0oooo0O0oooo
11730 2000 0 155-170 155

GL, D XA—/N—H X F WREDEIRANX (CHARACTER FORMULA FOR
THE SUPERCUSPIDAL REPRESENTATIONS OF GL;)

KIRHF L KA RFE BiE H L (TETSUYA TAKAHASHI)

Introduction

Let | be a prime, A a central simple algebra of dimension /?> over a non-archimedean
local field F' and E/F an extension of degree [ in A. As is well-known ([15], [5]), any
irreducible supercuspidal representation of A* is obtained from a quasi-character of E*.
The aim of this paper is to get a character formula for the irreducible supercuspidal
representations of A* on the set of elliptic regular elements. To calculate the character
on the split torus is another problem. See Murnaghan’s papers ([16], [17] and [18]) for this
topic. We only remark that the character value on the elliptic regular conjugacy classes
determines uniquely the supercuspidal representation.

When E/F is unramified, a character formula was obtained in [20]. Therefore we
treat the case F/F' is ramified. When the residual characteristic p of F' equals to [, the
ramification is wild. This case is very hard to treat (see e.g. [21]). Thus we assume p # .
Since the case [ = 2 is already solved in [13], we also assume [ is odd. We note that A is
isomorphic to a division algebra D = D; of dimension [2 over F or the algebra M;(F) of
[ x [ matrices over F'. '

Let D, be a division algebra of dimension n? over F. Deligne-Kazhdan-Vignéras [8] and
Rogawski [19] proved an abstract matching theorem: there is a bijection between the set
of equivalence classes of irreducible representations of D and that of essentially square-
integrable representations of GL,(F) which preserves the characters up to (—1)"7'. In
the tame case, i.e., when n is prime to the residual characteristic of F', Moy [15] proved
that there is a bijection between the same sets as above using the concrete construction
of the representations given by Howe [12]. Hennirat ([10]) has shown that two correspon-
dences coincide when n = [ # p. Thus we only treat the GL; case. Our main result is
Theorem 3.12. As in the unramified case, the analogue of Weyl’s character formula holds
for our character formula. This does not hold when [ = p (cf. [22]).

Section 1 is devoted to the review of the construction of an irreducible supercuspidal
representation my (resp. mp) of GL;(F') (resp. D]) from a generic quasi-character § of E
and the known results about the representation. We note that my is not always monomial,
i.e., induced from a one-dimensional representation, but it can be written as a Q-linear
combination of monomial representations. In fact my is written as Q-linear combination
of the forms indgL’ (F) pe where H is a compact mod center subgroup of GL;(F) and py is
quasi-characters of H.

In section 2, we compute the character of 7y up to some root numbers. Let G = GL;(F),
B the normalizer of an Iwahori subgroup of G containing H and 1y = ind% py. Since we
treat only elliptic regular conjugacy classes, we consider the character x,, on L* where
L/F are extensions of fields of degree I. Moreover the case L = FE' is essential. By the



156

Frobenius formula and the result of Kutzko ([14]), we have only to calculate the sum

Xns (@) = Y polaza™)

a€H\B

for £ € E in order to get the character formula of my. Therefore it is essential to know
when aza™! € H, which is determined in Lemma 2.1. From this, we get the character
formula of 1y except near the conductor (Proposition 2.2). But this formula contains the
Gauss sum part G(y, j), which is calculated later. The exceptional part can be calculated
directly by taking the explicit matrix form of E* (Lemma 2.4). Except this lemma, there
is no new result in this section. But since the proofs are short and simple and we use
the property “intertwining implies conjugacy ”of F/F-minimal element (very cuspidal in
the terminology of Carayol [4]) as the key tool, the result may be extended to GL,, at
least when n is prime to p. Section 3 is devoted to the calculation of the Gauss sum part
G(y, 7). It appears in the character formula on E*. For this purpose, it is the point that
we have only to treat the character of my on Uy = F*(1 + Pg) — F*(1 + P2). For this
calculation, we use the E*- structure of various objects. We first assume E/F is a Galois
extension since E*-module structure can be described easily for this case. This part is
analogous to section 1 of [20], but everything becomes easier since we have only to treat
U;. When E/F is non-Galois, we use the base change lift. Let L/F be an unramified
extension of degree | — 1. In L, there exists a I-th root of unity and EL/L is Galois.
Therefore we can use the tools in Galois case for GL;(L). Let Gal(L/F) = (7). By the
result of Bushnell-Henniart [3], there is a base change lift 7, of 7y to H} such that the
twisted trace of 7y by 7 gives the trace of 7. (See Proposition 3.7 and Lemma 3.8).
We remark that we need not assume the characteristic of F' is 0 since we do not use the
Arthur-Clozel base change lift [1]. The method to calculate the twisted trace of 7y, is
similar to that of Galois case. The complete character formula is stated as Theorem 3.12.

