Proof. Forii), (U, V) satisfy (2.3) with F(t) = $(U(¢)? — F1(t)) and G(¢) = V()? —
G1(¢). iii) follows from ii) and Remark 2.3. O

We summarize several elementary properties of the equation (2.1).

Lemma 2.5. i) The equation (2.1) is bilinear with respect to (u,v).

ii) For a solution (uo(t),vo(t)) of (2.1) and a non-zero constant C, (u(t),v(t)) =
(uo(Ct), vo(Ct)) s also a solution.

iii) For a solution (uo(t),vo(t)) of (2.1), (u(t),v(t)) = (vo(t),uo(2t)) is also a
solution.

iv) For a solution (uo(t),vo(t)) of (2.1) with ug(t + 2w) = uo(t) satisfying some
constant w, (u(t),v(t)) = (uo(t),vo(t + w)) is also a solution.

Proof. All but iv) are shown in [OS, Proposition 6.3 iv)]. iv) follows from u(z; —
z2) = u((z1 +w) — (22 + w)) and u(z1 + 22) = u((z1 + w) + (z2 +w)). O
Remark 2.6. The equations (2.2) and (2.6) above are written in a uniform manner.
Let the root system (E,XT) be (R?, £(As)) or (R%, X(B;)) with the Weyl group W.
Consider an element V of the space of W-invariants (O(E) ® E*)Y in O(E) @ E*.
Extend the natural invariant inner bilinear form ( , ) on E* to a O(E)-linear form
on this space of W-invariants. Consider the differential equations

( I] da)v=0,

aeLt

( I @) (v.v)=0.

aelt

(2.10)

Here differential operators act on the first factor of O(E) @ E*.
This is equivalent to the equations (2.2) or (2.6). In fact, if we set

(2.11) V=Y Valfa, Noa=3 Y Vallo; ) @a

a€xnt a€X

with V, corresponding to the solutions (2.2) or (2.6), it satisfies the equation (2.10).
On the other hand, any solution of the former equation of (2.10) is written in the
form (2.11) with odd functions V,, and the W-invariance and the latter equation
of (2.10) are sufficient for the equations (2.2) or (2.6).
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2.2. Elliptic functions. We summarize several well-known properties of the el-
liptic functions p and ¢ of Weierstrass type for latter convenience (cf. [WW]).
They are given by

(2.12) p(2) = p(2|2w01,2w2) = — + ) ( —1_)

(z w?
wH#0
1 1 1z
(2.13) ((2) = (o200, 2w0) = = + 3 (——+ =+ 5),
z w0 Z — W w w

where the sum ranges over all non-zero periods 2mjw; 4+ 2maowy of . They satisfy
('(2) = —p(=),
p(z + 2m1w1 + 2m2w2|2w1,2w2) = p(7|‘)W1,2LAJ2),
C(z + 2mywr + 2maows|2w1, 2ws) = ((2|2w1, 2ws) + 2myny + 2man;
for mq,mq € Z,
(') =4p° —g20 — g3 = 4(p — e1)(p — e2)(p — €3).

Here the constants have the relations

g2=60) w™, g3=140) w",

w#0 w#0
w3 = —wWp — W2, ej - g‘)(w])7 n; = C(w])’
e1+ex+e3 =0, go=—4(e1ez + e2e3 + e3e1), gs = 4erezes,

m+n+n=0, nw —nw= i”‘é—_l.

The following are variants of addition formulas.

(2.14)
(¢(2) + ) +€(2)” = pla) + p(v) +p(=) whenz +y+2=0,
(2.15)
ey L@~ ()
((z+y) (o) = Cly) =5 o) — o)
The Laurent expansion at the origin is
(2.16) o(2|2w1,2we) = 272 4 g2—22 + g—3z4 + 9 28 4.

20 28 1200

The complex numbers w; and w, are assumed to be linearly independent over R
but we allow the period to be infinity. In other words, the numbers g, and g3 are
any complex numbers. For example we have

p(z|V—1r,00)= sinh™2 2+ % when go= % and g3 = _.28_7,

o(z|0o,00)= 272 when g,= g3 = 0.

(2.17)

If w; and ws are finite, we have a formula

(e,, - e>\)(e,, - eu)
p(z‘2w172w2) — €y
(2.18) with {v, u, \} ={1,2,3}

oz + wy|2wy,2ws) = e, +



and every function of the form g’ —2 X (a polynomial of p of degree at most 4) is

written by a linear combination of 1, p, (p — €)™}, (p — e2)™! and (p — e3) 7!,

equivalently by a linear combination of 1, p(z), p(z +w1), p(z +w2) and p(z +w3).
Lastly we quote the Landen transformation

(219) p(z|w1,2w2) = p(zIle, 2(.:)2) + p(z + w1]2w1,2w2) — €1 if w1 is finite.

2.3. Solutions of the functional equation.

Theorem 2.7. The functions

u(t) — CGM +c7p( ) + cs,
(2.20) o'(3)*
U(t) — (p(t) - 61)(@“) — ‘32)(01@(75)(2 ;‘ C2P(t) + Cg) + C4p(t) + ¢
p/ t 2

satisfy the equation (2.1) if cyc = csce = 0.

Proof. Since the equation is bilinear, we may check for each monomial in u or v.
Here we will give a proof for wy,ws < 0o, which implies the theorem by the analytic
continuation.

i) Case ¢g = ¢7 = 0: It follows from Lemma 2.4 i).

i1) Case ¢g = cg = 0, ¢z = 1: We may assume that v = p(¢t + a) with a =0, w;,
wy or wg. Moreover we may assume a = 0 by Lemma 2.5 iv), that is, u = v = p.
Then (2.3) follows from Lemma 2.4 ii) and Remark 2.3. This simplifies the proof
of [0S, Proposition 7.3 ii)].

ii1) Case ¢y = c¢g =0, ¢¢ = 1: By §2.2 the function

v(t) = ' (t) 7 (p(t) — e1)(p(t) — e2)(crp(t)? + cap(t) + c3)
_ ap(t)’ +ep(t) +es
4(p(t) — e3)

is a linear combination of 1, p(t) and p(t + w3). Since

(p(3) —es)? _}(61—63 1 e-e 1 )
p'(5)? A\ea-eap(f)-a  e-eap(f)-e
1 t t
| = e ar (ga(§ +w1)—61+p(—2—+w2)—ez>
(2.21) A
1 t
= m (g)(§ + w1 |2wy,ws) + 263)
= (?1%?)2 (p(t + 2wy |[dwy, 2ws) + 623’)
has a period 2ws, we may assume v(t) = p(t) by Lemma 2.5 iv). By Lemma 2.5 iii)
we can reduce to the case u(t) = p(t) and v(t) = W(p(t +wi)+ p(t+ws) —

e — 62), which has already treated in ii). O
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Remark 2.8. 1) The solutions in §1.3 corresponds to (2.20) with the following con-

ditions:
2) CG———O, 61#62#637561,
2" =0, €1 2)@#0 62——63—_—%/\2,
2”) Cg = 0, €1 €3 = €3 — 0

3) ca =cs5 =0, e1 # ez # ez 7 ey,
3/) Cq4 = C5 — 0, €1 _%/\2 §£ 0, €y = €3 — 313-/\2,
3I)d C4 = C5 = 0, €1 €9 = %/\2 # 0, €3 = ——2/\2,

3") C4:C5=0,61=€2:€3=0.'

(1 N

ii) The family of solutions with ¢4 = ¢5 = 0 are written in a more symmetric form
under the symmetry in Lemma 2.5 iii). By the proof of Theorem 2.7 iii) we can
write

u(t) = aj p(t[dwr, 2ws) + agp(t|2wy,2ws) + as,
( ) b p(t[2w1,2w3) -+ bzp(t|2w1,w3) -+ b3

Then the solution (@(t),9(t)) = (v(t),u(2t)) can be expressed in the same form as
(2. 22) by replacing 20; = w3, 203 = 2wi, a1 = = by, G2 = by, G3 = b3, by = a1 /4,
b2 = 02/4 and b3 = as.

