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§1 Introduction.
For investigation of automorphic form F, its Fourier expansion is a fundamental and
important tool. Let f belong to an automorphic representation 7 = 7o, ® 7y €
A(G(A)) of a reductive group G. When 7y is discrete series representation of
G = SU(2,1) or SU(3,1), we investigated Fourier component of f, and reported
“what kind of special functions appear as the generalized Whittaker functions for
Too” in [I2], [I3] respectively. As for ordinary Whittaker functions, see [K-O], [Ta]. In
view of application to arithmetic of automorphic forms or of the problem of realiza-
tion of representations, investigation of generalized Whittaker model for 7o, which
contributes NON-middle degree cohomology is very interesting. This corresponds to
a study of Fourier component of f belonging to the so-called “thin” representation
Aq()). Here we are led to two natural questions:

I) Comparing to the case of discrete series 7y, how many Fourier components
which appear in expansion of f decrease?

IT) How do the special functions appearing in expansion degenerate?
In this short note, we report some results for these questions in the case of easy
groups in the title. This problem is purely archimedean local. So we omit the
subscript . We realize the special unitary group of signature (n+,1—) as

G = SU(n,1):={g € SL(n+ l,C)]tgln,lg =1I,1}.

Here I, is diag(l,,—1). Let G = NAK be the Iwasawa decomposition. In our
realization, :

K= {( k detk-1 ) | k € U(n)} : maximal compact subgroup,

1, r4r-l  p—p1 )
A= {a?‘ = Ry l hy = 7‘_%—1 7‘+$“1 re IR>0} =R,
. 2 2

N = H(C™!) :real(2n + 1)dimensional Heisenberg group.

*partially supported by SANEYOSHI SCHOIiARSHIP FOUNDATION



The unitary dual N of N consists unitary characters ¢ and infinite dimensional irre-
ducible unitary representations p. Fourier component of f indexed by %) corresponds
to the ordinary Whittaker model Homg x) (7%, C®-Ind§(¢))k) of 7;. Here T i
the underling (g¢, K )-module of 7y generated by f. This model was investigated by
[K-O] and [Ta], when 7™ is discrete series representations of SU(2,1) and SU(3,1)
respectively.

§2 Generalized Whittaker functions.
Now we recall Kostant’s fundamental result:

Proposition 1 ([Ko]) When G is a connected quasi-split semi-simple Lie group
and 7% is an irreducible Harish-Chandra module, the followings are equivalent.

i) The Whittaker model of 7 is not vacant: dimCHOm(g’K)(ﬂ'?(o,Cw‘IndJG\,(¢)K) # 0.
ii) The Gel’fand-Kirillov dimension of 7% is mazimal: Dimng = dimcLieN. O

Therefore in order to obtain fully developed Fourier expansion of automorphic forms,
investigating only the Whittaker models is not sufficient. In fact, there are many
important representations with non maximal Gel’fand-Kirillov dimension. In our
situation, we also have to consider Fourier component which is indexed by infinite
dimensional representation, that is Hom, x) (7%, C>-nd$(p) k). However this is
not appropriate object for investigation. The space is of infinite dimension. So we
cut this intertwining space into smaller pieces by introducing a larger group R.

Let P = L x N be the Levi decomposition of the minimal subgroup P. The Levi

part L acts on N by conjugation, hence naturally on N also. We put S := Stbz([p]),

which is Stby(Z(N)) = U(n — 1), since p is determined by its central character
(:Stone-von Neuman’s theorem). Using S we define R by S x N. Next we extend
p to an irreducible representation 7 of R by the theory of Weil representation:
n = 0, ® (wy X py)|z- Here R is the pullback of R by the metaplectic covering
Sp,_1(R) x H(R?""2) — Spp_1(R) x H(R?>*~2) and &, is a genuine representation of
U(n—1): u belongs to 2 +1(1,...,1). By a theorem of Wolf [Wolf], the unitary
representations of R with non-trivial central character are exhausted by these 7.
Our main object of investigation is the generalized Whittaker model of «

I(nn) := Homyg, k) (7§, C*°-Ind (n)k)
and the image of non-trivial elements of this intertwining space
GW hy(7) := C-span{f(v)|v € H°,L € I(n|n)}.