Closing this introduction, we compare our formula with the known results. The same
type of character formula for the division algebra case was given by Corwin, Moy and
Sally, Jrin [6] and for GL; case by Debacker in [7]. Their formulas agree with the result
given in section 2. It contains some root numbers associated with a quadratic form. In this
paper, we have determined it completely in section 3. Moreover we find the Kloosterman
sum appears in the character formula. These are new results of this paper. In [22], the
author gave the character formula of my for GL3 by using the decomposition of 7y as
E*-module. But this need the explicit matrix form of an inverse matrix which is hard
to treat for large I. We can simplify the proof of the main theorem, although we treat a
general prime [.

Notation

Let F' be a non-archimedean local field. We denote by O, Pr, wr, kr and vg the
maximal order of F', the maximal ideal of Op, a prime element of Pr, the residue field
of F and the valuation of F' normalized by vp(wr) = 1. We set g to be the number of
elements in kp. Hereafter we fix an additive character 1) of F' whose conductor is P, i.e.,
% is trivial on Pr and not trivial on Op. For an extension E over F, we denote by trg,
ng the trace and norm to F respectively. We set 1 = 1 o trg. The trace of matrix is
denoted by Tr. For an irreducible admissible representation m of GL;(F), the conductoral
exponent of 7 is defined to be the integer f(m) such that the local constant (s, , ) of
Godement-Jacquet [9] is the form ag—s(/(m-4), ’



157

We call 7 minimal if
f(m) = min f(m ® (noNr)),

where 7 runs through the quasi- characters of F*. Let G be a totally disconnected, locally
compact group. We denote by G the set of (equivalence classes of) irreducible admissible
representatmns of G. ‘For a closed subgroup H of G and a representation p of H, we
denote by Ind% p (resp. ind% p) the induced representation (resp. compactly 1nduced
representation) of p to G. For a representation m of GG, we denote by 7|y the restriction
of m to H.

1. CONSTRUCTION OF THE REPRESENTATION

Let E be a ramified extension of F' of degree . Then E can be embedded into M;(F)
and , up to conjugacy, the embedding is unique. Let G = GL;(F). In this section, we
review the construction of supercuspidal representations of G which are parameterized by
the quasi-characters of E*. Of course, this construction is well-known([4], [15]).

Definition 1.1. Let 6 be a quasi-character of E* and f(f) = min{n|Kerf C 1 + P2}.
Then @ is called generic if () # 1 mod I. For a generic character § of E*, vy € P1 —10) _
Py is defined by

(1.1) (1 +z) = Yp(yez) for z e POV
Then F(vs) = E. We denote by EX  the set of generic quasi-characters of EX.

gen

We construct an irreducible supercuspidal representation of G = GL;(F') from 6 € Eg"en
For simplicity, we set v = 7. Since E/F is tamely ramified, there exists a prime element
wg of O satisfying wh, € F. Put wr = wh. We identifies M;(F) with Endp E and G
with Autr E by the F-basis {wh !, w2 ... wg, 1} of E, which is also an Op-basis of Op.
By the lattice flag {PL}icz, we construct a maximal compact modulo center subgroup.
The construction of the representation is well-known. For details, see [15].

Definition 1.2. For i € Z, set
Al = {f e My(F)|f(PL) c P for all j € Z}.
Put K = (A%)*,B=E*K and K* = 1+ A® for i > 1.
Then K is an Iwahori subgroup of G and B is a normalizer of K. At first we construct
an irreducible representation of B from a generic quasi-character of E*.
Let 6 be a generic quasi-character of E*, i.e., f(#) = n #Z 1 mod [. There exists an
element y € Py " such that (1 + ) = ¥g(yz) for z € P where m = [(n+1)/2]. Define

Yy on K™ by 1,(1 4 z) = (Tr(yz)) for z € A™. Then ¢, is a quasi-character of K™.
Put H = EXK™ and define a quasi-character py of H by

(1.2) po(h-g) =0(h)Y,(9) for heEX, ge K™
Let J be the normalizer of ¢, in B, i.e.,
’ J={a€B | Y=},

where 1,/)“( ) = ¢,(a"'za) for z € K™. Then J = EXK™ where m' = [n/2]. Put
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When 7 is even, i.e., n = 2m, then J = H = E*K™. By the Clifford theory, 7y is an
irreducible representation of B. We put
(13) Kg = Tjg-

When 7 is odd, i.e., n = 2m — 1, then J = EXK™ . Thus 7y is not irreducible. In

this case, we put
1— (%) MCSVE

(1.4) Ky = 107

Z Nowx + (Ell) M65

XE(EX/F*(1+Pg))

where (%) is the Legendre symbol. The following result is well-known (see [15]).

