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ON THE FOURIER COEFFICIENTS OF HILBERT MODULAR
FORMS OF HALF INTEGRAL WEIGHT OVER
ALGEBRAIC NUMBER FIELDS

HISASHI KOJIMA

Introduction.

Waldspurger [11] first found that a very interesting relation between Fourier
coefficients of modular forms of half integral weight and critical values of twisted
L-functions (cf. [2], [3] and [4]). In [8], Shimura succeeded in generalizing such a
relation to the case of Hilbert modular forms of half integral weight over totally real
number fields. In [5], we derived this in the case of Fourier coefficients of Maass
wave forms of half integral weight over an imaginary quadratic field.

The purpose of this paper is to derive a generalization of Shimura’s results con-
cerning Fourier coefficients of Hilbert modular forms of half integral weight over
total real number fields in the case of Hilbert modular forms over algebraic number
fields by following the Shimura’s method (cf. [6], [8]). Employing theta functions,
we shall construct the Shimura correspondence ¥, from Hilbert forms f of half inte-
gral weight over algebraic number fields to Hilbert modular forms ¥, (f) of integral
weight over algebraic number fields. We shall determine explicitly the Fourier coef-
ficients of ¥, (f) in terms of these of f. Moreover, under some assumptions about f
concerning the multiplicity one theorem with respect to Hecke operators, we shall
deduce an explicit connection between the square of Fourier coeflicients of modular
forms f of half integral weight over algebraic number fields and the critical value
of the zeta function associated with the image ¥, (f) of f by the Shimura corre-
spondence ¥,. A possibility of an existence of such a relation was also pointed out
by Bump-Friedberg-Hoffstein [1, p.107-p.108] in the case of Maass wave forms of
half integral weight over the imaginary quadratic field Q(+v/—1) from the veiwpoint
that the Waldspurger’s theorem in this case is equivalent to the assertion that a -
Rankin-Selberg convolution of two metaplectic forms on GL(2,C) is equal to the
Novodvorsky’s integral of a metaplectic Eisenstein series on GSp(4) formed with
the corresponding non-metaplectic forms. As a consequence of our results, we can
solve affirmatively a question of Bump-Friedberg-Hoffstein [1] in the case of Hilbert
modular forms of half integral weight over arbitrary algebraic number fields under
the assumption that the multiplicity one theorem of Hecke operators is satisfied.
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§0 Notation and preliminaries. We denote by Z, Q, R and C the ring of rational
integers, the rational number field, the real number field and the complex number
field, respectively. For an associative ring R with identity element we denote by R*
the group of all its invertible elements and by M, (R) the ring of n X n matrices with
entries in R. Let GL,(R')(resp. SL,(R')) denote the general linear group (resp.
special linear group) of degree n over a commutative ring R'. For z = Z z

M (R), weput a = ayz,b = bz, c = ¢y and d = d;. Let H = R+Ri+Rj+Rk = C+Cj
be the Hamilton quaternion algebra. We denote by T = a — bt — ¢j — dk and
|z| = Va? + b2+ c? + d? the conjugate and the absolute value of a quaternion
z = a+ bi+cj+ dk € H. Throughout this paper, we fix an algebraic number
field F' of degree d of class number hr and denote by a, h,0,dr and 0, the set of
all archimedean primes, the set of all non archimedean primes, the maximal order
of F, the discriminant of F' and the different of F' relative to Q. Moreover, we
denote by s(resp. c¢) the set of all real (resp. complex) archimedean primes. For
an algebraic group & defined over F, we define &, for every v € a U h and the
adelization &, of & and consider & as a subgroup of &,. For an element = of &,
its a-component, s-component, c-component, h-component and v-component are
denoted by ., zs, Zc, Ty and x,,. For a fractional ideal ¢ in F and t € F* we denote
by N(z) the norm of ¢ and by ¢r the fractional ideal in F' satisfying (tr), = tulo
for each v € h. For v € h, we put N, = N(m,0) with any prime element m, of
F,. We consider a continuous character ¢ : F;' — T = {t € C||t| = 1} such that
Y(F*) = 1. We call ¢ a Hecke character of F. Given such a 1, we denote by *
the ideal character such that

(0-1) YH(to) = P(t) ift€ FX and (o)) =1

and we set ¢/*(a) = 0 for every fractional ideal a that is not prime to the conductor
of 9. For ¥, Yqa, ¥s, ¥ and ¥y, we mean the restriction of 1 on F<, F*, F} FX
and F}, respectively. For an integral ideal 3 divisible by the conductor ¢ of 1, we

put 1, (z) = [L,}, ¥o(z) for z = (z.) € Fy.