If we fix the K-type of 7 to the minimal one 7, then generalized Whittaker function
W, € GWhy(7) has R- and K- equivariances: Wy(rgk) = n(r)ra(k)~ . Wy(g). By
the Iwasawa decomposition G = RAK, we only have to determine the A-radial part
Wy|a. By our fortunate situation that all admissible representations = of SU(n,1)
has multiplicity one property with respect to their K-types: [r: 7] < 1, the system
of differential equations which are induced from the so-called ”Shcmid operators”
and projections to Clebsh-Gordan compoBents characterize the A-radial part Wy| 4.
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Proposition 2 Let 7 be an irreducible admissible representation but a principal
series of G = SU(n,1). Then the space of generalized Whittaker functions is char-
acterized as follows.
GWhy(r) = | KerD™P.
ped(n)

Here D~P is a differential operator which shifts K-types to the direction —(3 and
J(m) is the set of "negative directions” for m. O

We note here that when  is a discrete series representation satisfying a regularity
condition, this is a special case of Yamashita’s theorem, which is applicable to very
general situation [Ya].

§3 Cohomological representations.
Let Hip(T, X; E) denote the i-th de Rham cohomology for a complex of E-valued
differential forms on X := G/K and H'(g,K;V) do the i-th relative Lie algebra
cohomology for a (g, K)-module V. Here F is a finite dimensional complex repre-
sentation E of G. Then the Matsushima isomorphism tells -

Hip(T,X; E) = Hi(g,K; C*(I'\G) &c E).

When we decompose L2(I'\G) into discrete and continuous spectrum parts: LA(T\G)

L% (T\G) ® L?,;(T'\G), the continuous part L2,.;(I'\G) does not contribute
to cohomologles For general G satisfying rkG = rkK, this is shown by Borel,
Casselman. Hence we consider the natural mapping

lr2: HgR(F7X;E) A Hi(gvK§ Lgisc(P\G)oo ®c E)

induced from (g, K)-stable embedding ¢z2 : C®(I'\G) < L% (T'\G)*°. Here
(T\G)™ is the smooth vectors in L% (T'\G). By the G-irreducible decomposi-

dlsc
tion

dlSC F\G) @m ™ F
1r6G

we have an isomorphism

Img t7, = @ m(m;T)H (g, K; H® ®c E).
reG

This is a higher dimensional generalization of the Eichler isomorphism of one vari-
able case: G = SU(1,1) = SL(2;R). All cohomological unitary representations 7
(i.e.Hi(g, K; HP ®c E) # {0}) are classified [Vo-Zu],[Wal]: m & Agq()). We shortly
recall these representations for our groups.

<G = SU(n,1) case>

As for 7 € G, take discrete series representation D{,(J=1,...,n+1). Here ) is the
Blattner parameter of D/{: A€Z%, Ay > 0> Ayy1. Then there is an appropriate

3
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finite dimensional representation E) and the contribution to cohomologies are given
as follows.

~ C =n-J+ 1, =J- ]-a
HP9(su(n, 1), U(n);D,{ ® E)) = { {0} f)’therwise. !
{0} otherwise,

C whenp=g¢g=0,...

Hp’q(gu(n’ 1)7 U(n);E/\ ® E/\) = { n

For instance n = 2 case, in the Hodge diagram

H2,2
21 H2
H?0 HW H%2 (:only D.S. reps. appear)
HI,O HO1
HO.0

the groups in problem are H? and H%! by the Poincaré duality. We denote the
representation which contribute to H? Ji’o. The composition series of principal
series for real rank one group is completely understood. For G = SU(2, 1), there is
an exact sequence:

0— D2 @ Dy - Ind§(1y ® €’ ® xa) = J,° — 0.
On the other hand, when J5? is unitarizable is also known for our group.