2.4. The main theorem.

In this subsection we shall solve the functional differential equation (2.1) by the
aid of a computer with the algebraic programming system REDUCE Ver.3.4. The
following is the main result in §2, which is proved at the end of § 2.5.4:

Theorem 2.9. Any solution (u(t),v(t)) of the equation (2.1) such that u(t) and
v(t) are real analytic on {t € R|0 < |t| « 1} is one of the following form.

i) Functions (u(t),v(t)) is of the form in Theorem 2.7 with cqce = cs5c6 = 0.

ii) Functions (v(t),u(2t)) is of the form in Theorem 2.7 with cace = csce = 0.

iii) Fither u or v is constant.

iv) u' =0 and v" is constant.

v) v/ =0 and u" s constant.

Here we note that if u(t) and v(t) are even or they are holomorphic on {t €
C|0 < |t| < 1}, then iv) and v) are reduced to iii).

(2.22)

2.4.1. The following lemma is a generalization of [0S, Lemma 7.1 i)].

Lemma 2.10. Let u(t) and v(t) be real analytic functions on {t € R|0 < |t| < 1}
which satisfy (2.1). Suppose u' # 0 and v’ # 0. Then u(t) and v(t) can be eztended
to even meromorphic functions on {t € C|0 < |t| < 1} with poles of order at most
2 at the origin.

Proof. We may assume v'|;>0 # 0 by replacing the following z by —z if necessary.
Fix z with 0 < z < 1 and consider the Laurent expansion for 0 < |y| <

uM(z u®(z
(2.23) u(a:+y)—u(x—y)=2( 1!( )y-I— 3!( )y3+-~->.

Then we have

0 / > u(2k+1)( ) 2k+1 S (2k+2)
- - 77 2u( k+1
(v m}; (2k+1) + 20 ;) (2k+1 )

(2.24)

= u(2k+) 2k+1 = U(Zk“)(fc)
9 2k —
( k;(gkﬂvy +”()k§ GEl Y ) 0



and for 0 < |y| € @

(2.25) f(z,y) = y(u'(z)+yca(z,y))v"(y) +3(uw' () + yer(z,y)v'(y) + co(z, y)u(y)

with a suitable holomorphic functions f(z,y), co(z,y), ci(x,y) and ca(z,y) of y
defined on a neighborhood of the origin. Since this equation for v(y) has regular
singularities at the origin with the characteristic exponents 0 and —2,

(2.26) v(t) = ac1t™? +vo(t) +vi(t)logt for 0 <t < 1.

Here vo(t) and v1(¢) are holomorphic function defined in a neighborhood of the
origin and moreover v;(0) = 0 means v; = 0. :

By the analytic continuation of (2.24) for the variable y around the origin we
have

e (a3 “(;’:‘iil w351 )
The coefficients of y! in this equation mean
(2.28) 201 (0)u'® () + 407 (0)u'(z) = 0.

Suppose v; # 0. Let A be a complex numbef with A2 = —2v7(0)/v1(0).
(2.29) B 4O (2) = N (). |

Then (2.27) is

(2.30) o (@ T+ 201 () cosh Ay ) =0,
For u'(zg) # 0 .
(s (=5 Ay)‘?): 0,
vi(y)(smh)\y) _ )0_0

then v; = 0, which contradicts to the assumption v; # 0.
Thus we have proved that v; = 0. By (2.26) we can put

v(t) = a_1t72 + Z (ajt? + c;127%1)
j=0
with suitable aj, ¢; € Con 0 <t < 1. Suppose there exist ci satisfying cx # 0 and
¢j=0for j=0,... ,k — 1. Then the coefficients of y** in (2.24) shows
—((2k 4+ 1) +2(2k + 1)) cxuP(z) = 0,

which contradicts to the assumption cx # 0 and hence v(t) = a—1t~2 + 322 a;t%
on 0 < t < 1. Here we note that v" # 0 and that u” # 0 by the symmetry of u
and v.
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Substituting (z1,x2) in (2.1) by (z,y) and (x,—y), respectively, and summing
up the resulting equations, we have

gy((v,(y)%/(_y))(“(”3’)_“@‘@)+2(v(y)—v(—y))(U’(w+y)+u’(:z:—y)>) =0
and hence 5
@((v(y) — v(=y)) (u(z +y) — u(z — y))z) — 0.

Thus we have v(—y) = v(y) because u” # 0.
By the symmetry of u(t) and v(t) we have the lemma. O

First suppose that u(t) and v(t) are real analytic functions on {t € R|0 <
|t| <« 1}. It is clear that (u,v) given by iii) or iv) or v) in Theorem 2.9 satisfies
(2.1). Assume u’ = 0. Then there exist C;, C2 € C such that u(t) = C; and
u(—t) = Cy for 0 < t < 1. Suppose (u,v) satisfies (2.1) and suppose C; # C3 and
let 0 < ¢ < y < 1. Substituting (z1,22) in (2.1) by (z,y), (—z,—y) and (—=z,y),
we have v"(y) = v"(z), v"'(—y) = v"(—z) and v"'(y) = v"(—=z), respectively, and
therefore v is constant. In the same way, if v/ = 0 and (u,v) satisfies (2.1), then
v is constant or u” is constant.

Then owing to Lemma 2.10 we assume u(t) and v(t) are holomorphic on e {t €
C|0 < |t| < 1} and satisfy (2.1) to the end of this section. By Lemma 2.10, the
Laurent expansion at the origin can be assumed as follows.

(2.31) u(t) = a1t + Za]tzj v(t) = b_1t7 + Zb 429,
1=1
Suppose 0 < |y| < |z| < 1. It follows from (2.23) that

° u(2k+2)(z)

oo u(2k+1)
9239 2k+42 2 2k+2
(2:32) c%@y( kz (2k+2'y +2v( );) 2k +2) ¢
© u(Zk)( )
Z 2]b]y2] l Z y2k+1
Jod 242k 1 1)!
(] o o0 (2k)()
U Zz
= (20 20™) 3 (2k)! y%) =0
1=-1 k=0

Since the coefficient of the term b;u(2™~29(2)y?™ inside the above ( ) equals

27 2 B 2m —jy +1
2m—-27+1)! (2m-2j5)! “(2m-—-27+ 1)V
for any positive integer m, we obtain
(2.33)
wm D (2)o' (2) + 2u™ (2)v(z) — j;l (Zm 2] Y bjul?™=2)(2) = C,,

with suitable constant numbers C,,.
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Let X (m, k) denote the the coefficients of z2* in the left hand side of (2.33).
Then the condition X (m,k) = 0 for all m > 1 and k£ > 1 is equivalent to (2.33)
and so is to (2.1).

For example, we have the following, all of which will be used in the proof of
Theorem 2.9.

?