§1 Hilbert modular forms of half integral weight over algebraic number
fields. We introduce Hilbert Maass forms of half integral weight over an algebraic
number field and Hecke operators which act on the space of those. We put

(1-1) H={2€C|3(2)>0}and H ={3=2+wje H|ze Cand 0 < w € R}.

We define an action of g € GLy(C) (resp. GL (R) = {g € GLy(R)|det g > 0}) on
H' (resp. H) by

(1-2) 3—93) = (a3 +V)(3+d)t forallze H

1 B a v q
1/detgg— cd d an

z—g(2) =(az+b)(cz+d)"! forallze H

and g € GL2(C) with
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and g € GL$ (R). For 3 = z + jw € H'(resp. z € H) and g = (i Z) € GLy(C)

(resp. GLJ (R)), put

(1-3)  1o(9,3) = 3+ d,m(9,3) = |po(9,3)[% = lez + d|? + |cl*w?, w() = w

for all 3 € H' and g € GLy(C) and j(g,2) = (cz+d) for all 2 € H and g € GL3 (R).
We see that H' has an invariant metric ds?(3) = (dz? + dy? + dw?)/w? and an
invariant measure dm(3) = dzdydw/w? with respect to the action of GLy(C), where
3 = +yi+wj € H'. The Laplace-Beltrami operator L, is given by

92 92 9 o
- - 2 _— ——
(1-4) Ly=w (8w2+8y2+8w2) Wo =
We put
(1-5) G = SLy(F) and G = GLy(F).

For a fractional ideal r and y of F' such that ty C 0, we put

(1-6)  Dlr,0] = Gu [[ Dolt, ], Dufr,n] = ofs,0]%, Dls,v] = Ga N D, v],

veEh

Dylt, 9] = Gy N Dy[r,v], Tlr,9] = GN Dfx, ] and fr,y] = GN D, 1), -

where

1) ol ={a= (& ) e )

Cq

axeo,bmeg,cmenanddxeo}.

Let 71(resp. 72) be the cardinal number of ¢ (resp. s). For i(1 < i < r1) (resp.
i'(1 24" < ry)), we choose a v = v; € s(resp. v/ = vy, 4 € ¢) such that v; # v, (i #
F)(xesp. vry4ir # Ve 45 (' # §)). We put

(1'8) écﬁ = {g = (gla s Gr s G410 ,g’l‘1+T2) € éa' det(gz) > 0(1 § ? é Tl)}
éA+ = éa+éh,é’+ = éA+ NG and D= H™ x (H’)m.

We define an action éa+ on D by

(1_9) 3 = (zla Tt 721”1737‘1—}—17 Tt 73T1—§—7‘2) € D - 9(3) -

(gl (21), G (ZT1)79T1+1(3T1+1)a s Gritrg (3T1+1"2))

for each g = (g1, yGry» Grid1> > Gritry) € Ga+. We denote by Mp(Fy) the
metaplectic group of Weil [12] with respect to the alternating form (z,y) —

T <§) _01> ty on F2. There exists an exact sequence

(1-10) . 1 —T— My(Fa) — Gy — 1
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and a natural lift r : G — M,(¥4) by which we may view G as a subgroup
of M,(Fy). We denote by pr the projection map of My(Fy) to Ga. For 7 €
pr}(P4C") and 3 € D = H™ x (H')™, we denote by h(7,3) the quasi factor of
automorphy of weight 1/2 defined in Shimura [9, p.1021], where

P= {az (“a ba) eG]ca =0}, C' = D[207!,20],
Ca da

-1
C":C’UC'G,GGGA,eazlandev:<(;) %" )(veh)

with an arbitrary fixed element § € F;¢ such that @ = do. We refer to [9] and [12]
for details. For 7 € pr=1(P,C"),m € Z™ and C-valued function f on D, we define
a function f||m+(1/2)u,, 7 on D by

(1_11) (f”m-}-(l/Z)url 7')(3) - J’m(Tvz)_l.f(TQ)) for all 3= (Zla Ctt 2y,

3ri41s° " s3ri4rp) € D, where up, = (1,---,1) € Z™ and

T1 T2
Jm(Taz) = h’(T’Z)—3 HJ(C’RZ’L + dTi)mi+2 H m(T'f‘1+i>31"1+i)3'