Theorem 1.3. Let the notation be as above. Then kg is an irreducible representation of
B. Put my = indg kg. Then my is an irreducible supercuspidal representation of G such
that
1. the L-function of g is 1;
2. e(mp, V) = €(0,vE); in particular f(mg) = f(0) +1;
3. U{me|0 € ngen} = {1 € Ao(G)|fmin(m) # 0 mod [}, where E runs through iso-
E

morphism classes of ramified extensions of degree [ over F' and Ao(G) be the set of
equivalent classes of the supercuspidal representations of G.

Remark. If 1 € Ap(G) and fpin(7) = 0 mod [, m can be constructed from a regular
quasi-characters of L*, where L is an unramified extension of F' of degree I. The character
formula for such a representation was given in [20].

Next we construct an irreducible representation of D* = D) from 6 € E,,. Let f(0) =
n. We recall n # 1 mod I. We define a function ¢, on 1+ P} by ¥, (1 + z) = ¢(Tr(yz))
for € PR. Then 1, is a quasi-character of 1+ Ppy. H' = E*(1+ Pp) C D* and define
a quasi-character pj of H' by

(1.5) pp(h-g) =0(R)n(g) for heE*, gel+Pp.
When n is even, i.e., n = 2m, we set
(1.6) 7 = IndD, p).

When n is odd, i.e., n = 2m — 1, we set

1— (ﬂ) g(=172
!

_ [
(17) Ty = lq(l_l)/2

Z Indy, Phgy + (%) Ind5, p),
XE(E* [F*(1+Pg))"

where (Q) is the Legendre symbol. The following result is essentially well-known. (See
[2], [15)).

Theorem 1.4. Let the notation be as above. Then m, is an irreducible minimal repre-
sentation of D* such that

1. the degree of m) is q("—Q)(l_l)/Q——‘—(i__ll);

2. e(mh, ¥) = (0, ¥E); in particular f(my) = f(0) +1;
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3. U{mpl0 € E\;g} = {n' € D*|fmin(r') # 0 mod l}, where E runs through the iso-
E

morphism classes of ramified extensions of degree | over F.

4. The correspondence Ty <+ g by way of generic quasi-characters of E* is a bijection
and preserves e-factors and conductoral exponents. (This correspondence is a special
case of Howe’s bijection (see [15]).)

On the other hand, there exists an abstract matching theorem, which is called the
Deligne-Kazhdan correspondence ([8], [19]).

Theorem 1.5. There is a bijection between the set of irreducible representations of D*
and the set of essentially square-integrable representations of G which preserves the char-
acters on elliptic reqular elements. In particular, it preserves e-factors and conductoral
exponents.

By the result of Henniart ([10] Theorem 8.1), these two correspondeces coincide.

Theorem 1.6. Ifl # p is a prime, Howe’s bijection (1.4) coincides with Deligne-Kazhdan
correspondence (1.5) between the set of essentially square-integrable representations of GL,
and the set of irreducible representations of D}.

At the end of this section, we quote the result of Kutzko([14]) in the form that the
character formula of 7y on elliptic regular elements is essentially given by the one of k.

Theorem 1.7. Let x be an elliptic reqular element of G.
1. If F(x)/F is ramified and x & F*(1 + Piy)s
Xmg (:1:') = Xk (‘7;)
2. If F(z)/F is unramified and z ¢ F*(1 + P["/”H),

F(x)
Xro(x) = 0.
Proof. These are obtained by applying Proposition 5.5 in [14] to our case. O

Remark. Since

($)xwle)  we BX—F*(1+ Pg),
(1.8) X (Z) = 1 y
WX"" (x) ze€ F*(1+ Pg),

we have only to calculate x,,.

2. CALCULATION OF THE CHARACTER

Now we begin to calculate the characters of the representations constructed in the
previous section. In this section, we shall get a character formula up to some root numbers.
These root numbers are calculated explicitly in the next section.

Hereafter we fix a generic character 6 and put p = py, 7 = 75 and so on. Since E/F
is a totally tamely ramified extension, there exists a prime element wg of O such that
why € Pr — Pj. Put wh = wp. As in the previous section, we identify M;(F) with
Endr(E) by the F-basis {wh!, wh? ... wg,1}, which is an Op-basis of Og. Thus we
get the explicit matrix forms of various objects:
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0 1 O 0
0 0 1 0
(2.1) wE = : : .. : y
0o 0 - 0 1
wF 0 ........ 0
a;; - ay a;; € Or ifi<y
(22) K=< .ooooooi. a; € 0; ,
an - ay aijEPp le>]
(2.3) A’ = o M gy eOp i<
an al ai; € Pr ifi>j
a RN /] ep - .
(2.4 w={ (0T w0 i<y
a - a a;; € Pp if1 2>

If g = 1 mod [, F has a primitive [-th root of unity ( and E/F is a Galois extension.
Let o be a generator of Gal(E/F) determined by wgr = wgr(. We denote the diagonal
matrix diag(1, ¢, ¢"2,...,¢) by & Then € satisfies ¢ = 1 and £xé~! = % for z € E.