X(1,1) =0,

X(1,2) = 4(3a1by + 6azby — 32a4b_1 —a_1by),

X(1,3) = 8(2a1bs + 5azby + 8azby — 64asb_y — a_1bs),

X(1,4) = 4(5a1bs + 12a3b3 + 21agby + 30a4b; — 336asb_1 — 3a_1bs),
X(1,5) = 8(15a1b5 + 35a2bs + 60asbs + 90asby + 120asb,

— 1792a7b_y — 10a_,br),

X(1,6) = 4(7a1be + 16azbs + 27asby + 40a4bs + 55a5by + 70asby
— 1344agb_1 — 5a_1bg),

X(1,7) = 8(4aybr + 9azbs + 15asbs + 22a4b4 + 30asbs + 39agbs + 48a7by
— 1152a9b_1 — 3a_1by),

X(1,8) = 4(9a1bs + 20a2b7 + 33asbs + 48a4bs + 65a5by + 84agbs + 105a7by
+ 126agby — 3696a10b—1 — Ta—_1b10),

X(1,9) = 8(5arbs + 11asbs + 18a3bs + 26a4bs + 35asbs + 45a6bs + 56a7bs,
+ 68agby + 80agby — 2816a11b—1 — a_14b;1),

X(2,1) = 48(—3a1by — 6azbs + 32a4b_1 + a—1by),

X(2,2) =0,

X(2,3) = 16(12a2bs + 66asb, + 140a4by — 1056a6b_1 — 3a_1bg),
X(2,4) = 48(5a2b4 + 30asbs + 95a4bs + 180asb; — 1664a7b_1 — 2a_1b7),
X(2,5) = 48(6azbs + 35asbs + 112asby + 267asbs + 462agb:

— 5184agb_; — 3a_,bs),

X (2,6) = 16(21azbs + 120a3bs + 378asbs + 900asbs + 1806agbs + 2912arb;
— 39168a9b_1 — 12a_1by), | o

X(2,7) = £(56a2b7 + 315a3bs + 980asbs + 2310asbs + 4620a6bs
+ 8260a7by + 12600agb; — 200640a10b_1 — 35a_1b10),

X (2,8) = 48(+9agbs + 50a3br + 154asbs + 360asbs + T15agbs + 1274a7bs
+ 2097agby + 3060a9b; — 57024ay;b_1 — 6a_1b11),

X(3,1) = 2880(—2a1b3 — dazby — 8azby + 64asb_y + a_1bs),

X (3,2) = 480(—12a2bs — 66a3by — 140a4by + 1056a6b_1 + 3a_1bs),
X(3,3) =0,

X (3,4) = 1440(5a3by + 52a4bs + 219asby + 462a6b; — 4160agb_; — a_1bg),
X (3,5) = 192(45a3bs + 490a4by + 2490asb; + 8085asb, 4+ 16016a7b;

— 163200&9[)_1 - 15G_1bg),
X(g, 6) - 480(21&366 + 224a465 + 1,134&5()4 + 39480!663 + 10556&762
+ 19656&361 - 2273920,106_1 — 9&._1 blo),
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X(3,7) = 5760(2azbr + 21asbs + 105asbs + 363abs + 1000a7bs
4 9316asby + 4080agby — 53504a11b_1 —a_1by1),
X(4,1) = 80640(—5a1bs — 12a2b3 — 21asby — 30asby + 336agb_1 + 3a_1bg),
X (4,2) = 80640(—5azbs — 30asbs — 95a4by — 180asby + 1664a7b_1 + a—12b7),
X (4,3) = 80640(—5azbs — 52a4b3 — 219a5bs — 462a6by
+4160agb_1 + a—1bs),
X (4,4) =0,
X (4,5) = 16128(30a4b5 + 500a5bs + 3300asbs + 12298a7by + 25740agby
— 258400a10b—1 — 5a—1b10),
X (4,6) = 80640(7asbs + 120asbs + 886asbs + 4108a7bs + 13182agbs
+ 26520a9by — 289408a;11b—1 — 2a_1b11),
We borrow the following notation from REDUCE. For a polynomial function p,

we denote by coeffn(p, z, k) the coeflicient of the term z* of p with respect to one
specific variable z. For example, coeffn(z? 4+ 22y + 3z + y*,z,1) = 2y + 3.

2.4.2. Now we shall prove Theorem 2.9 dividing into the cases classified by the
order of zeros of (u(t),v(t)). Owing to the symmetry between u and v, [OS,
Lemma 7.1 ii)] shows that we may assume the pair of orders of the zeros equal

(=2,6), (=2,4), (2,2), (=2,2) or (~2,-2).

Type (—2,6).
We may assume a_; = by = 1 and b_; = b = by = 0. For k > 5 we have

coeffn(X(1,k — 2),ax—4,1) coeffn(X(1,k — 2),bx, 1)
coeffn(X (2,k — 3),ak—4,1) coeffn(X(2,k — 3),bx,1)

B (2k — 8)(2k — 6) (—2)(2k — 6)
- ((Qk — 8)(2k — 9)(2k — 8)(2k — 10) (—2)(—3)(—4)(2k — 10)> ’

The determinant of this matrix equals
4(2k — 5)(2k — 6)(2k — 8)(2k — 10)(2k — 12).

Hence if k > 7, the equations X(1,k — 2) = X(2,k — 3) = 0 assure that ax_4 and
b are expressed suitable linear combinations of ax_j_1b; with j = 4,... ,k — 2,
which proves that ar—4 and by with k > 7 are expressed by polynomial functions
of (ay,az,b1,bs,bs,bs) by the induction on k.

Now we note that X (1,2) = 0 implies by = 0. Moreover it follows from X (1,3) =
X(1,4) = 0 that bs and b are expressed by polynomial functions of (a1,az2,b4).
Hence we have proved that all the coefficients a; and b; are uniquely expressed
by polynomial functions of (a1, az). In particular for any given (a1,az) € C?* the
solution is unique if it exists.

On the other hand we have the solution

— 92 2 g3 4
H=p)=t"24+ 82+ =t + -
u(t) = p(t) +20 +28 4+
4 92
5 = — 46 $10
v(t) _p'(t)2 +10 +

Hence the coefficients a; and b; which are uniquely determined by (a1,az) equal
the coefficients of the above u(t) and v(t) with go = 20a; and g3 = 28a,.



2.4.3. Type (-2,4).
We may assume a_q = by =1 and b_; = b; = 0. Then for k > 4

coeffn(X(1,k — 2), ay
coeffn(X(2,k — 3),ar-3,1) coeffn(X (2,

( 2(2k — 6)(2k — 5) (—2)(2k — 6)
2(2k — 4)(2k — 10)(4k* — 28k +57) (=2)(—3)(—4)(2k — 10)) '

_3,1) coeffn(X (1, k — 2), b, 1 ))
k =3),bk,1)

Since the determinant of this matrix is
4(2k — 3)(2k — 6)(2k — 7)(2k — 8)(2k — 10),

ar—3 and by for k > 6 are uniquely determined by (al,dg,bg,b4,b5) Moreover
X(1,2) = X(1,3) = 0 imply that by and bs are uniquely determined by (ay, a3, b3)
On the other hand, we have the solution

u(t) = p(t) =172+ L2 4 Pyt

20 28
N 4(p(t) + Cs) 44 6
o) =1+ Cst” +

with parameters g, g3 and Cs. Thus the coefficients ar and by ﬁ‘niquely determined
by (a1, az,bs) corresponds to this solution with g, = 20a;, g5 = 28as and Cs = bs3.

2.4.4. Type (2,2).
We may assume a3 = by =land a_; =b_; =0. Fork>4

(coeﬁ"n(X( ,

1 ), ak—2,1) coeffn(X(1,k — 2),bx_2,1)
coeffn(X (2,

1
), ak—2,1) coeffn(X(2,k — 3),bx_2,1)

B "2(2k — 2)(2k — 6) : 2(2k — 2)
- (2(2k — 2)(2k — 4)(2k — 5)(2k — 10) 0 )

k—2
k-3

and the determinant of this matrix equals
—4(2k — 2)%(2k — 4)(2k — 5)(2k — 10).
Hence ax—2 and by, for k£ > 6 are uniquely determined by (ag, az, bs, b3 ).

Moreover since X(1,2) = X(1,3) = 0, for any given (az,a3) the solution is
unique if it exists and therefore it corresponds to the solution

u(t) = — %) BT ’
. ]. 2
o(t) = ——— =42 4.
®) p(t) — e3

with e3 = —2a3 and ¢g» = 5(16as — €2).

49
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2.4.5. Type (—2,2).
We may assume a—; = by = 1 and b_; = 0. For k > 4,

(coeffn( (1,k —2),ar—2,1) coeffn(X(l, — 2), by, ))
coeffn(X(2,k — 3),ax—2,1) coeffn(X(2,k —3),bx,1)
2(2k — 2)(2k — 6) (—2)(2k — 6)
= (a0h — 200k — 4100k — s)ek—10) (=2)((a hor—10))

and the determinant of this matrix equals
4(2k — 1)(2k — 2)(2k — 6)(2k — 8)(2k — 10).