=1 =1

Here we write 7 for pr(7). Let 1) be a Hecke character of the conductor f and let b, b’
be two integral ideals of F such that f divides 4bb’. For w = (Wr 41, "+ yWry4r,) €
C™, we consider C-valued real analytic function f on D satisfying the following
condition

(1-12) () fllm+a/2yu., 7(3) = ¥i(ay) f(3) for every v € I'[26071,2b'0] and 3 € D,

(i) Ly, p(w}]3,0(3)) = wryriw]l 2,5 () (1 Sé<ra) and f(3) s a
holomorphic function with respect to z1,--- , 2p,,

(434) f vanishes at each cusp of I'[2bd71, 2b'0],

where 3 = (217"' 1213 dri41 0t 73T1+T2) € D and driti = Zri4i T jw?‘1+’i(1 <
i < r3). See Zhao [10] and Shimura [6] for the condition (iii). We denote by
Sm+(1/2)un, w(b,b" : 9) the set of all such functions f. We call such a f a modular
cusp form of half integral weight m + (1/2)u,,. For two cusp forms f and g of
weight m + (1/2)u,, with respect to a congruence subgroup I' of GG, we determine
their inner product (f, g) by

(1-13) (f,9) = vol('\D) ™! /F\D F@)9()SG)™ /2 wids,

where 3= (21, s Zryydrily >3'r1+'r2) € Da %(3)m+(1/2)url = H:;l(%zi)mrl'l/z,

w = H:il Wry 44 and dri+i = 2ri+i +jw7‘1+i’ Given f € S'rTH-(l/Z)'u,T1 ,w(ba bl;¢)7 we
define a function fa on My(Fa) by

(1-14) fa(az) = (fllm+@/2yu,, ©)(5") for every a € G and z € My(Fy)



117

T
such that pr(z) € B, where j' = (¢, ,4,,--+ ,j) € D and B is an open subgroup

of C" satisfying fl|m+(1/2)u”'y = f for every v € BN G. We have

(1-15) falazw) = Yi(ayw) m(w,3) "1 fa(z) for every o € G

and w € D[2b07!,2b'0] such that w(j') = j'. We define a map e : C — C and
characters e, and e, of F and F, by

e[z] = exp(2miz)(z € C), ep(x) = H ey(z) for z = (z,) € Fy,
v€aUh
ey () = e[zy] for v € s,e,(2) = €[z, + Ty] for v € ¢ and e,(x,) = e[—y] for v € h,

where y € Ngp(Zq N Q), y — Trp, s, (zv) € Zyp, v|p. We put

ea(T) = ea(zq), es(x) = en(xs), ec(x) = ea(xc), en(x) = ep(zp) and
K)\(’U) = H(47r!vh+i!)_I/ZK)\(4WIUT1+1'|) (U = (UT1+17 e 7UT1+7"2) € ch)

with A = (A1,---, Ap,) € C"2, where Ky (v) =271 [ exp(—2~to(t +t71))t~1-2dt
(v € RT = {v € RJv > 0}) with XA € C. Then we have the following lemma, (cf. [6,
Prop. 3.1]).

Lemma 1.1. Suppose f € Sm+(1/2)url,w(b, b’;1¢). Then there is a complex number
p(€, m; f,4) determined for € € F and a fractional ideal m in F such that

(1-16)
s (5 5 ))

= [t 2t Y (e to; £, 0)e (i2€/2) K, (Elte|?/2)en(Ets/2),
(e F'x )
where |t.|" = H:il }tm+i]2(tc = (tri41," - 7t7‘1+7‘2)7 ltlA = HanUh |t|v’ tly = |tv|v

is the normalized valuation | |, at v with t = (t,) € Fy and t7 = [[2, tT(ts =
(ti) € FJ). Moreover, u(€,m; f, ) holds the following properties:

(1-17) p&m; f,) #0  onlyif €€b'm™? and £+#0 and

p(€D, m; f, ) = b |be[*Pa (D)€, bm; £,40)  for every b € F*,
where b7 = T[L,(6D)™e b = T172, b)) and b, = BV, ... ) pri+D)
b(r1t72)). Furthermore, 3 € G N diag[r, 71| D[2601, 26'0] with r € F[X, then
(1-18)
Va(dp)y™ (dpaz") (571 (3)) N (ag)"/?