Define a natural ring morphism R from A° to k% by the identification of A°/A' with
k.. We note that if R(a) = (oo, 01, , 1), R(wgawy') = (a1,9,-+-,qp). For
convenience, we extend the suffix to Z by putting a; = Qjmoq;- The next lemma is the
key tool for the character calculation.

Lemma 2.1. Let z € Pi — (F + ngl), g € B and j a positive integer. If grg™' €
E*(1+ A%), then

EX(1+ 4%) if ¢#1 modl,
g VB + A)ER if ¢=1 mod .

Proof. We may assume g € Ag by replacing g by w,}kg if g € Ap. Let z = whzg for
zo € O and R(g) = (ap, a1, ...,04-1). Then

R(gzg™'z7") = (oo ', cney, - im0 L),
where o5 = Qsmoar for s € Z. Since z € F + P5', i # 0 mod [. Therefore gzg~'z! € E*

implies

Qp =01 = - =01 if q;‘élmodl,
ar = (o (0<k <1—1) otherwise,
for some integer j. Since fwpé~! = (wg, we get:

EX(1 + AY) if ¢g=1modl,
9 “UEX(1+ AVER otherwise.
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Thus we may assume g — 1 € A% — (P]’§+1 + A1) for k > 1. Put g — 1 = whgy and
R(g0) = (Bo, b1 - - -, Bi—1)- Since

grg e =14+ (g—1)—z(g—1)z7' mod A+

=1+ wh(go — zgox™') mod A*,

R(go — 2gox™") = (Bo — Brk> S1 — Busks - - -» b1 — Bi—14x). Therefore gzg™'a™' € EX K+
contradicts g — 1 € AF — (PET! 4 A¥+1). It implies that if gzrg~'z~! € EXKJY,

E*(1+ A%) if ¢# 1modl,
ISVULL X + A)eF if g=1modL.
O
Put U_, = BX, Uy = FXO%, U = FX(1+ P}) fori > 1 and U = U; — Uy, for j > —1.
The previous lemma. gives the character of 7y on E* — U,_;. We remark Autp F = {1}
if ¢ % 1 mod I.

Proposition 2.2. Let z € U for -1 <1 <n—1. Ifi# 0mod!, z is written in the
formz =c(1+y) forc € F and y = wiyy € wyOx. Foru € ki and j € (Z/IZ)*, we
define the Gauss sum part G(u,j) by

(2.5) G(u,j) = > Y (2_: w(Qk41 — ak)aj+k) ;

(@0,.,a1—1)€kL/A k=0

where A = {(a,...,a)|a € kp} is the image of the diagonal embedding of kr into k.
Then xn, on U] is given as follows:

ZaeAutpEo(ax) 1= —1,
gt DAED N pat, £ 0(°T) >0 and n—i even,

q[i/2](l-1) ZaEAutF E 0(01.)
G(yoy 'yo(*wr/wE)t,c) i>0 andn —i odd,

Xne (z) =

where c =1"Y(n+1—1)/2 € (Z/IZ)*.

Proof. Put % = aza~! for a,z € G. At first we treat the case z € U*, = EX — F*O5.
Since

@ = 3 pal%),

a€H\B

we have only to show that if %¢ € H for a € B, then

H if ¢g# 1modl,
CEVULLHE it g=1
Pl if ¢g=1modl.

This follows immediately from Lemma 2.1.
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Now we treat the case z = ¢(1+y) for c € F and y € Py — (F + P5'). We may assume
¢ =1 since F* is the center of B. For 1 + k € K{(»=*+1/2] and a € B, we have

Xm(+y)= > p(*1+7y))

a€H\B

—c ¥ S° (01 +y)),

1+keKn—i\Kl(n=i+1)/2l ac H\B

In the above expression,

where C' = 4= ,\K[(n o7 -

po(“TI1 + ) = pa(1 + % + (ky — yk))

= po(1+%Y)po(1 + (1 + )" (ky — yk)))
= po(1 + “y)¢(Tr7 ((1 +y) " (ky — yk)))
= po(L + %)y (Tr (1 +y) " (ky — yk))
= po(1+ ) Y(Tr(y™ v — “ )1 +y) k)

since yk? € A" and a(1 + y)~'(ky — yk)a™' € A™. If 4oy — ¢y g A=)/ the
map k — (Tr(y® 'y — °'yy)(1 + y)~'k)) is a non-trivial character of A"~%\ Al»=i+1)/2;

thus B B
> $(Tr(y 7= vy)1+y)"'k) = 0.
ke An—i\ Alln—i+1)/2]