Hence ax_» and by for k > 6 are uniquely determined by (ai,az,as,as,as,bs,bs).
Owing to this with X(1,2) = X(1,3) = 0, for any given (a1, az2,a3,bs,b3) the
solution is unique if it exists.

Now putting

- 1.2
az = ¢3 + 3ay,

we write X (3,4) and X (3,5) by the variables (a1, a2, c3,b2,b3):
X (3,4) = 12096¢3(—7a1by — 1daz — b3 + 3babs),

X (3,5) = 12096¢3(—16a? + 29a;b5 — 12a1bs + 28azbs + 3b3 — 11303
+ 4b5 — 48c3).

First suppose ¢s = 0. Then the solution is uniquely determined by (ay,az,bs,b3),
which corresponds to the solution

—p(t)=t2 4 L2424 By
1 4(Cup(t) + Cs)
t) =
RO IOk
=124 (e + Ca)t' +(Cs + 6§ — S0t +

with g2 = 20ay, gs = 28ay, Cy = by — e3 and C5 = by — €3 + g—é.

Next suppose ¢3 # 0. Then it follows from X (3,4) = X (3,5) = 0 that (az,c3) is
uniquely determined by (a1,bs,bs). Hence the solution is uniquely determined by
(a1, bs,b3), which corresponds to the solution

u(t) = p()+1606£‘—(;)(;—‘):i=t_2 (CG+20) NI
— 1 _ 42 4 2 926
U(ﬂ—m—t + est® 4 (e3 — 20)t+

2.5. Type (—2,~2). We shall do a similar but more complicated calculation for
the type (—2,—-2). In § 2.5.3 and 2.5.6 we also use REDUCE.
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2.5.1. We may assume a_y; =b_; = 1. For k > 4
coeffn(X(1,k — 2), ax, 1) coeffn(X (1,k — 2),b,1)
coeffn(X(2,k — 3),ax,1) coeffn(X(2,k — 3),bx,1)

_ —k(2k — 2)(2k — 6)(2k + 2) (—2)(2k — 6)
N <§45k(2k — 1)(2k — 2)(2k — 4)(2k +2)(2k — 10)  (—2)(—3)(—4)(2k — 10)) ‘

The determinant of this matrix equals
~352k(2k + 2)(2k + 3)(2k — 2)(2k — 6)(2k — 8)(2k — 10).

Hence aj and by with k > 6 are uniquely determined by (a1,...,a5,b1,...,bs).
Moreover by and bs are expressed by polynomial functions of (a1,...,as,b1,b2,b3)
by using the equations X (1,2) = X(1,3) = 0.
Thus a; and b; with ¢ > 6 and j > 4 are determined by polynomial functions of
(a1,a2,a3,a4,as5,b1,b2,b3).

Here we have used all of X(1,1),X(1,2),... and X(2,1),X(2,2),....
We put
az =cg + %af,
by = ds + 102,
(2.34) R
a4 = ¢4 + 70102,
as = cs + §2§a§ + %a%.
Then all coeflicients are suitable polynomial functions of
(a1, az,c¢3,c4,¢5,b1,b2,d3).
Similarly by denoting
by = dy + f’—lblbza
b = ds + Zb% + &b
3971 1372
we have

ds = &£ (—32a1az + 11a1by + 22a2b; — biby) — 32¢4,
ds = 35 ( — 12847 + 104a7by + 26a1b} + 78a1ds — 19242 + 195a,b,

— 2b3 + 312byc3 — 3b2) — 64cs.

Here we remark that ¢3 = ¢4 = ¢5 = 0 (resp. d3 = dy = dy = 0) if u (resp. v) is the
Weierstrass function p.

2.5.2. Before going into the detail we prepare several notations.

V :={(a1,a2,a3,a4,as,b1,bs,b3) € C*| a solution (u,v)
of the form (2.31) with a_; = b_; = 1 satisfies (2.1)}.

Since the map defined by (2.31) and (2.34)
V> (u,v) ¥ (al,ag,c;»,,C4,c5,bl,bz,d3) € c®

is injective, we will consider V as a subset of C®, which is a closed subvariety.
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Lemma 2.11. i) The solutions

u(t) = p(t) + 160 L)

/( )2
=t? +(”+C)t2 + (8 - a9t + (525 + 15(63 + 2)O)°
3
(2.35) +( 6g126903 + (ﬁ 910 )C)tg +te

v(t) = p(t) + at)_—ea
=t"2 + (£ + C")t2 (£ + esCt* + (7555 + (5 — B)C")t°

FOES + 53— - BN+

belong to V. Therefore we can define a map
\1’3 : (61 + 62,6162,0,6,) - (C4 — V.

ii) We can define a C* -action by
(2.36)
M4, B,C,C") = (A, \2B, X2C, \2C"),
A(ay, a2,03,C4,Cs>blybz,d3) ()\2611,>\302,/\4C3,>\5647/\ cs, A2b1, A3by, A d3)

so that U3 is C* -equivariant. Moreover U3 '(0) = 0.
iii) The solutions

u(t) = p(t),
(2.37) o(t) = 4p(2)*+Cp(1)2+C' p(t)+C"
‘ p'(1)2

belong to V. Then we have a map
Ty : (g2,93,C,C",C") e C° = V.

Similarly the solutions

p(£)*+Cp(L)>+C p(5)+C"
u(t) o' (%) ’

(2.38)

belong to V, which deﬁﬁe a map
Ty : (g2,93,C,0",C") e C° = V.
We have a C* -action
A.(g2,93,C,C",C") = (N2 g2, \3g3, \2C, N3C" ) M4 C")

so that ¥, and ¥y are C* -equivariant.
iv) Cf. [OS, Proposition 7.3 ii)]

ImQ’l:Vﬂ{C3:C4=C5=0},
Im\112:Vﬂ{d3:d4:d5:0}

v) The maps ¥, and ¥, are injective.

Proof. 1) follows from Theorem 2.7.
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ii) The C* -equivariance is easy. To prove ¥3*(0) = 0, suppose u(t) = v(t) = t 2
of the form (2.35). If one of e; is not zero, u(t) and v(t) have a finite period. Since
t=2 has no period, e; = ez = e3 = 0. This means p(t) = t~2. Then one should
have C' = C' = 0.

iii) is similarly proved as in the case of i) and ii). .

iv) The Laurent expansion (2.16) of p(t) implies that the left hand side is con-
tained in the right hand side. Conversely, for any (a;,as) we can take go = 20a;
and g3 = 28a, and moreover for any (by, b2, b3), we can take (C,C’,C") so that the
expansion of v(t) has desired coefficients.

v) For ¥y, the Taylor expansion (2.16) of u(t) determines g» and g3. The other
coefficients C,C’,C" are determined by the Taylor expansion of v(t). O

2.5.3. By direct calculations we obtain that the vanishing of X(3,4), X (3,5),
X(3,6), X(4,5), X(3,7) and X (4,6) are equivalent to

(2.39)
f] = 96&1 agC3 — 33a1b2c3 — 66&21)1 cs3 + 31)1[)203 + 3520364 — 2204d3 = 0,

2.40 o
( fz):: 128afcs — 104a3bics + 1056arazcs — 26a1b;cs — 363arbaca — 54arcads
+192a3c3 — 726a2b1cq — 195a2bac3 + 2b5 c3 + 33b1bacy — 312y 3
+ 6bycads + 3b3cs + 2496¢3cs + 3872¢; — 156¢5ds = 0,
(2.41)
fs 1= 39424005 ¢4 + 44697607 ascs — 320320a7b; cq — 153648a3bycy

— 272736a1a2byc3 + 1946880a;azc5 — 80080a1b§<:4 + 2088a1b1bqc3
— 669240a1byc5 + 1638912a1c3cq — 268752a1cads + 591360&3(24