= Tn(B 876N ST w(E a3 fow)es (€ /DRy (Eaw/2ec (E22/2),

EEFX
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where ag = r_1073 = (Z17 s Zrsdri4ly 75T1+'I‘2) € D7 gzl = (5(1)Z1, T 76(”)21‘1
)y Briti = Zrpi + JWry i, Eew = (ETHDw, g, €ty Y and £z =
(g(rl+1)zrl+1’ e 7€(r1+7‘2)z7‘1+7‘2)'

We simply write uz(&, m) for u(¢, m; f,4). We denote by {T,},cn the Hecke
operators on Sy, (1/2)u,, w(b,b’;9) which are defined by the same manner as that
in [8, p.510]. Let ¥’ be a Hecke character whose conductor divides an integral ideal
i. Moreover, we assume that

T1 To
119 (@) = [t e Tl

i=1 i=1
('r‘lj = (:Elv'“ yLryy Tpy 1,0 ;xrl—f—rz) € FaX) such that )\i,ﬂr1+j I~ R(]_ § 7 <

ry,1 < j < r2),n = (nl’... 7n7“2) € Z"™ and Z:il A + 25221 Pritj = 0. We pU—'C
D; = ]j[b“l,ib]. We consider a C-valued function g on G, satisfying the following
conditions

1-20 i st) = ¥'(s)g(z for every s € FX and z € G,
( g A

(1) glazw) = V'((dy)i)g(z) for every a € G,z € G4 and w € D;,
where w, =1 and d; = (dy),|; for d € Fy.

(#i) There exists a function gy on D such that

(¢35 2ry) = det(r) det(r)el T [ (v vI)™ 02 (0(51))

=1

for every y € G,, where G = A é’:c)\Dz,w)\ = diag[l,£)](tx € F},). Moreover
g satisfies the following conditions

() gallny(3) = (det(v) %)™ (cyz + dy) " ga(7(3))
= Wi(ay)(det(r),)™ (det(r))**gx(3)

for every v € T[(tA0) !, £xi0] and 3 € D

() G = Y, e@es(E2)wk, (4n|tlw)e(E"),

0#£4EEF
Where.y, = (VT‘l—i—]_’. te 7VT1+T2)’w/ - (w".‘l-f-l’. v 7wT1—|—T2)7(V/)%1+i = wrl—l-i + 1
(1 g ? é T2)7 3 = (21,"' yZryy Zri41 JWri4+15° 5 241, +jwr1+r2)7 Bs(fz) =
r - .
Hiél e[f(’)zi],w - zril wr1+iaKV’(47r’§lw) - Hzril Ku’ .(4Wl€(rl+z),wr1+i) and

7141

ec(€2') = 12, e[2R(1+9) 2, 1,)]. From the above conditions, g is determined by
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(91, ,9x).- We denote by S, (i, ¥’) the set of all such g. For a fractional ideal
m , determine c(m, g) by

(1-21) c(m,g) = ea ()6~ T if m = ¢t o,
Then we have
(1-22)
“(g :f>>= D cl€yo, 0) (€)™ €yoo M en (i€)) K ((Eyoo) Jen o)

0KEeFX

with I:(,,/(U) = |v|K,/ (4m|v|)(v € C*). For each integral ideal n in F' we can define
a C-linear endomorphism T(n) of Sy, (i, ¥’) such that

(1-23) c(m, g|%(n)) = Z U (a)N(a"tn)c(a 2mn, g),

aDM+n

where ¥, (a) denotes ¥'*(a) or 0 according as a is prime to i or not. Let g be
a common eigenform of T(n) for all integral ideals n; Put g|T(n) = x'(n)g and
X' (v) = x/(my0) for every v € h. Then we call X’ a system of eigenvalues. We call
such an eigenform g normalized if ¢(0,g) = 1. For a Hecke character p of F' and an
integral ideal ¢, we put

(124) D(s,x'sp) = 3" (WX (IN() ™, DlsyxX) = 3 (m)N m) 7

where the summation ) is taken over all integral ideals m. We can also define an
inner product (g, g’) for every g,g’ € Sn o (i, ¥').