By Lemma 3.3 in [4], 3% y—2 vy € A [(n=i+1/2] js equivalent to ¢~y € EX Kn—i=l(n=i+1)/2],
Thus it follows from Lemma 2.1 that

X (L+y)= > > po(1+ (1+a)y(1+a)™).

oc€Autp E 14+a€H\EX Kln=1%)/2]
By virtue of (1 +y) Y1+ *9y) € K™ and (1 +3)*(1+ %) =14+ (1 +y)*((ay —
ya) + (ya — ay)a) mod K™,
po(L++9%) = (1 + ) (L + )~ (ay — ya)¥, (1 + ) ' (ya — ay)a).

Since

¥y (1 +y)"Hay — ya)) = P(Tr(yy(L+y) ™" = (1 +y)"'y)a) = 1,
¥y (1 +y) " (ya — ay)a) = ¥,((ya — ay)a) and |E* K7 /E*K™| = ¢(=1("=1), we obtain

gm (/2 N 9(1 + ) n — i even,
1+ — ) UEAUtFE
Xnp (1 +9) g2 SN 9(14%)S(n —4,0) n—iodd,
c€Autp E
where
S(n—i,0)= > ¥y ((°ya — a’y)a).
aeA(n—-i+1)/2+EnA(n—i—1)/2\A(n—i—1)/2
Now we may assume n — 7 odd and 0 = 1. Put y = whyy, a = wg’_i—l)pao and

S = S(n—1,1). Since

(ya - ay)a = wE (yo?ﬂE(n i-1)/2 aowgz—i—l)/z

_ w;(n—i—z 1)/2a0wg+i-1)/2y0)a0’
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we have by way of the map R : Ay/A; — k& that

S = Z (] (ZWWE Yo a] —(n—i-1)/2 — Q4 (n—!—z 1)/2) )

(oy)€kL /A Jj=0

(The suffix is extended to Z by o = jmoai) At first replacing the suffix j by j + (n +
i —1)/2 and then replacing «;; by «;, we get our lemma. O

Remark. In [6] and [7], it is proved that the Gauss sum G(u, j) is a fourth root of unity
when [ £ 2.

Next we calculate the character on K™"~'— K™. We state the character formula including
the case x ¢ E. On K™ ! — K™, the Kloosterman sum appears in the formula.

Definition 2.3. For a € kj, we define the Kloosterman sum Kl(a) by

(2.6) Kig)= 3 @+ +us).
(yo"!'iyl—l)Ele
Yo Yi—1=0a

Lemma 2.4. Let ¢ = 1 + w}y 'zo for zp = diag(ko, ..., ki—1), (ki € OF). Then

l
Xno (z) = g7V KI ((vwzfl)’ 11 k‘j) :

J=0

1

(Since ywh~ '€ O and kg = kg, we regard ywy - mod Pg as an element of kp.)

Proof. By the definition of 7y, we have
Xng (1 + wg diag(ko, . . ., ki—1))

=q=0m=0 Ny (Tr yaw] diag(ko, - - -, ki—1)a ™).
e€EXK\B

It follows from (2.2) and (2.4) that the set {diag(l,y1,...,%-1) | ¥i € kp} makes a
complete system of representatives of EX K\ B. For convenience, put y, = 1. Since

WE dlag(17 Y1y .- - 7yl—1)wgl = diag(yh sy Y1, 1))

we have
Trydiag(L, g1, . ., Y1)y diag(ko, ..., ki) diag(L,y, - - -, 1)~
-1
= ywy ' Z kiYi—n+1/y; mod Pp,
=0
where y; = Yimoas- By replacing y; by k;yi—n+1/yi, we get our lemma. ‘ O

On K™, the character of 7 = my becomes a constant function on elliptic regular conju-
gacy classes.

Lemma 2.5. Let x be an elliptic regular element in K™. Then

MEEIE /2 (g F = 1)_

Xr(T) = q—1
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Proof. We use the Deligne-Kazhdan correspondence (Theorem 1.5). Since the correspon-
dence preserves the conductoral exponents, there exists a generic character ¢ such that

f(0") =n and X, = Xr,- Since mp, is trivial on 1+ Pp and its degree is gtn=2=1/2 L—qql_'ll ),
i

Xa1, (€) = g1/ 2%1 for z € 1+ P%. Consequently we have X, (z) = ¢" ' (¢*+q+1)

if z € K™ is elliptic regular. O

The character formula on elliptic regular conjugacy classes outside E* can be obtained
easily.

Lemma 2.6. Let = be an elliptic reqular element of B. If z satisfies the condition that
F(z) # E and x is not conjugate to an element of F*K", then x(z) = 0.