— 23760a2bc3 — 1338480a3b; ¢5 — 600600asbycq — 116640azc3d3
+ 616003 ¢4 + 108003 by c3 + 60840b) bycs — 8342400 czcq

— 16170b; cqds + 9240b5 ¢y — 10935byc3ds + 14826240c4cs = 0,

(2.42)
fa :=305536a3cq + 257760aTazcs — 248248a3b; cq — 88605a7bycs

— 165978ay azby c3 + 181209603 azcs — 62062a1b3 ¢y + 4194a,bybycs
— 622908a;bycs + 945120a; czcq — 225390a; cqds + 45830403y

— 77220962 c3 — 1245816a2b; c5 — 465465a2by¢4 — 68526a2¢3d3

+ 477463 ¢4 + 351b2byc3 + 56628by bycs — T03560b; czcq

— 20328by cq4ds + T161b%cy — 13122byc3ds + 12602304c4¢5 = 0,

(2.43)
fs :=122880ajcs — 89600ab; c3 + 1198080afcs + 4308480afazcy

— 33280a2b%cs — 973440a3by cs — 1481040aibycy — 12096003 c3ds

+ 1331712a; a3 c3 — 2085600a; azbycs — 303696a;azbacs — 160a;b3cs
— 243360a; b cs — 166650a;b1bacy — 2995200, b1 s + 7920a; by cads
— 92655a; bics + 2396160a; czcs + 15797760ay c; — 767520a; csd3

— T73472a2byc3 + 179712005 ¢s — 602580a2b5 cy — 170814azb1bac3
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— 1825200asbycs5 4 4207104agcscq — 690624ascsds + 160b7cs
+ 1872063 ¢5 + 27390b2bycq — 2496007 3 — 1140b7 c3ds

+ 8925by b2 c3 — 2720640b; c3c5 + 32137600, ¢; + 156001 c5d3
+ 2808062 cs + 1019040bgc3cq — 10230b2cads — 155520¢5d3

— 4860c3d? + 23362560c2 = 0,

fo 1= 2826240a%cs — 2245120a3b; c3 + 49121280a}cs + 164482560a7azcy
— 615680a2b%cs — 39911040a3b; cs — 56540880a3bycq — 27820803 c3ds
+ 338641924, a2 c3 — 7486512001 asbicq — 917136a1azbacs + 33760a1b3cs
— 9977760a,b? cs — 799689001 by bycy — 6888960a1 by c; + 532080a1b; c3ds
— 4599135a1 b2 ¢3 4+ 55111680a; c3cs + 603102720a;c5 — 32816160a; csds
— 20290272a2b; c3 4 73681920a3cs — 26273940a2b7cy — 8482974a2b1bacs
— 74833200a2byc5 + 108624384asc3cy — 24323904asc,ds + 80055 c3
+ 76752003 5 4+ 119427003 bycy — 12480003 c2 — 10290063 cad3
+ 4253251 bacs — 118734720, cscs + 140127680b; c5 — 497640b; c5d3
+ 1151280025 + 49764000bac3cy — 918390bycads — 4510080c3ds
— 315900c3d3 + 957864960c2 = 0,

respectively.
Note that f; = 0 is equivalent to

(245) 63d4 + 2d3C4 = 0.

Lemma 2.12. i) VN{c; =ds =0} CIm¥; UIm T,.
) V{es =0,ds # 0} C Im ¥y,
lll) VN {03 ?é O,d3 = 0} C Im\Ilg

Proof. We examine the left hand sides.

1) First note that f; = —12lcydy when ¢3 = d3 = 0. Hence we may assume
c3 = ¢4 = d3 = 0 by the symmetry of v and v. In this case f3 = —223080c¢5d4 and
fs = —365040csds. Hence we have ¢5 = 0 or dy = d5s = 0. By Lemma 2.11 iv) the
result holds.

ii) Since ¢4 = 0 by (2.45), we have f; = —156¢s5d3. Then we have c3 = c4 = ¢5 =
0.

iii) By the symmetry between u and v, it is reduced to ii). O

2.5.4. The remaining case is c¢gds # 0. Since VN {c3ds # 0}N(Im ¥; UIm ¥y) = 0,
we have to prove

(246) Vn {ngg ‘7"é 0} C Im \Ilg,

which will be proved at the end of this subsection.
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Proposition 2.13. Recall the map ¥3 : C* — C® in Lemma 2.11. Let Y be a

d-dimensional subspace of C*, L a subspace of C* and Q a Zariski open subset of
L such that

b) QN Y3(Y) # 0 and \Ifgf\pgl(g)m, 15 locally injective at a certain point.

c) NV is contained in an irreducible d-dimensional subvariety of V N L.
Then QNV C Im ¥,

Proof. By Lemma 2.11 ii),

Vs : (Y - {0})/C* — (L —A{0})/C*

is well defined. Then the image of ¥3 is compact, ¥3(Y — {0}) is closed in L — {0},
W¥3(Y) is closed in L and then @ N ¥3(Y) is closed in 2 NY. On the other hand,
by the assumption c),

T3 (TN () NY)CQNT3(Y) C 2NV C (a d-dimensional irreducible variety).

By the assumption b), the first term is dense in the last term and then Q N ¥3(Y)
is dense in QN V. Hence QNT3;(YV)=QNnV. O

Proposition 2.14. The following Y,L and Q satisfy the assumptions a), b) and
c) 1n Proposition 2.13. Here (A,B,C,C") and (a1,a2,¢c3,c4,cs5,b1,b2,d3) are the
coordinates of C* and C®, respectively.

1) Y = (C4, L= (CS and Q) = {C3d3€4d4 # 0}

11) Y = {A = 0}, L= {a2 = b2 = C4 = 0} and = {C3d3(1663 — dg) ?é 0} N L.

111) Y = {A = 40—-0/ = 0}, L = {a2 = bz = €4 = 1603—d3 = 0} and
Q:{ng3#0,4al+b17£0}n[4, )

iV) Y = {A = B—4C-—-Cl = 0}, L= {CLQ = bg = C4 = 1663-—d3 :4a1 +b1 — O}
and Q = {csds # 0} N L.

Proof. The explicit expression of ¥3 shows

a=%24C LA — B +50),
ag = £ — «f = HA(-2B +70),
s =—3C(C +15(92 — 3¢})) = 35C(—A? +4B — 16C),
(2.47) e = 35630 (C + (e1 — e2)?)= 55 AC(—A? + 4B - 160),
by =42+ C’ = §(4? - B +5C"),

bg :g%—f-eg(/w “:,'l‘A(B"*_?C,)?
dy =—1C"(C" + L(g> — 1263)) = LC'(24% + B — C").

I

Hence if A =0, we have

ay = C— %37

Cc3 = -—%CQ + %BC,

by =C'— 1B,
(2.48) ds =—1C"” + 1BC",

g = Cq4 = b2 - 0,
da; + by =C'+4C — B,
d3 — 16¢c5 = +(4C — C")(4ay + by)
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which proves a) for ii), iii) and iv). The assumption b) is also clear from (2.47)
and (2.48). The assumption ¢) will be proved in Lemma 2.16, 2.18, 2.19 and 2.20,
respectively. O

Proof of Theorem 2.9. As we have already remarked, we have to prove (2.46). By
Proposition 2.13 with the help of Proposition 2.14, it is enough to show

(249) VN {ng;; 74 0,C4d4 = 0} C Vn {C3d3 75 O,CLQ = bz = Cq4 = 0}

This is proved as follows: Take an element in V such that c3ds # 0, and cqdy = 0
First note that we have ¢4 = dy = 0 by (2.45). Putting ¢4 = 0, we have

coeffn(f1,be, 1) f3 — coeffn(fs, b2, 1) f1
= c3(—11a; + b)) fs — 3(—17072a%cs + 232a1 by c3 — 74360a1cs

2.50
( ) -+ 120[)?03 -+ 67606165 - 121503d3)f]
= 5103002(Z§d3(32a1 — 7b1)

Suppose az # 0. Then we have by = —a1 and therefore f; = —£a103(32a2 +
3by). Since the assumption by = 32a2 implies fy = 71442a3c3d3 # 0, we have
a = b1 = 0 and hence f; = 145863d3( —47as —9b2). Applying a; = by = ¢4 =0 and
by = ——ag to fs, we obtain f3 = —59535azcsds # 0, which means a contradiction.