§2 Shimura correspondence of modular forms of half integral weight. The
purpose of this section is to introduce the Shimura correspondence ¥, of Hilbert
modular forms f of half integral weight over an algebraic number field to those
U, (f) of integral weight and to determine the explicit Fourier coefficients of ¥, (f)
in terms of those of f. Let F' be an algebraic number field with r; real archimedean

primes and 72 complex archimedean primes. We consider the imbedding F into
R"™ x C™ defined by

acF — (oM ... o) ontl) .o gmtr)y e R« 72,

(] 1oL ’
For 3 = (Zl,"' 1 Zrs 3+l ’37‘1+7‘2) and o = (Zl"“ 1y B Sy 53r1—|—r2) €D,

eV ={{ e My(F)| tr(§) =0} and m = (my,--- ,m,,) € Z™ (m; 2 0), put

(1) P(&30) = e{Zl{Tldet(é(“)zi +47N1S(z)

=1
x |[€D, 21 /n(= I}+Z{?R(detf(’"1+’))Z)+\/_wrl+z

X (R(det( ) + 27 l[é“(““),3r1+i]/n(3,~1+¢)|2)}]
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and  ¥(&, ) H[gm, 2l

J— y — o Iy _— Cx / i — /
where 3, +; = z7”1+i+]w1"1+i73r1+i = Zr1+i+-7wr1+i7 n(zi) = S(21), 77(5r1+i) = Wy 44

[£,2] = [€,2,2] and [€; 00, 0] = (—1 )¢ (nl’,) (e H) for every w,n’ € H.

Define a theta function ©(3,10, ) on D x D by

(22)  ©G,m,\) = Hs (26)23(2)) 72 37 M€n) (€, ) (€, 5, o)

Lev

for every 3,10 € D and X\ € §(V},), where S(V},) means the Schwartz-Bruhat space
of V. Let b,b’ be integral ideals and let 1 be a Hecke character of F' whose
conductor divides 4bb’. Put w,, = (1,---,1) € Z™, u,, = (1,---,1) € Z™,m =
(my,--- ,my,) € Z(m; 2 0) and w = (Wpy41, - ,wrry,2) € C™2. Take a f €
Sm+(1/2)un, w(b,b" : ). Let 7 be an element of F* such that 7 > 0,7b = g%t with
a fractional ideal q and a square free integral ideal r. We put ¢ = 4bb’, ¢ = 271
and ¢ = e, with the Hecke character €, associated with the quadratic extension
F(\/7)/F. We denote by § the conductor of ¢. We put

K
Gy = u éa:)\Dz,x;\ = diag[l,tx],tx € F}, and ey = 270 A=1,---,K),

where D; = D[o~',id]. We define an element 1 € S(V},) as follows:

o= (% O e le
(2-3) n(z) = > Palt)e*((2tr))eq(—bst)  ifz = (‘cw —a;,;) €ofe !, ¢,
0 otherwise,

where ¢ runs over all elements of (2r)~!/271¢ satisfying the conditions 2t +tc = o.
For £ € S(V4), put

éx\(y) = So(t/\)_lf(mxlyxk) ()‘ =1, a’{)'

By virtue of Shimura [9, Prop.5.1], we may derive that
(2-4)
O(7(3),10,7) = Jm(7,3)5(a,) 1O, 10,mx)  for every v € T[207", 27 xcd].

Define a function g, x(tv) = ¥, y(f)(w) on D by

):
(2-5) Cgr () = \ h(3)0(, w;mx)S(2)™ /DU widy
T.c\D
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for every to € D, where C = ¢{mi2i+ri—ret{m}(1/\/2m) 2, (1/2)N(¢c), e =

T[20-L,2- 1eed], 3= (21, - - s Zryy Bty 2 Brdra)s m }—,Z, M gldri—rat{m}
H;_”;l 21+r1 —ratmi g(z)er(lﬂ)url — H;; %(zi)mz‘Fl/z, wd = Hz“ 1 wgﬁ—z and 3,, 1; =
Zri4i + JWr +i(1 £ ¢ £ 73). By the transformation formula (2-4), this integral is
meaningful. For the convergence of it we refer to Shimura [6, Prop. 7.1].
Shimura [6, Prop. 7.1], g, x(tv) is holomorphic with respect to 2{,---,z. € H.
Combining a very long tedious computation with the self-adjointness of the Laplace
Beltrami operators L;, ,,(1 < i =< ry), we confirm that

(2'6) L, g, )\( ) (4wr1+i + 3).97',)\ (m) (1

F I

IA
IA
S

Next we shall determine explicitly Fourier coefficients of g, »(t0) in terms of those
of f. To execute this, we need to represent ©(3,1;7,) as a Poincaré series-type
sum. For | = (l1, - ,l,) € Z™ and u = (Up 41, , Ur,4r,) € C™2, we define a
theta function 9;(3, ) by