Proof. See Lemma 3.3 in [14]. O

3. CALCULATION OF (GAUSS SUMS

In this section, we determine the Gauss sum part G(y,n—1) explicitly. Since G(y,n—1)
depends only on n — i mod [ and y mod Pg, we have only to treat the character of 5 on
U; by replacing n big enough.

Lemma 3.1. Assume n = 2m. Then for z € U},

(3.1) Xno(2) = Y > pelama™).

O’GAutFEaGH\EXKm"l

Proof. Tt follows from Lemma 2.1 that axa™* € H implies a € EXK™'. Hence our
lemma. O

In the calculation of the sum in the above lemma, we use the E*-module structure of
various objects. When E/F is a Galois extension, it is easy to treat. Thus we first assume
E/F is Galois, i.e., ¢ = 1 mod I. We recall £ is the diagonal matrix diag(1, ¢ e20000)
where ¢ is an I-th root of unity in F and & satisfies ¢ = 1 and z€™! = x for v € E
where o is the generator of Gal(E/F') determined by “wg = wg(. By the explicit matrix
form of E and A;, we obtain:

M(F) =FE @& e --- Egl_l

A° =0 & 0O & - OEfl_l

(3.2) Al =Pr & Pt & PEfl_l
. Al_1 .. : Pg—l . GB . P}E—1§ . EB ....... Pl—161_1

Lemma 3.2. A complete system of representatives of H\E*K™ ! is given by
{1 + w}’;‘lalﬁ + -+ wg”lal_lﬁl_l l a; € k‘F}
Proof. 1t is obvious from (3.2). O

Fora =1+0é+---+a_1671 € A™ L) p(aza™?) for z € Uy can be expressed explicitly
in terms of oy, ..., ;_1. At first, we determine the coefficients of @~ with respect to the
F-basis {1,¢,...,&71}.



165

Lemma 3.3. Fora = ;.;t ;& (a; € E), put

Aa) = (“0i_jmoat)o<i j<i-1

a oy 7o

(03] 0010 e
= . . . ol-1 € MI(E)

: . . 01
01—2 ogl-1

Q-1 - ay Qo
and let Ag(a) be the (1, k + 1)-cofactor of A(a). Then

-1
Aj(

2
where |A(a)| is the determinant of A(a).

Proof. By the map A : My(F) — M;(E), we can embed M,(F) into M;(E£). Then our
lemma follows from Cramer’s formula. O

Lemma 3.4. Assume n = 2m and 3(m — 1) > 2m. Let c € F*,y € PPl and a =
1+Z Lo;80 € K™ Then

polac(l +y)a™) = 0(c(1 + y))¥E (Z ’Yaj”jaz—j - fj%lt—ja_jaj)y) .

Proof. It is obvious that we may assume ¢ = 1. Since
glagaT =1+ (97 (a~1)g— (a—1))a”"
-1 :
=1+ (Z(‘”gg‘1 - 1)%‘5") o
=1

=
Zl (P99t — 1)a;6 € A™ and Tr(yz€?) = 0 for all z € E, we have:
-1
po(9  aga™") = ¢, ( Z (“gg™" ~ 1)aj€j)a’1)
-
(Z 7 (fij(a )))

7j=1
where fjk( ) € E is defined by a™! = Z;_t 5(a)¢?. Put g =1+ y. In the last equation,
ye P fi_j€ PP tand Pgg! — 1 = “y — y mod PZ™ 2. Thus we get

-1

pe(9~"aga™") = ¥p (Z Y fii(@) oy — j(fz—j(@)%)?/)

J=1
by virtue of trg u”v = trp ® 'wv for any u,v € E. By Lemma 3.3,

() = A=ila)
Fer® = T

By the assumption 3m — 3 > 2m, we obtain the desired formula. O

= qy_j mod P22,
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Proposition 3.5. Assume ¢ =1 mod [, n = 2m and m > 3.
1. For z € U7,

-1
X (z) = ¢"V2 " 0(7).
5=0

2. For an even integer n and y € Op, G(y,n — 1) = ¢"=Y/2. In particular, G(y,n — 1)
depends neither on n nor on y.

Proof. By Lemmas 3.1, 3.2 and 3.4, we have for c € F* and y € 1 + Pg

) =0+ ) Y S, e,

(a1,—1)€(PR 1)1
where
-1 . ' o
flos . a15y) = Y (Z(’Yajaz—j(a)”] - 7"_]041—;'(0)@3’_])”11/) :
j=1
Put §; = {(a1,...,04-1) € (PF7'/PF)'~' | o = 0 fork < j,0; # 0} and I;(y) =
Z(al,...,al_l)esj f(ai,...,01_1;y). Then

-1

oo (ClL+9) = 3 0(el1+ ) X ().