Thus we can conclude a; = 0 and by the symmetry between u and v, we have
ans = b2 = C4 = 0. O

Corollary 2.15. The subset Im ¥y, Im ¥y and Im W3 are closed subvarieties.

Proof. Lemma 2.11 iv) shows that Im ¥, and Im ¥, are closed. Proposition 2.14
and the proof of Proposition 2.13 imply that Im ¥3 is closed. [

2.5.5. We shall examine the assumption c).
Lemma 2.16. The restriction of the projection
(251) VN {C3d304d4 74 0} > (al, . ,dg) > (al, as,C3, C4,b]) - (C5

is injective. Its image is contained in {hy = 0} with an irreducible polynomial
hi(a1,az,cs,cq) in (2.59).
Proof. If 16¢3 # ds, then we have

(2.52)
1

156(16cs — d3) (
+ 363&16204 -+ 54a103d3 — 192(1%63 + 726&21)164 -+ 195a26203 — QbE}Cg

— 128a%cs + 104a2by c3 — 1056a;azcq + 26a1b]cs

Cs —

_ 33bybycs + 312612 — 6bycsds — 3bcs — 38725;)

from f; = 0. If d3 = 16¢3, then we have
(2.53)
¢s = rasboci ( — 49280aics — 55872a}azes + 40040afbicy + 19206 bcs
+ 3409241 agby ¢z + 10010a1bcs — 261a1bibyes + 332640a;czcq — 73920a3cy
4 2970asb%cs + T5075azbgcs + 233280azcs — T70b3cs — 135b3bacs

+ 136620b1 ¢3¢ — 1155b%¢s + 2187062c3)
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from the relation c3 f3 —20280cs f; = 0. In either case, the relation (2.52) or (2.53)
shows that cs is uniquely determined by (ay,as, cs, ¢4, b1, bs, ds).
Next we will do eliminations of variablesin f; = --- = f, = 0. Put

ry = coeffn(f1, ds, 1) fo — coeffn(f2,ds, 1) f1,
g = 17f3 - 20f4

Then
r = (—2264)f2 - 6(—90,163 + b1 C3 — 2665)f1.

Moreover motivated by coeffn(ry, cs,1)/ coeffn(rg, cs,1) = —c3/210, we put

Ty = —C3Trg — 2107"1,
r4 = coeffn(f1,ds, 1)rs — coeffn(rs, ds, 1) f1,
= —22C4T3 - 6303(968611 ¢y + 9720(1263 — 2090b1C4 - 12156203)f1.

Then ry is a polynomial function of (ay, as,cs3,cq,b1,by) and it is factored into
(2.54) ry = —105d4(7128a;c5cq — 5832azc] + 1782byc2ey + T29bycl — 10648c3).

Then we have

(2.55) 7128a;1c5cq — 5832az¢5 + 1782bycacy + T29bycd — 10648c3 = 0
and hence
(2.56) by = =25¢5 °(—3564arcies + 2916az¢s — 891byciey + 5324c3).

Finally from f; = 0 we have
(2.57) ds = 35c3cy  (96araz — 33arby — 66a9by + 3byby + 352¢4).

Since c5, by and dj is given by (2.52) or (2.53), (2.56) and (2.57), all coefficients are
uniquely determined by (ay,as, c3, cq,b1). This proves the injectivity.
By substituting (2.56) and (2.57) we have

(2.58)
coeffn(fo, cs,1) f3 — coeffn(fs, ¢s5,1) f
= 156(1663 - dg)fg - 4680(416&1&2 - 143(1162 — 286&2()1 + 131)1[)2 -+ 316864)f2

= 20 ¢ ey ?dyhy (108ayc3 + 27byc} — 484c?)

with

(2.59)
h1 = —39694050aic5c; — 2273386541 azcyey + 592960500, c2ct

+ 26040609a3c§ + 47544651 ascics — 85739148¢5¢2 — 141724885,
Suppose hy # 0. Then from (2.58) we have

(2.60) by = s-c5 3 (—27asc; + 121c3).
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When 16¢3 # ds, it follows from (2.52), (2.56), (2.57) a.nd (2.60) that
fs = 55465 < s “dshy #0,

which contradicts to the fact that fs = 0.
When 16¢3 = d3, substituting (2.53), (2.56), (2.60) and ds = 16¢3 to fi we have

fi = BB ci(8910arcies — 5103azcs — 10648c3)

and therefore

az = s2k=cy 3¢4(405a;c5 — 484c]).

Combining this with (2.53), (2.56), (2.60) and d3 = 16¢3, we have
fs = —3732480¢3 # 0,

which also leads a contradiction.
Hence we obtain

(2.61) hi(ai,az,c3,cq) =0. O

Lemma 2.17. On VN{csds # 0,a2 = by = ¢y = dy = 0}, (a1, ¢3,b1,ds) satisfy an
equation hs(aq,cs,b1,ds) =0, which is given in (2.63).

Proof. By f; = 0, we have
(2.62) 156¢5(16c5 — ds) =
— C3(128a§ — 104&%51 — 26&1[)? - 54a1d3 + 2[):; - 312b1€3 + 6b1d3)

Now applying a3 = by = ¢4 = 0 and (2.62) to (16c3 — d3)? f5 and (16¢c3 — d3)? fe, we
obtaln

(16¢c3 — d3)® fs = 60csdshars,
(16¢5 — d3)2f6 = 60c3dshare
with
hy = 256a% — 144a%b; — 104a3b? + 1536a3cs — 204a3d; — 9a;b3 — 4324, by cs
— 27a1byds + bt — 204b?cs + 6b2d3 + 2304c3 — 288c3ds + 9d3,
rs = 64a® — 68a;b; + 4b; — 288c3 — 9d3,
r¢ = 2624a? — 2788a1b; + 164b7 — 8352¢3 — 585d;,
respectively. We have haors = horg = 0. Moreover because of the identity

5184hy = 1681r; — 82rs7g + 75
— (144576a% — 1512a; by — 9414b3)r5 + (403243 + 216a1b; — 198b7 )re

we can conclude

(263) hg(a1,63,bl,d3) =0. O



Lemma 2.18. The map V N {c3d3(16c3 — d3) # 0,a0 = by = ¢4 = dy = 0} >

(a1,...,d3) = (a1,c3,b1,ds) € C* is injective. Its image is contained in {hy = 0}.

Proof. Since d3 # 16d3, cs is uniquely determined by (2.62) and the lemma is clear
from Lemma 2.17. O

Lemma 2.19. The map

VN {cz(4ar +b1) # 0,a3 = by = ¢4 = dy = 16¢3 — dz =0} > (a1,...,d3) — (a1,b1)

18 njective.

Proof. For an element of V' such that as = by = ¢4 = dy = 16¢3 — d3 = 0, we have
hy = (4ay + b1)?(16a% — 17a1b; + b3 — 108c3).

Moreover assume c3(4a; + b1) # 0, then we have

C3 = 1}70(166@ — 17&1[)1 + b?)

Then
fs = 2hyre,
fo = Rhyrs
with

hy = 12843 — 152a3b; + 250,02 — b3 — 2808cs,
re = —384a} + 520a3b; — 143a,b% + 76% — 11232¢;,
rg = —11136a$ + 17576a3b; — 6799a,b% + 35963 — 460512cs.

Now by the equality
rsg — 417‘7 - 777603(4&1 + bl) 7£ 0,

we can conclude hy = 0. Then c¢s5 is determined by (a;,b;). O

Lemma 2.20. The map V N{cs # 0,a; = by = c4 = dy = 16¢c3 — d3 = 4a; + b, =
0} 3 (a1,...,d3) = (a1,cs,¢5) € C* is injective. Its image is contained in {f5 = 0}.