(2-7)
Di(3,u) = N(ag)'/?y~"/?
X Y Hy(v/Ary€)ec(—Eu)e(£72/2) exp(—2mw|E|*)es (622/2),
§€ag
where
3= (Z17 Uy Zpysdri4ly 737‘1+T2) (3T1+i = Zprii +jw7‘1+i)’
y V2= Hc )12 ea(€%2/2) = [ [ es (€)%
i=1
- He[ (rlﬂ)“n-t-z] ec fzz/Z He (T1+1))2 1+1/2]
i=1
exp(—2mwl¢|?) = [ exp(—2mwy, €T 912), Hy(\/4my€) =
i=1
IS e n 2 70y 4" 2
HHl VARS()EW) and Hy(2) = (—1)" exp(a?/2) 5 exp(~a?/2).
Moreover, for | € Z™,u = (Ur 41, yUr,+r,) € C™ and (¢,d) € F x F, we also
define 9(3,u; ¢, d) by
(2-8)
(3w, d) =y > " Hy(y/4rya)

aco

x es(a?z/2)ec((1/2)(—2au + cu®)d + (1/2)(cu — a)?2) exp(—2rw|cu — a)?),
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where
ec((1/2)(—2au + cu?)d + (1/2)(cu — a)?2))
= ﬁ6[2%((1/2)(—2a(’”1+i)url+i + c(”“)ufﬁi)d(”“)
i=1
(/2 g = )P )
and

T2
exp(—27w|cu — al?) = H exp(—2mwy, 1i|c™ Dy, 4 — a1 t9)?),

1=1

Applying Poisson summation formula, ©(3, to; 7)) may split into a Poincare series-
type sum, which is an essentially role for our later computations.

Proposition 2.1. Suppose that n satisfies (2-3). Then

(2-9)
(Var)™y(m=ur)/20 (3,105 1))

= ()i 3 (T B (a2 ]

0<nsm
XY TR e N (tae)e” (120 e (d/2)27
(c,d)eTr(x~1)
x (cz + d)™ (v Jw)eq (V—172%|cz + d|?/4y) exp(—(v? Jw)T(|cz + d|* + |c[*w?)),

where Ta(t™!) = {(c,d) € 27 ed x trxr7 o = (mv-1,--- ,re V=1 Uy 11
+jUT1+17"' y Uri+rg +jv7‘1+7‘2),F - (rlv"' 7TT1) € (R+)T1 and 3 = (217"' y 2Ty
Zri41 +jw1"1+1a Tty Zpi4ry +jwr1+rr2)-

By Shimura [9, Prop. 1.3], we may derive the following transformation formula.

Proposition 2.2.

(2-10)  Ji(B7, 87 (3))0u(B7 (), u, 1(B7)) = Du(ByB7 (3),u) for every v € T,

where Ji(7,3) = h(7,3)7(7,3)" and j(7,3)" = [1]2,(cy,2i + dy,)lifor al € Z and
v € GNpr 1{(PyC").

Using Proposition 2.1 and 2.2, we conclude that
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Theorem 2.3. Let f be an element of Sm+(1/2)ur1,w(bab’;¢)- Suppose that T €

FX, 7> 0,7b = g%t with a fractional ideal q and a square free integral ideal v and
m > 0. Then

(2-11)

gral) =Nt /©) Y Y

m [etyxr—Im

N @)U a (D)™ (le/tam) s (1, (va) ~'m)es (12)vKay (4n[l|v)ec(lu),

where m runs over all integral ideals and 1w = (21, | Zr 1 3r 41y " s3ridra)y 2 =

(zla"' ,Zrl),3r1+i = Upry 44 + jvrl—i—i(l § { § Tz),u - (url—{-l,"' 7u1"1-|—’l"2)7v =
T L —_ T . :—

(UT1+13 . 5UT1+""2)7 |l| = H%il l(r1+1)| and I™m—1 = Hiél(l(z))ml 1

By the same method as in [8, p. 536], we may deduce the following.

Theorem 2.4. Let f be an element of Sy (1/2)u,, w(b:b'59): let 0 < 7 € F* be

an element such that Tb = gt with a fractional ideal q and a square free integral
ideal v. Suppose that f is a common eigenform of T, for each v € h,i.e.,

fIT, = x(v)N; 1 f  for every v € h.

Then there exists the normalized eigenform g belonging to Som 4w+3(27¢,9?) at-
tached to x such that

(2'12) uf(Ta q_l)g - (gT,17 t 3g7',l‘\3)'

§3 Key lemmas of theta integrals and Eisenstein series. In this section, we
show that a Hilbert modular form of half integral weight is expressed as an inner
product of a theta function and the modular form attached to its image of the
Shimura correspondence. For an integral ideal a we define two elements ¢* and (g

of S(Vh) by

(3—1) ¢%(z) = { Tp—a(bx)a*((bxae)) ifxr e O[ae_l, e],

0 otherwise

and

{ B, (bs)7 ((bpa~te)) if z € ofae™,¢] and (bya~lte,vc) =1,
0 otherwise.