Proposition 3 ([Kra]) For the group SU(n,1), admissible representation J? is
unitarizable ezactly when the two "fundamental corners” of J3'? coincide. O

We can draw a picture of K-type distribution of cohomological representations of
SU(2,1). A :

|
!
i
i
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§4 An explicite form of W, and Fourier expansion of f.
<G =8SU(2,1) case>
For A = (M, X2) € 22 (i.e.d1 > X, A € Z), we realize (75, V)) as in [K-O], [I]. As
for p, we realize this representation as follows. Let ¢5 : Z(N) 3t — evV=Ist ¢ ()
be the central character of p. Then infinitesimally py, : LieN — End(Fy),

when s > 0 | whens<0
py.(E2) = “Saz +tzi, | py(Bag) = Saz “”“
p‘/)a (EZ,_) = Vv 1( az + zz) | p'l/)a (Ezy") = -V az + zz)?

Py, (Br) v-1s.

We chose the monomials f; := 2, §=0,1,2,... (ff = (=1)Y23, j=0,-1,-2,..)
as a Hilbert base of F; when s > 0 (when s < 0).

By a compatibility between S-type and K-type: n(m)7x(m)~1W,(g) = (mgm)
= Wy(g), we get a linear relation between indices of bases: j = —k + Q‘—z G+
i) =: jk. Moreover the expansion of Wy|4 with respect to bases { fs} and {v}}
reduce to the following finite sum.

A1—A2

Wala(a) = Y ex(a)(f} ®2}).

k=0

Therefore what we have to do is writing down the differential equations of Propo-
sition 2 in terms of ci’s. Recall the shape of K-type distribution of cohomological
representations (figure 2). Then we can read off the "negative directions” J(x) for
7 from the picture:

720) = {32,831}, J(7™') = {Bs1,B2s}, J (%) = {Bas, fus},
J(7*0) = {B32, 831, Bas}, J(m*1) = {Bs1, Bes, Prs}-

In the case of discrete series m, we have already obtained the moderate growth
solutions for Nge s (x) KerD~* [1)§3.3. Here we records the result for readers’ comve-
nience.

pratkesr?/2 (s<0) when 7 = 720,

ck(ar) ~ ¢ PR HIWL o 5 y/a(]s|r?)  when ‘”_7?11
r — 2

Aa—ke "/Zb(s>0) when 7w = 702,

where k = 5k 2+ T 72

When 7 is a “thin” representation 710, Naen) KerD™? is an over-determining
system whose solutions coincide with c’s which satisfy the third difference-differential
equation D‘ﬁzsck = 0. By this third equation, we have an extra relation among pa-
rameters: p + M k. Therefore j; = 0 is independent upon k. Simultane-
ously the equatlon forces A2 must equal 1. This agree with the fact 7 = Aq(}), where
q = {X € M3(C)|Xa1 = X31 = 0}. The case of 7! can be treated by the same way.

5



Fix normalization of constant multiples as in [I], we obtain an explicit form of the
A-radial part of generalized Whittaker functions for cohomological representations.

( S yirretke sr?/2 (f; ® vi‘) (s<0) when 7 = 720,
AW, o s a(sir?) (£ @ o)) when m =1,

Whlalar) = J > i p—da—kemsr®/2 (f; ® vi‘) (s >0) when 7 =792
Z,),Ifc'rl+kesr2/2 (st ® 'UI%) (s < 0) when 7 = 710,
{ > yfHpakesr?/2 (fjs ® v,’c\) (s <0) when 7 = 701,

After some discussion on I'-invariantness (see [I]§5), we obtain an explicit form of
Fourier expansion of automorphic form f combining a result of [K-O].

Theorem 4 Let f be an L%-automorphic form on SU(2,1) belonging to m with
minimal K-type 7. Then the Fourier expansion of f is given as follows.
i) When m is a discrete series representatzon D¥? with Blatiner parameter A =
()‘17)‘2) Z®27 pu’t ]k -k + M ( +”’)

i-1) The case of large dzscrete series i.e. contributes to H(1:1)
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A1—Az
fa)) = Y Clu( X mrM T Wk, 2mV 2 4+ 075) - Yoy pre ()}