Proof. In this case,
fs = 69120(338¢2 + 13ayc3cs — 28aica — 54cl)

is an irreducible polynomial. O
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3. REDUCIBLE SYSTEMS OF TYPE B;
3.1. For our commuting differential operators P; and P, we can consider the si-
multaneous eigenvalue problem

(3.1) Pju(z) = Aju(z) for j=1and?2

with A\; € C. If the potential function of P is generic, the study of this problem
seems to be difficult. For the first step to analyze (3.1) we examine the case when
the system (3.1) is reducible. To be precise we study the operators P and @ in the
following lemma such that P = P; and P, = *QQ.

Lemma 3.1. Let P be a self-adjoint differential operator and let Q be a differential
operator satisfying

(3-2) [P, Q] = BQ

with a self-adjoint operator B. Then

[P,'QQ] = 0.

Proof. The assumption implies [P,'QQ] = [P,'Q|Q + '‘Q[P,Q] = —'['P,Q]Q +
'QIP,Q] = —'QBQ +'QBQ =0. O

Theorem 3.2. Let ¢ be the one dimensional representation € : W(By) — {£1}
such that g(z122) = e(g)z1z2 for g € W(B2). Let P and Q be holomorphic differ-

ential operators of the form

(3.3) { P =8 + 02 + R(z1,2),
' Q = 0102 + ai(x1,22)01 + az(z1,22)0 + ao(21,22)

defined on a Zariski open subset of a connected open neighborhood of the origin of
C?. Suppose

(3.4) g(P)=P, g(Q) =¢(9)Q for g€ W(B2)
and
(3.5) [P, Q] = b(z1,72)Q

with a function b(z1,x2). Then

R(zq1,22) = u(zy + wz) +u(zy — z2) + w(zy) + w(za),
w(t) =V'(t) = V() |

ag(w1,22) = V(21)V(22) + 5 (u(z1 + 22) — u(z1 = 22)),
a'l(xhx?) = (CEQ)

az(z1,22) = V(z1),

b(.’l?l,itz) = 2V/(l‘1) + 2V’($2),




where
L

u(t) = c4(p(21) ; 23> + esp(t) + cs,
(3.7) ©' (3 : :
| yiy = alelt) —e)lpl) —e) +eaplt) + o5

: ©'(t)

with suitable complex numbers cq,... ,cq satisfyz'ng‘
(38) CoCq = C3C4 = 0
or
(3.9) u(t) = ¢, V(t) 1s any odd function with ¢ eC
or
(3.10) u(t) s any even function, V(t) = 0.

On the other hand the operators P and Q given by (3.6) satisfy the relation (3.5)
by putting (3.7) for any complex numbers c1,... ,ce¢ with (3.8) and any periods of
o(t) or by putting (3.9) or by putting (3.10).

The following Remark 3.3 and Remark 3.4 are easily obtained by direct calcula-
tions.

Remark 3.3. Under the notation of Theorem 3.2

tQQ _ (3152 4 (u($1 + :I:z) ';U(l'l - $2)>)2 N w(;@)@% N w(:cl)ag

+w(zy)w(zs) + VeV (z2) (u(zr + x2) — u(zy — z2))
1

-3 (V(:cl)(u'(:rl +22) +u'(z1 — 1:2)) + V(:cg)(u'(xl +z2) —u'(zy — x2)))

Remark 3.4. In Theorem 3.2 we have the following from (3.7) with complex numbers

Ci,....

- 1) If the fundamental half periods w; and ws of p are finite and ¢4 = 0, then

(t) = C5&O(t) + Cg, )
(t) - Zj:i %CJ pg)(i)e]' )
(t) == 22521 (Cj + CHp(t +wj)
—(C] = 2C2C3)e; — (€3 —2C3Cy)ez — (C3 — 2C1Cy)es,
Cy =—(C1+Cy+Cs).

e

<

w

ii) If wy and wy are finite and ¢y = ¢z = 0, then

1 ©' (1)
V(1) = 3C1 gtm=a3»

(
w(t) = —(C1 + CPp(t +ws) + (C1 = CT)p(t) — CTes

{ u(t) = Cap(t) + Cs(pl L +wi) + (% +w2)) + Cu,
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iii) If e; = e = 3A% # 0 and ¢4 = 0, then

u(t) = Cysinh™? Mt + Cs,
V(t) = C; coth A\t + C3 tanh At + C sinh 2At,
w(t) = —(C1 A+ C?)sinh ™2 M + (Co X + C’2) cosh™% \t
+2(C3\ — C1C3 — C3C3) cosh 2\t — C3 cosh? 2\t
——(012 + 022 — C; +2CCy +2C1C3 — 2026'3).

iv)Ife; =e3 = %/\2 # 0 and ¢z = ¢3 = 0, then

V(t) = Cq coth At,

u(t) =Cs sinh™2 M\ + C; sinh ™2 %t + Cy,
w(t) = —(C1\ + C1 )sinh™% A\t — C2.

V) If €1 = €2

Il

%/\2 # 0 and ¢y = c3 = 0, then

V(t) = Cysinh™! 2)\¢,

u(t) = Cysinh™? At 4 C3 cosh 2t + Ci,
w(t) = —CiAsinh™2 M + (2C1 A — CF) sinh ™" 2)¢.

vi) If e = e = ¢4 = 0, then
( ) C4t— + C57
V(t) = Cit™! + Cat + Cst?,
w(t) = —(Cy + C¥)t™2 (2C’1 Cy — Co) — (2C1C3 + C3 — 3C3)t?
—20,Cstt — C218.

vii) If e; = e2 = ¢z = ¢3 = 0, then

3.2. To prove Theorem 3.2 we will translate the reducibility into a functional equa-
tion. The coefficients of 97 and 92 in (3.5) mean 28;a; = 202a; = 0 and therefore

a; = V(ze) and ay =V(zq)
with a suitable odd function V(t). The coefficient of 0; 52 in (3.5) proves
(3.11) b=2(0hay + 81az) = 2(V'(22) + V'(21)).
The coefficients of 3y and 0 in (3.5) are

{ ‘/”(.’172) + 281(10 - ('32R - 2V($2)(V’(J‘1) ‘|‘ V'/(CL’Q)),
V”(Il) + 282&0 - 62R = QV("L‘l)(V,<$1) + V/<{E2))
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and equivalently

{ (01 + 02) (R — 2a0 = V'(21) = V'(22) + (V(21) + Va(22))?)

(01 = 32) (R +2a0 = V'(21) = V'(2) + (V(21) = Va(x2))?)

Hence there exist functions u4(t) and u_(t) such that
R=V'(x1)+V'(z2) = V(z1)? = V(22)® + us(z1 + 22) + u_(z1 — T2),
ao = V(z1)V(z2) + 2 (ug(z1 + 22) —u_(z1 — z2)).
Since g(ag) = ¢(g)ag, we have
(3.13) uy(t) = u_(t) = u(t)

with a suitable even function wu(t). This proves (3.6).
Let U(t) be the odd function with U’(¢) = u(t). Then

[P,Q] — bP
= —V(z1)(w(z1 + z2) + u(zy — 22)) — V(z2)(u(z1 + 22) — u(z; — z2))
— (V’(.Tl) + V'(:cz)) (u(:cl + z3) — u(z — xz))

= —010, <V(x1)(U(:c1 + 22) + U(z1 — x2)) + V(22) (U(z1 + 22) — Uz — z3)).

Thus we have

Theorem 3.5. The operators P and @Q satisfy (3.3), (3.4) and (3.5) if and only if
there exzist odd functions U and V and an even function H(t) such that

(3.14) V(:cl)(U(zcl +22)+U(zy — :cz)) + V(:z:z)(U(:vl + ) = U(zy — :rz))

I

9

0
0.

I

(3.12)

and that the relation (3.6) holds with u = U’.