Calz) =

Here we consider the following assumptions.

(3-2) a(z) = (sgn(as)) ™ @s| Pz (¢ € F*) and ¢ divides b,
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where (sgn(zs))™ = [[0L, sign(z:)™, loo[A=]TiL |2V~ (2s = (21, ,2n) €

FY), EARE H:il |$T1+i|2 Tt (g = (Tpy 41, 5 Ty ry) € Fo), (AL, Ay
T T

fry41, s Brydry) € R and 3700 X 4+ 322 pry i = 0.

If v is a common prime factor of 2 and ¢, then ¢, satisfies either
(3-3) (i) (tc)y =By = 4t, and @, (1 +42) = @, (1 +4z%) for all z € 0, : or

(i) (re)y # by C 4ty

(3-4) If f' € Sy (1/2)ur, w (b b’;9) and f'|T, = N, *x(v)f’ for each v{bh~'c?c,

then f’ is a constant times f.
(3-5)
If 0 # f' € Smt1/2)ur, w (0, 0";9) with a divisor b” of b’ and f'|T, = N, *x(v)f’

for every v 1 h~!t%c, then b” = b’ and f’ is a constant times f. Furthermore, we
consider the condition.

(3-6) 4rb D h N 4o; h~Lec is prime to t; b, = ¢, OF ¢, # 40, if v|2 and v {r.

By the same method as that of Shimura [7] and [8, Prop. 5.8] , we may derive the
following.

Proposition 3.1. Let a be an integral ideal such that ah D tc and (ab), = (tc),
for each v|t, and let g = (g1, , gx) be the element in Theorem 2.4. Suppose that
the conditions (3-2), (3-3) and (3-4) are satisfied. Put

K

(3-7) 1(3) = > _ (O3, m;¢%), 9 ().

A=1

Then | coincides with Myh with a constant M, which is 0 if 4tb D ahN4o # rc and
(8-5) is assumed.

Using Proposition.3.1, we may confirm the following proposition.

Proposition 3.2. Let f,h and g = (g1, - ,gx) be as above; let n and (4 be as in
(3-1). Then, under (3-2), (3-3) and (8-4), we have

K

(3-8) Ah(3) = D _(©(3,10;m2), (1))
A=1

with

A =Ty (r,a IV (ax)(g,9)/(F, £))vol([207, 27 ecd]) e~ 2,
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where T;(m+(1/2)“”) _ H:;I(T(i))—(mi+1/2) and || 7% = T2, |r(rit)|=3,

Moreover, if in addition, (3-5) and (3-6) are assumed, then

K

(3-9) KAh(3) =) (0(3,1;¢,2), g (1))
A=1

with K = pa(~=1)7(@)p(h ™ ve)* (h ™ ee) N (xe) .

Here we introduce Eisenstein series. Let w be a Hecke character of F' of conductor
f such that

(3-10)  w,(z) = (sgn(@))*|z|V" (z € FX) and we(z) = |z2V ¢ (x € F),

wheren = (ny,--- ,n, ) €Z™, A= (Mg, Ar) € R and = (lry 1,7+ 5 fhrygory)
€ R™. Given a function f on D and o in G, we put f||,a(3) = (caz+da) " f(a(3))G €
D). We put

B35 m,0,T) = 3 wa(da)w” (datg YN (aa) 2y + (A=) 2o i |,
aER

Eﬂ(3a3 : n,w,F*) — N(aﬁ)% Z wa(da)w*(daagl)ysurl+(i)\—n)/2w2sur2+ili|Ina’
aER,@

where R = P\G N PyD*,Rg = (PN AIr*B~1\BI'* and I'* = G N D* with a open
subgroup D* of D[r~1,zl]. Moreover, for a fractional ideal r and an integral ideal
[, we put
(3-11)
C(3,5:n,w,To) = Li(2s,w)E(3,s : n,w, ) and Li(s,w) = Zw*(m)N(m)—s,
m

where ['g = '[!, zl] and m runs over all integral ideals prime to I.