i=0
Ifon=--=ag 12 =0, f(ar,...,_1;y) = 0. Thus we have
-1
> 5 =gt
j=(+1)/2

For 1 <j < (I1-1)/2, I;(y) is proportional to
Yo del(veyTe; - e ”

o €Pg/Pgt

J%’)?J)-

Since a; # 0, the map |

Q_j fyaj"jal_j — ”_j’yal_]-”~jaj
is a bijection from PJ'~!/P® to kp. Therefore I;(y) = 0. Consequently we get the first
part of our lemma. G(y,n — 1) = ¢¢~V/2 follows from Proposition 2.2 and the first

part. O

Next we assume ¢ — 1 # O mod [. In this situation, it is rather difficult to describe
E-module structure of various objects since F has no [-th primitive root of unity and E/F
is not Galois. In order to apply the result of Galois case, we use the base change lift of
simple characters by Bushnell-Henniart([3]). Let ¢ be an I-th root of unity and L = F/(().
Then L/F is an unramified extension of degree [ — 1 and the generator 7 of Gal(L/F)
is determined by ¢ = ¢* where k is a generator of (Z/IZ)*. We add the subscript L to
the base changed objects. Then M;(L) = M;(F)®r L and E;, = EQp L ~ EL. E; is
a ramified Galois extension over L of degree I, an unramified extension over E of degree
! =1 with Gal(EL/E) = Gal(L/F) = () and a non-Abelian Galois extension over F of
degree [({ — 1). (We embed E into Ef, by the map: z — z ® 1).
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As in the previous section, we identifies M;(L) with Endy Er, and G = GL;(L) with
Autg Er, by the L-basis {le"l, .-+ ,wg, 1} of EL, which is also an Op-basis of Og,. By
the lattice flag { Py, }icz, we define

P ={feM(L)|f(PL,) C PL" forall jeZ}.

Put K; = (A%)%,B, = Ef K and K} = 1+ A% for i > 1. For a subgroup My C By,
(resp. M C B), we set M} = M N L*Ky (resp. M' = M N F*K). By the result of
Kutzko (Theorem 1.7), it suffices to calculate the character of k = kg instead of mg. In
fact, we have only to get the character of 7g|p:. Therefore we have only to treat the base
change of 7|1 to B where B} = L* K.

Definition 3.6. Let # be a generic character of E* with f(#) = n and 6(1 +z) =
Y(trp(yzx)) for z € PP. We define a base change lift §; of 6 to L* by 0 = 0 ong, /.
Then 6;(1 + ) = 1 (trg, /o vz) for z € PR . (Recall m = [(n +1)/2].) The base change
lift pz, of p|m to Hi = L*(1 + Pg, )K" is defined by

pr(h-g) =0 (h)Yr(Try(g—1))  for heL*(1+Pg), g€k
We define the base change n;, of 5|z to B} by
1
n = Ind gk pr.

By virtue of 8, o 7 = 8y, we have p, o T = pr. Thus we can define an extension gy of

pr to H x (1) by
pr(x X 7) = pr(z) for z € Hj.

Now we apply the result of Bushnell-Henniart ([3]) to our case and get the character
relation between 7, and 7. Put Ug, ; = L*(1+Pf,) fori > 0 and Uy, ; = Ug, i—Ug, i+1.
By (12.19) Corollary in [3] and the fact (7)-fixed space (L*K%){™ is equal to F*K*, the
following result follows.

Proposition 3.7. Letz € Ug,1. Between the set
{g€ H\(E*K™ ") | gng,/p(x)g™" € H'}
and the set
{h e H\BZKP™) | ha'h™ € H}),
there is a bijection b with the property

pr(¥(9)z"(%(9)) ") = plgns,/e(2)g™")-
Combining this with Lemma 3.1, we have:

Lemma 3.8.
(3.3) Xno (NEL/B(T)) = > pr(aza™).

a€HI\(EF K7~
ax"a"1eH
Since ng, /5(L* (1 + P§,)) = F*(1+ Pf), it suffices to calculate the right hand side of
(3.3) for z € Uy ;.
As in the Galois case, set £ = diag(1,¢*1,¢"2,...,¢) € My(L). Then £ satisfies £ = 1,
€ = £ and
6 =% forany =z € Ep,
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where o is the generator of Gal(Ep/L) determined by “wg = wg(. Moreover we have

101771 = 0% and :
M(L) =E, & Eif & --- Ep&!
AY =0, & Ot @ --- Og&!
(3.4) A =Pg, ® Pgt & --- Pgg?
AlL——l — é—;l @ Pé'_ng o --- P}lg—Llé*l—l'