Hence we will concentrate the functional equation (3.14), which is a special case

of (2.3).
Lemma 3.6. Suppose (U,V, F,G) is a solution of (2.3) such that
U'(t) has a period 2w,
{ W(t):=V(t+w)—V()—V(w) is an odd function.
Then (U, W, H) satisfies (3.14) with an appropriate H.
Proof. Put U(t+2w) = U(t) +n. Changing the variable (z1,z2) into (z; + w1, 7o +

ws) in the equation (2.3), we have
(U(z1 +22)+n+U(zr —22)) V(21 +w) + (U +22) + 10— Uz — 22)) V(22 +w)

= F(z1 + 22 + 2w) + F(z1 — 22) + G(z1 + w) + G(22 + w).

Subtracting the original one from this, we obtain

(U(zy +22) + U(z1 — 22))W(z1) + (U + 72) — U2y — 22)) W (2)
= (F(zl + 29 4+ 2w) — F(z1 + 22) — 2V (w)U(zy + :cz))

+(Gle1 +w) = G(z1) = V(21 +w))
+ (Glz2 + w) — G(22) — nV (2 +w)).

Since the left hand side is W(B;)-invariant, the first term of the right hand side is

constant. Then H(t) = G(t + w) — G(t) — nV (¢t + w) + C with a suitable constant
number C' and we have the lemma. O
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Corollary 3.7. Suppose the fundamental half periods wy and wy of p(t) are finite.
Then for odd functions U(t) and V(t) given by .

{ U'(t) = Cap(t) + Cs,
V() = T0 Ci(Ct +wj) = ¢(8) — C(wy)

or

{U'(t) = C1(p(E +w1) + p(+ +w2)) + Cap(t) + Cs,
V(t) =((t4ws)—C(t) = (ws),

there ezists a function H(t) so that (3.14) holds.

Proof. Note that the equation (3.14) is bilinear for (U,V). In the lemma put
(U®), V() = (C(#),((#)) and w = w; or put (U(t), V(1)) = (¢((5 +w) +{(5 +
wa) — C(w1) — ¢(w2),((t)) and w = w3, we have the corollary. [J

Now we will continue the proof of Theorem 3.2. Since

1 p'(®)
C(t+w;)—C0) —wj)=s—F7>
( J) ( ) ( J) 2p(t) — €;
the last statement in Theorem 3.2 follows from Corollary 3.7 with the holomor-
phic continuation of the parameters e; and ez of o(t) and from the following

Lemma 3.8 i). Thus we have proved that the operators given in Remark 3.4 satisfy

(3.5).

Lemma 3.8. i) If U(t) = Ct (C € C), then for any V, H(t) := 20tV (t) satisfies
(3.14). If V(t) = 0, then H(t) = 0 satisfies (3.14). We call these (U, V) trivial
solutions of (3.14), which correspond to (3.9) and (3.10).

ii) If (U, V, H) is a solution of (3.14), then (U+Ct,V, H +2tV) 15 also a solution
of (3.14)

iii) If V'(t) has a period w, then U'(t) has a period 2w.

i) If V(t+w)=V(t)+n withn € C, thenn=0.
Proof. The claims i) and ii) are clear and the claim iii) is also clear from the result
in §2. Suppose V(t+w) = V(t)+n. Then U(t+2w) = U(t) +n’ with some n' € C.
By the change of variable (z1,22) into (21 + w, 22 +w) in (3.14)

(U(@1+22)+0'+U(z1—22)) (V(21)+n)+(U (21 tz)+n' =U(z1—22)) (V(z2)+n)
= H(z1 + w) + H(zz +w).

Subtracting (3.14) from the above,

2nU(z1 + x2)
= (H(z1 +w) — H(z1) —n'V(z1 + w)) + (H(z2 +w) — H(z2) —n'V(z2 + w)).
Since we have assumed U"(z; + 22) # 0, we can conclude n =0. U

Finally we will prove that there is no more solutions than we have already de-
scribed in Remark 3.4 and Lemma 3.8 1).



From now on we consider only non-trivial solutions unless otherwise stated. Let

(U,V,H) be a non-trivial solution of (3.14). Owing to Theorem 2.9 we see that
V(t) is expressed by p(t).
Suppose the fundamental half periods w;y-and ws of p are finite. Then

= ZC}C(L‘ +w;j) + Cot

j=1

with C; € C. By Lemma 3.8, we have

' 4
0= V(t -+ Qwi) - V(LJ,‘) = Z 2CJ'77,' + 2Cow;

i=1

for i = 1 and 2. Since now; — NMwz = "‘/— # 0, Co = Z 1 C; =0 and we have
the theorem.
When w; = wy = oo, the theorem follows from

Lemma 3.9. The rational solution of (3. 14) 18 of the form in Remark 3.4 vi) or
vii). ,

Proof. Let (U,V,H) is a rational solution of (3 14). If U( ) = ¢!, the left hand
side of (3.14) equals |

2n

2<$1V($13—x2V T >_2Za2nxl —xQ
1”‘5’72 ' “%

for tV(¢t) = Zn>0 aznt®™. Hence if u(t) = C4t‘2 + Cs with Cy4 # 0, the solution is
of the form in Remark 3.4 vi). :

Suppose U(t) = C1t71 + Cat + C3t® and V(t) = Cat ™ + Cst + Cet® with Cs # 0.
We may assume C; = Cy = Cy = 0. Then the left hand side of (3.14) equals
6C5 (x1V($1)x% + x%V(mz)xz) and hence C5 = Cg = 0. This is the case in Re-
mark 3.4 vii).

Suppose V() = C1t71 + Cat and U(t) = Cst™! + Cyt + Cst® + Ct® + C:t". We
may assume C3 = Cq = 0. If C; # 0 and Cy = 0, the left hand side of (3.14) equals

2n

4 2n .
c, Z Crts (x1 + To) (z1 T2)

1%
=2 142

and therefore Cs = C7; = 0, which also corresponds to Remark 3.4 -vii). Hence
suppose Cy # 0. Since (U(¢),V (t)) = (t,t") does not satisfy (3.14) for n =7, 5 and
3, we have C7 = Cs = C5 = 0 by considering the homogeneous parts of degree 8, 6
and 4, successively. This is the case in Remark 3.4 vi). O

Lastly suppose w; = oo and ws is finite. We may assume
V(t) = C; coth At + C3 tanh At 4+ C5 sinh 2M\t + Cy sinh 4\t + Cot.

Applying Lemma 3.9 to this, we have Cp = 0.
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If the dimension of the space {V(t)| (\coth A\t, V(t)) is a solution of (3.14)} is
larger than 3 for A # 0, the dimension of the space {V(t)| (t7!,V(t)) is a solution
of (3.14)} is proved to be larger than 3 by considering the limit to A = 0 (cf. [OS]]
Proposition 2.21), which contradicts to Lemma 3.9. Hence we have Theorem 3.2 if
u(t) = C'sinh™* X\t + C".

In the same way we can prove that the space {U(t)] (U(t), A coth t) is a solution
of (3.14)} is of dimension 2 for A # 0, which implies the theorem in the case
V(t) = C] coth At.

Thus we may assume that

= A
(3.15) { U(t) = Cy coth At + Cst + C3 coth 5,
V(t) = Cy4 coth A\t + Cs sinh 2)¢.
or
(3.16) { U(t) = Cy coth At + Cst + C3 sinh 2)¢,
. V(t) =C, sinh™! 2\t + Cs coth \t.

The pairs (U, V) corresponding to C3Cs = 0 have been proved to be solutions.
Suppose there exists a solution with C3Cs # 0 in (3.15) or (3.16). Then the
bilinearity of the equation (3.14) implies that the pair (U, V) given by (3.15) or
(3.16) is a solution for any complex numbers C1, ... ,Cs, which similarly contradicts
to Lemma 3.9 by taking the limit to A = 0.

Thus we have completed the proof of Theorem 3.2.
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