84 The expression of uf(7,q 1) D(s, x) by Rankin’s convolution, the image
of the product of Eisenstein series theta functions under the Shimura
correspondence and the final calculations. Here we express pus(7,q71)D(s, x)
as a Rankin’s convolution of a theta series and h. We define a theta series 9(3) by

(@1) 96) = 3 ea(b?2/2)ec(E7/2) exp(—2mu?),
b€o
where 3 = (21, , 201, 3m 415" 1 3mare) Gridi = Zrigi + JWri44), es(b?2/2) =

[TiLy el(6®)?2:/2], ec(b2/2) = TTiZ; e[R((6T79)%2p,44)] and exp(—2mw|b|?) =
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152, exp(—2mw,, 1;|6("+9|2). From some computations, we may deduce that

(4-2) / h(3)9()CG,5+1/2:m, 3, T)y™ /2 2dy
i3]

— (27T)~r13~(m+i)\)/2 (27T)—23T2"iH—T2 21+d-—(3/2)r2—2sr2—iu

x 722\ /Jdp] T'(s + (i) +m)/2)D(2s, x)ps (7,071
s '(2s +ip—v+1/2)T"(2s +ip+ v +1/2)

X N(¥) (25 +ip+1)

b

where I' =T’y and ® = I';/\D. On the other hand, by (3-9), we confirm

(4-3)
KA/h(3)0(3)0(3,§+ 1/2;m, @, T)y™H(/2ur 23
[

= A Z(@(j, 0 : (on ), ga(0))9(3)C (3,5 +1/2;m, @, F)y7n+(1/2)ur1 ,de3
A=1

= (M} (1,5), ga(1))

A=1

with M} (w0,5) = [ 9(3)0(, 10;Cx)C (3,5 + 1/2,m, 5, )y™+H(1/Dur w2dz. We may
derive that

(4-4)
S (M (19,5), 92 (10)) = (s/2) 21 ~Com Fm4 i)/ 22t
A=1
x 2124 JarT T (s + (14 m + iX)/2)T (28 + ip + 1)
X Lee(25 +1,0) Y (D ¢"(ap)N(ag)* 15} (10,5), ga (),
A=1 BeB
where
Spa(10,5) = Z Cor(P§)ps(@)[€, 0] ™™

(¢,)eX/ox
€ 0] /()| 22 N[ 4 ey o ()] 2224 e,

GNPpDic = | g g P+ Blce, Pt = {a € Pldy > 0}, X = {(§,a) € VX F|-det(¢) =
a®} and pg is the characteristic function of ag. Here we take § from diag[p, p~'|U
with p € F;* such that (p, ), = 1 with any small open subgroup U of G4. By the
same method as that of [8, p. 545-549], we may verify that

(4-5) (~1)™ 5 5 (10,8) = Y (gro + 1)2™T5 , (74(1), 5)  with
' q9€Q
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Y ¢ (ag)N(ag)** T 5 (v, s — 1/2)
BeB

= N(ex)**C(r,s: m,3,I'\)E(r, s : m,3,T»),

where Q = ex/2¢x,7q = <(11 ?))(q € Q) and Ty = T'[rce; ', 2¢,]. By (4-4) and

(4-5), we deduce that

(4-6) }: Y@ (ag)N(ag)™*' S5 5 (10,5), g ()

A=1 BeB
—Z 1) HQ(N (ex)*1C(w, 5+ 1/2 :m, 5, T»)

X E(m 5+1/2:m,p,Ty), gx(m))

Using an explicit calculation of Fourier coefficients of Elsenstein series and a Rankin
convolution, we may find that (4-6) is equal to

(4-7) M(s)N(x)">Le(2s+1,0) 7' D(25,x)D(0,x,?) D> w®@ (Ox(t b xc),
tOh~1rc

where M (s) is an explicitly defined factor which is a product of an arithmetical
quantity of F, exponential functions and gamma functions of s.. Consequently, by
(3-8),(3-9), (4— ), (4-3), (4-4) and (4-7), we conclude the following theorem.

Theorem 4.1. Let f be an element satisfying the conditions in Theorem 2.4, and
let T be an element of F* such that 7 > 0, 7b = g%t with a fractional ideal q and a
square free integral ideal v. Suppose that the assumptions (3-2)~ (3-6) are satisfied.
Then

(4-8) s (rya ™) P (h ee)u(h ™ ee) = RN (vq) "' D(0, x, D)(f, £)/(8,9)

with R:W—{m}2—1+’(r1/2)+2rz—{m}T;er(l/z)u,1
X |70 (m)I (v + 1/2)T (—v + 1/2) [0 : (0%)*)hr

< Ao 2 MO OX(E )

tOh~tec
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