We note that any element of K can be written in the form (1+a;&+08%+- - -+ay_1€71)
for a; € Pg,.
Lemma 3.9. Leti < m anda = 1+ +a€®+---+oy_1£7! fora; € O and z € Up, i
Then az’a™' € Hy, is equivalent to o € Pp—; and oy = ™ ay, for all j. (The suffiz of
a; is extended to Z by oj = Qjmodi-) ;
Proof. 1t follows from Lemma 3.2 that if a™'z7a € H, there exist v € OF and v; € Py
for 1 < 7 <1 —1 such that
Q+amé+ -+l e =yl +mE+7E+ -+ 118
(1 + Talé-k: + Ta2£2k 4o Tal—lf(l_l)k)‘
It implies
al=kr ol=2kr akr
T=%(1+v-%" To1r+v-n Qg + -+’ Toy)

k -k 2k
ar” =y + "o +-k® Tas o+’ )

......

1 -2k

o

-k
ok’ =Yk + Y-2k" o1+ -+ o).

Thus we have N
;" ¢ = 2’y mod P (j € (Z/I1Z)%).
By eliminating ayz, o4s, . . ., api-1, we get
k -
QR = ’lZEL/E(.’L’)a nEL/E(x) lOék mod ngL

Since ng, /p(2)" np, /p(x)™" € 1+ P, — Pi, o4 € Pp e By ezl el+ P, we
T(j'"l)

obtain ay; € P{E"L_i and a; = ar mod Pg’ forj=1,...,1-1. O

Lemma 3.10. Letz € 1+ Pg, — P} anda=1+ Z;—:ll VR for o € PgL_l' Then

,o—1 — F0-1)/
pr(aza™'z™?) = Yp(tip, e @) trg, p(z — 1)).

Proof. By Lemma 3.9, "aa™* € Hp. Since pr("aa™!) = 1, it implies pr(aza g™ !) =
pr(aza=tg™!). Thus we can prove the lemma by the same way as Lemma 3.4. O
It is time to get the character value of x, on U7.
Proposition 3.11. Let x € 1+ Pg, — P3, andn =2m > 6. Then
Xﬂ(nEL/E(x)) = _q(l—l)/Qg(nEL/E(m))

and
G(y,j) = —g'~D"
for ally € kr and j odd.
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Proof. By Proposition 3.7, Lemmas 3.8, 3.9, 3.10 and 3.11, we have:
Xo(ney/p(x) =0u(z) Y. Pp(tre, e " a) trg, m(z — 1)).

aEP;:"L' 1y Pg‘L

Let E' be the (o70~D/2)-fixed field. Then E./E’ is a quadratic unramified extension.
Since o™ o = ng, /e (o) and ng, ;p induces a surjection from wp ' O0g, /1 + Pg, to

@y ?Op /1 + Pp and each fiber of the map has ¢®~1/2 + 1 elements. Thus we get
| Xn(ney/e(@) = (1— (/% +1))0, ().

and it follows from Proposition 2.2 that G(y,j) = —¢"~9/2 for all y € kp and j odd. [I
Putting all these together, we can state the character formula.

Theorem 3.12. Let E be a ramified extension of F with degree I, 6 a generic quasi-
character of E* with f(0) =n and m = 1y the irreducible supercuspidal representation of
GLi(F) defined in section 1. Put Uy = F*Op, Uj = F*(1 + P,fJ) and U; = U; — Uji4
for 3 > 1. Let x be an elliptic regular element of GL;(F) and Autp E the group of
automorphism of E over F.

1. If F(x)/F is unramified, then

0 z & F*(1+ Pp,),
i_
Xa(z) = ¢ EDRPELp(c) 7= c(1+y)
force F* y e Pg(m).
2. If F(z)/F is ramified and F(x) # E, then

(0 if z¢g F*(1 + PRy)s

-1
g2 () KI((ywp )} HO k;)

J:
xx(z) = ¢ if z=c(l+wy  diagko, ..., ki) + 2)

for ce F* ke ky,z € Py
I
q(n—-2)(l—1)/2 (‘;_11)0(0)

{ if z=c(l+y) for c€ F*,y € Pg,.

3. When x € E, then
'(%)" S 6(r)  if zeEX—U,

oc€Autp E

(=1)nigZ=n2 3 (7m)
o€Autrp E

if zeU; for 1<j<n-—1,
g =DED20(c) KI((vaoy ' 20))
if z=c(l+wy'z) for ce€ F* x5 € O,
i
q(n-2)(l—1)/2 (tzﬂf) 0(c)
\ if v=c(l+y) for ce€ F*,ye PR

(See (2.6) for the definition of the Kloosterman sum Kl(a).)

Xr(x) = <
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Proof. Tt follows from (1.8), Theorem 1.7, Lemmas 2.4, 2.5, 2.6, Propositions 2.2, 3.5
and 3.11 O

Remark. By Theorem 1.6, the character formula of the representation 7, of D* is given
by the same formula for 7y.
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