(&,£')€22\(0,0) k=0
21¢|

RIDIDIDY ,,e(,( Z W IHW o, (2mlllr?) - 050 (n)0}),

tez\{0} i=1 pelz\z

here 3 A 2A1 — A
Al 1 2
2 k- 2 + 3 N

i-2) The case of holomorphic discrete series i.e. contributes to H(%0)

oo 24|

fne) = >3 Y ¢, ( Z ylpathentr? .ej,f”( )R)-

—£0=1:i=1 ME%Z\Z

i-3) The case of anti-holomorphic discrete series i.e. contributes to H(02)

oo 2 A1—X2 ) .
fra) = S5 % 0fo(T Ak g0 ).
. {=11i= 1116 1772 ’ k=0

ii) When 7 is a "thin” cohomological representation, that is m = A, ().
ii-1) The case of lowest weight module, i.e. contributes to H(1:0)

oo 2/

fnar) = 30320 ( Z A rert . o)t O n).

—{=01i=1



ii-2) The case of highest weight module, i.e. contributes to H(O.1)

oo 20 )\1 )\ X
f(nar) — EZC ( Z ,YIII A1 —A2+1— k —mlr? ’U;;‘)eld(z)(n)
£=0i=1 k=0
Here C’{’e,, C’#’j& () and C’zf(i) are the Fourier coefficient of f. |

<G = SU(3,1) case>

Former group SU(2,1) has only highest weight modules as "thin” representations.
However, in the case of SU(3,1), there are interesting ”thin” representations which
contribute to H(1'1) and are not highest weight representations. Since our strategy
of computation is exactly similar to the case of SU(2, 1), we omit the details, which
will appear elsewhere. For notation and realization of groups and representations,
see [13].

Theorem 5 Let  be a unitarizable representation of SU(3,1). The minimal K -type
generalized Whittaker function Wy, indezed by an infinite dimensional representation
7 is given as follows. Let

Waa) = ¥ 5 ¥ ael)- (W ef)e@)

k'=0 QEGZ(N) jESK (1 )

be an expansion with respect to bases of R- and K- types. i) When 7 is a discrete
series representation Dp with Blattner pa'rameter )\
i-1) The case of holomorphzc discrete series D,\ i.e. contributes to H(3:0)

Wylalar) = Z Z Z 77-|/\|—|ﬂ|esr2/2 . (('w;:,l ®fi)® v(Q)) .

k'=0 QeGZ()\) jESK (u' N)

-2) The case of large discrete series Di’l i.e. contributes to H(>V
At the K -finite vector in  indezed by extremal Gel’fand-Zetlin schemata of the form

A1 Ag A3
Q= A2 P2 , ciolr) ~ M A3+2W (|5|7“ )5
A2

_ _p2 _ Uitre— ﬂz}!Jz-H)
with kK = —5

No—p2
ii) When 7 is a cohomologzcal unitarizable representation Ai(X) which contributes

to H?, we have also obtained an explicit form of the genemlzzed Whittaker function
W, of = under some condition.

ii-1) The case of lowest weight module, i.e. contributes to H
The generalized Whittaker model exists only when s < 0. A3 must equals to 2.

Wn|A ar E Z Z ,yrz\1+)\2+2—|ﬂ]esr2/2 . ((w;c‘,' ® fj) ® v(Q)).

K=0QEGZ(N) jESKNSK=trs

(2,0)
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Moreover an eztra relation between Gel’fand-Zetlin parameters and j.
ii-2) The case of J;’l i.e. contributes to H(1:1)
At the K -finite vector in w indezed by extremal Gel’fand-Zetlin schemata of the form

A1 A2 As R 5 Is|
a=| % m |, ael)~ e ek (e
A2

under assumption that k = Mg—ﬂ%yiﬂ s an integer.

iii) When 7 is a cohomologzcal umtamzable representation A,(A) which contributes to

H! ie. the theta lift image from U(1) which is non-tempered ladder representation.
iti-1) The case of lowest weight module, i.e. contributes to H (1,0)

Only when the parameter s of central character of n is negative, the generalized

Whittaker model ezists. (g, A3) must equals to (1,2). Moreover two extra relations

between Gel’fand-Zetlin parameters and j. m]
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